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The foliowing result, together with some of its consequences, is
established :

Let I'be a closed ideal in a C*-algebra. Then, any ¢ & /* extends uniquely
toa ¢ © A* such that ligll = 1igll. Further, if ¢ € A* satisfies 4 () = 0,

then ¢ + $Il = Higl + Hyll. In particular, if ©: A - B is a surjective
*-homomorphism of C*-algebras, with ker = = [, then there is a canonical

isometric isomorphism of Banach spaces: A* o I* @ B*.
n

We give an elementary proof of the following result :
Let 7 be a closed ideal in a C*-algebra A. Then, any ¢ € I* extends uniquely

{024 € A* such that 4] = ||4]. Further, if ¢ € A* satisfies ¢ () = 0, then ¢ + ¢

= |i¢ll + ||¢ll. In particular, if » : 4 — B is a*-epimorphism of C*-algebras, there is
a canonical isometric isomorphism of Banach spaces :

A* o= I* 611 B*.

The usual proof of the above result (cf. Takesaki 1979) appeals to the universal
representation of the C*-algebra and applies techniques from the theory of von
Neumann algebras (such as the polar decomposition for linear functions) to the
enveloping von Neumann algebra of 4. This proof is presented here, since it uses
only a few basic facts from C*-algebra theory, in the hope that the result may be
amenable to one who is not a specialist in von Neumann algebras, such as a Banach
space-theorist, who may like to know more examples of situations when the Hahn-
Banach extension is unique.

Notation : Throughout this short note, the symbols H and L (H) will denote,
respectively, a complex Hilbert space, and the C*-algebra of bounded linear opera-
tors on H. For a Banach space X, the symbol X* will denote the Banach space of
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bounded linear functionals on x. For Banach spaces X and ¥, the symbol X &, Y
will denote the Banach space {(x, »):x € X,y € ¥} with coordinatewise vector
operations and norm {|(x, ¥)n = [Ix|| -+ Iyl

The symbols 4, B will always denote C*-algebras with identity 1, while the
symbol 7 will invariably denote a closed two-sided ideal of a C*-algebra. The results
extend easily to C*- algebras without identity. The assumed existence of identity
is largely just a matter of convenience; for instance, as in Lemma 1, we may make

statements such as ‘let 0 << x < I°.

Lemma 1—Let P € L(H) satisfy 0 < P < lg. Let Q be the operator on
H & H defined by the matrix.

1g—P P ]
P la—P]"°

el < 1

Then

Proor : Case (i): dim H = 1—1In this case Q = [l——p P ] € LD

where 0 < p < 1. Observe that Q = (1—p) 1‘62 +p[ 1 O] expresses O as a
convex combination of unitary operators, and hence, [IQ] < 1

Case (ii) : P has pure point spectrum—Thus, there exists an orthonormal basis
{¢:} of H such that P¢; = pid;, where 0 < p; < 1 for i. Then, Q is unitarily equiva-
lent to the operator & [ 1—pi p;’ ], and so, by Case (i), it follows that [|Q]] < 1

—pi

Case (iii): P arbltrary—-There exists a sequence {P,} of operators on H such
that ||P,— P|| — 0, and further, each P, satisfies (a) 0 < P, < lu, and (b) P, has pure
point spectrum. In Q, = IH;P,. IHI-J—nP ], then @, — Q. Since, by Case (i),
1@ < 1, it follows that ||Q]] < 1

Lemma 2—Let A be a C*-algebra. Letp € A4 satisfy 0 < p < 1. Then, for
any x,yin A,

i(1=p) x (1—>p) + pypll < max {|x|}, [y}

Proor: In veiw of Gelfand-Naimark’s theorem, we may assume that
AC L(H). Define 0, Tin L(H & H) by

Q= lpp pp] '[g }(’)]
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Then,

19TQl < IT1 IOl

< |IT) (by Lemma 1)

= max {|lx[l, Iy}
It suffices now to observe that the (1, 1)-entry QTQ is (1 —p) x (1 —p) + pyp.

Proposition 3—Let I'be a closed (two-sided) ideal in a C*-algebra 4. Let {ea}aEa
be an approximate identity for 7 (cf., for instance Arveson 1976). Let é € I*. Then,

¢ (x) = lim ¢ (xea) exists and defines an element ¢ € A* such that ¢/I = ¢. Further,
@«

if {fa} is any other approximate identity for 7, then, ¢ (x) = li'm ¢ (xfa) = l‘ilm 6 (fex)

= Ii;n ¢ (fa x f8), for all x in A.

ProoF: Case(i): ¢ > 0—The GNS-construction yields (cf. Arveson 1976,
Sakai 1971) a representation w: I — L (H) for some H, and a vector § € H such that
H=(n(I)E)" and ¢(x) = < n(x)&, & > forallx in 7. The non-degeneracy of the
representation implies that (@) = (f8) — 1x in the strong topology, whenever {fa} is
an approximate identity for J, and (b) there exists a unique representation

:: A — L (H) such that n// = ». Now, if one defines ¢ (x) = < n(x)§,E > for

all x in 4, it is clear that ¢/ = ¢, and that, with {fg} as above, ¢ (x) = lim & (xfa)
= lim ¢ (f8 x) = lim ¢ (fs x fg) for any x in A.

Case (ii): ¢ arbitrary—It is possible (cf. Sakai 1971) to express ¢ as
¢ = (61 — é5) + i($; — ¢,), where ¢; 3 0. The result follows by applying Case (i)
to each ¢,.

Corollary 4—With I, A ¢, ¢ as in Proposition 3, define o : I* — 4* by o (¢) = ¢.
Then, ¢ is a linear isometric map.
PROOF : Linearity of o is obvious.
If {ea} is an approximate identity for 7, then, for any x in A, it is clear that
| & (xew) | < ]l lixeall < 81 Ul

since [lea]l < 1. Passage to limits yields ||¢|| < [Iél. The reverse inequality is a

éonsequence of ¢/I = ¢,
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Theorem 5—Let I be a closed two-sided idea] of a C*-algebra 4. Then, the
map I* @, I1 — A* defined by (¢,, ¢,) = o ($1) + ¢, (With ¢ as above) is an isometric
isomorphism of Banach spaces. The inverse of the above map is given by

¢ = (3/1, $—o ($/1)).

Proor : It is clear that the map in question is a bijection with inverse given
as above. Only the statement about the norms is to be proved, viz. [io (¢1) + &,
= |l + [igsll Whenever ¢, € I* and ¢, € 71 . (Recall that J1 = {¢ € 4*: I C
ker ¢}.)

So, suppose ¢, € I*, ¢, € I . Let e > 0 be given. Pick unit vectors
x € A and y € I such that

Re ¢y (x) > figof] — ¢

and

Re 61 (») > [igll — e
Let {ex : « € A} be an approximate identity for 7; for each o, define
X =1 —e) x (1 — ea) +

and
Za = (1 — ea) X (1 — &) + eayea.
It follows from Lemma 2 that |jze] < 1 while lim [jxa — zef| = Hm ||y — ea ¥ eafl = 0,

since y € 1. Hence, there exists «, € A such that [[xe]] < 1 + efora > o,.
Observe that

Xo = X + (€a X €a ~— € X — X€x + ¥)
where the term in parentheses belongs to 7. Hence
Re ¢, (xa) = Re ¢z (x) > [igsl] — .
On the other hand,
6 ($1) (xa) = 6 (d)) (x) + d1(ea x €a) — ¢1(en X) — ¢; (xea) + ¢1(¥).
It follows from Proposition 3 that
lim o ($:) () = $, ().

So, there exists «, € A such that

Re o (¢)) (xa) > ||l — efor a > a,.
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Now, if « > «, and « > a, it follows that
llo($s) + doll (1 + €) > lo (B1) + &l [Ixalf
2 [ (a($1) + ¢2) (xa) |
= Re 6(¢y) (¥a) + Re ¢; (xa)
> llgall — € + flgll — e
Letting ¢ — 0 yields

llo (1) + ol = lihall + ligel-

The reverse inequality follows from the isometric nature of ¢ (and the triangle
inequality !).

Corollary 6—Let I and A4 be as above. Then, for any ¢ € I*, there exists a
unique ¢ € A* such that ¢ | I = ¢ and ||¢]| = [i¢ll. (i.e., the Hahn-Banach extension

is unique.)

~

PROOF : ¢ = v (9)is an extension with the same norm. If¢is any other
extension of ¢, it follows from Theorem 5 that

6 = lls (b | Iif + Il — o (U/DIl
= lle (Ml + b — s ()
= ¢l + b — s ()i

and so,

bl = ligl iff & = o ().

An alternative formulation of Theorem 5 is as follows: Ifw: A4 -»Bisa
surjective *-homomorphism of C*-algebras, then, in a natural way, A* = (ker n)*

®, B*.
]

Definition 7—H = : A — B is a surjective *-homomorphism of C*-algebra, let
my : A* — B* be the projection map induced by the above decomposition.

A more precise definition of =, is as follows : Let 7 = ker ». Then = induces

an isometric *-isomorphism = : A/ - B (cf., for instance Arveson 1976). It follows
that #* : B* — A* (defined by =* ({) = ¢~ =) is isometric. Finally, ifo:I* > 4*



606

V. S§. SUNDER

is as in Proposition 3, then, for any ¢ € A%, it is seen that é—a (¢/]) € range n*;
define my (¢) = #*~ ($—o ($[])).

Corollary 8—Let # : 4 -~ B be a surjective *-algebra homomorphism, and

assume B 3£ (0). Then,

@

(if)
(iii)
(iv)

v

)

(i)

(iii)
(iv)

V)

n* o n, is a norm one projection of A* onto =* (B*).
my 18 linear and {jmy |} = 1.
g —a*o mp (§) + v¥ (Wl = llb—7* o my (#) + Yl ¥ ¢ € B*-

lp—n*o oy () < ll—7* (V)| ¥ ¢ € B*; further, the above is an equality if
and only if § = m, (¢). (In other words, if § € A*, w* o =, (¢) is the unique
best approximant to ¢ from =* (B*).)

n — =, is functorial; in other words,

(@ ifm=14:4—> A4, my = 14, (more generally, if 7: 4 > Bis a *-isomor-
phism, then =, = (»~1)¥); and

(b) ifm;: 4 > Band =, : B — C are surjective *-homomorphisms of C*-alge-
bras, then (112 ° 171)* = Moy O My

PROOF: Let I = ker =, and let o : J* — A* as in Proposition 3.

n*o my (¢) = ¢—o($/I) by definition. So, by Theorem 5, if follows that
a* o m, is a projection on 4%, with norm < 1. Since the range of this pro-

jection is #* (B*) # (0) (since B 7 (0)), it follows that fln* o m,f| = 1.
follows from =, = (a*-1| a* (B*)) e (#* o =) and (i).
is also an immediate consequence of Theorem 5.
for any ¢ in B*, use (iii) to write

g—n* (Dl = lig—7™ o my ($) + =* (my ($) — Yl

= llg=m* o my ($) + llms (¢) — Yl

All the assertions of (iv) follow immediately.
The proof of (a) is trivial.

(b) - In view of the uniqueness assertion of (iv), it suffices to show that

l6— (my 0 m)* ("’2* ° T, N < l¢— (my o m)* ()
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for all 4 € C*. For this, observe that
”4’—(7‘2 ° '"'1)* (‘"’z* ° T, (‘ﬁ))”
=g — nf (m, @) + #f (m, (§) ~n)0 ™y o 7 (D)

=g — 7o m, @+ lm, @) — =)o m, 7 xo:(d) (Y (i)
while, for any ¢ in C*,

lig— (m; > m)* D)

=lb— afe m, (#) + =f(m, ($) — = (W)

=l —xte =, @+, @)~ =5
(by (iii) applied to =,)
Z g = Yo m, (@ +lm, ($) - ™y o T2y (m1, (DI
(by (iv) applied to =)
=6 — (meo m)* (m, © m, @I,
as desired.

Corollary 9 (Dixmier 1950 or Schatten 1960)—Let H be an infinite-dimensional
Hilbert space. Any ¢ € L (H)* has a unique decomposition ¢ = ¢, + ¢,, such
that

(i)  ¢2(x) = 0 for every compact operator x on H; and

(ii} there exists a trace class operator gon H such that ¢, (x) = trgx for all x
in L (H).

Further, |i¢ll = fig,ll + lig.ll

ProOOF; Let 4 = L(H)and I = K(H), the closed ideal of compact operators
on H. It is known that every ¢, € K(H)* is induced by a trace-class operator g in
the sense of (ii) above. The above result now follows from Theorem 5 and the
above identifications.

Finally, we remark that if 4 is an abelian C*-algebra, then 4 = C (X) for some
compact (assume 1 € A4) Hausdorfl space. A closed ideal 7 of 4 is determined by
a closed subset Fof X in the sense that I = {f € C(x):f(F) = 0}. The Riesz
representation theorem identifies 4* with the space M (X) of finite, regular, complex
Borel measures on X. For any u € M (x), let p, and p, be the measures defined by
d,.1 = lx_rd, d,.2 = lrd,. Then, p = p; + p,is the decomposition given by

Theorem 5.
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