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III FACTORS, THEIR BIMODULES AND HYPERGROUPS

V. S. SUNDER

Abstract. In this paper, we introduce a notion that we call a hypergroup; this

notion captures the natural algebraic structure possessed by the set of equiva-

lence classes of irreducible bifinite bimodules over a II i factor. After develop-

ing some basic facts concerning bimodules over II i factors, we discuss abstract

hypergroups. To make contact with the problem of what numbers can arise as

index-values of subfactors of a given II ! factor with trivial relative commutant,

we define the notion of a dimension function on a hypergroup, and prove that

every finite hypergroup admits a unique dimension function, we then give some

nontrivial examples of hypergroups, some of which are related to the Jones sub-

factors of index 4 cos2 n/(2n + 1). In the last section, we study the hypergroup

invariant corresponding to a bifinite module, which is used, among other things,

to obtain a transparent proof of a strengthened version of what Ocneanu terms

'the crossed-product remembering the group.'

Introduction

In this paper, we introduce a notion that we call a hypergroup (although

the term seems to have been used in the literature with somewhat differing

definitions—see the opening remarks in §IV). Our hypergroup describes the nat-
ural algebraic structure possessed (with respect to tensor-products and contragre-

dients) by the collection 0(/Y) of equivalence classes of irreducible
bimodules over a IL factor N that are bifinite (in the sense of having finite

left- and right-dimensions over N).
The first half of the paper is devoted to setting up the machinery. Although

portions of this half can be gleaned from [C and P], these sections are included

for the sake of completeness and setting up the notation and our models, and

because there are some results here that are probably new—such, for instance,

as the fact that for vectors in a bifinite bimodule, the notions of left- and right-

boundedness are equivalent. The third section leads up to the fact that captures

the contragredient axiom in the hypergroup.

The fourth section begins with the axiomatic definition of (our notion of) an

abstract hypergroup. After developing some basic consequences of the axioms,

we define the notion of a dimension function on a hypergroup and we prove the

existence and uniqueness of such a function on a finite hypergroup. In case a

finite hypergroup 0 admits an outer action on a IL factor N (cf. Definition

IV.7), and if a —> da denotes the dimension function on 0, it would follow

that for each a in 0, we can find a II i  factor Afa containing a copy of
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N as a subfactor with trivial relative commutant and index d2. We exhibit

some nontrivial examples of finite hypergroups; among them are zz-element

hypergroups 0„ such that the value of the dimension function on the kth

element is the 'Wenzl number' (sin zc7t/zz + l)/(sin 7r/zz +1). It is our belief that

every finite hypergroup admits an outer action on the hyperfinite II i factor R.

If that were true, our examples would yield several old index numbers as well

as several new ones such as (1 + cosn/2n + l)2 and (zz + (zz2 + 4)1/,2)2/4.

The final section concerns the 'hypergroup invariant' of a bifinite bimodule

over a IL factor. We obtain a transparent proof of a fairly strong version—

cf. Proposition V.3.—of what Ocneanu terms 'the extension remembering the
group'. We finally describe the inclusion matrices governing the maps T -*
r<8>iv idß , thus showing that the hypergroup invariant of the bimodule contains

the data of the ^F-algebra built from the spaces ^=5^(50") of /V-bilinear self-

maps of the «th tensor power (over N) of ft ; in particular, the hypergroup

describes many of the 'reflection symmetries' possessed by the Bratteli diagram

of the 'tower of the basic construction'.
The author would like to thank Colin Sutherland for (a) pointing out that

Proposition V.3. was valid even in the presence of a cocycle, and (b) for hav-

ing given me the opportunity to enjoy a very pleasant and fruitful stay at the

University of New South Wales, where a good portion of this work was done.

I. Preliminaries

The symbols N and Af will always denote IL factors with separable pre-

duals; Hubert spaces will be assumed to be separable and will be denoted by

such symbols as S) and ÍR. The symbol tr will denote the unique faithful

normal tracial state on any IL factor and the symbol L2(N) will denote the

Hubert space underlying the regular representation of N—i.e., the completion
of N with respect to the norm ||x||2 = {trx*x}ll2 . When convenient, we shall

use the symbol || ||oo to denote the usual operator norm on N. The canonical

antiunitary involution on L2(N)—which restricts on N to the usual adjoint—

will be denoted by 7/v ; as above, we shall regard N as a subset of L2(N).

1. Definition, (a) A left- (resp. right-) A-module is a Hilbert space S) equip-

ped with a normal *-homomorphism n of N (resp., n° of N°, the opposite

algebra of N) into £,(Sj).
(b) An /Y-bimodule is a Hilbert space Sj equipped with normal *-homomor-

phisms n and n° of A^ and A"0 respectively into £(£) satisfying n(N) c

7t°(N°)'.    D

Usually, when a left- (resp., right-) A-module Sj is given, we shall simply

write a • Ç (resp., ¿; • a) for the action of a in iV (resp., of a° in N°, where

a i-> a° denotes the natural anti-isomorphism of N on N°) on the vector £

in Sj.

2. Definition, (a) A left (resp., right) /V-module is said to be left- (resp., right-)
finite if 7t(N)' (resp., 7r°(/V0)') is also a finite von Neumann algebra (in which

case, of course, it is automatically a IL factor).
(b) A bimodule is called bifinite if it is left- as well as right-finite.   D

3. Facts. We gather together some well-known facts that may be found, for

instance, in [J].
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Let Sj be a left-finite left /Y-module and let the action of N on Sj be denoted

by 7i.

(1) Let t, e Sj be nonzero; let p$ and p'^ denote the projections onto [7t(N)'Ç]

and [n(N)Ç] respectively, where \9P\ denotes the closed subspace generated

by the set S? ; then (p¡ e N and p'( e N' and) the ratio (trp(/trp'() is a

finite positive constant which is independent of the vector £. This constant is

denoted by dim/v Sj.
(2) Two left-finite /V-modules Sj and 9\ are equivalent—i.e., there exists

a unitary operator u : Sj —> 9Í which is /Y-linear in the sense that u(a • ¿f) =

ü'Uc; for all a in N and £ in Sj—if and only if dim/v Sj = dim/v 9t.

(3) dim/v 55 = (dim^jv),^)-1.

(4) If p e N is a projection, then dimpNppSj = (tr/z)-1 dim/v Sj.
(5) If p' e N' is a projection, then dimP'Np'Sj = (tr/?') dim/v £.
(6) If Sj ® C" is made a left /Y-module in the natural way—via n ® 1—then

dimjv Sj <8> C" = zz • dim^ Sj.
(Clearly there is also a right-version of each of the above facts.)

4. Notation. We shall write Mmxn(A) for the set of m x zz matrices whose

entries come from A . For a Hilbert space Sj, we shall consider Mmxn(Sj) as a

Hilbert space with ||¿;||2 = J2 Ku\\2 ■ As is customary, we shall write Af„(«) for
Mnxn(-). It is clear that M„(N) isa IL factor. When Sj is a left-(resp., right-)

A-module, matrix multiplication naturally induces a left AfTO(/Y)-module struc-

ture (resp., a right Af„(/V)-module structure) on Mmxn(Sj).

We now consider matrices of nonintegral sizes. Suppose r, s are positive
real numbers. Fix any integer zz that is larger than both r and 5. Select

projections p and q in Mn(N) such that tr/z = r/n and trq = s/n. We

then let Mrxs(A) = {£, e M„(A) : Ç = p£q} where A denotes either N or

L2(N). When r = s, we shall pick p = q and we shall abbreviate Afrxr(») to

Afr(-). It is clear that Mr(N) is also a IL factor and that Mrxs(L2(N)) has a

natural left Afr(/V)-module structure and right MS(N)-module structure. To be

accurate, we should perhaps call the above "an zz -p - q model for Afrxi(^) ",

but we may and do dispense with such subtleties for the following reasons: (i)

if Af, = PiMn¡(N)p¡ where p¡ is a projection in Mn.(N) with tr/z, = r/zz,

for i = 1,2, then there exists a partial isometry u e Af„lX„2(/Y) such that
the map x h-> u*xu defines a von Neumann algebra isomorphism of Afj onto

Af2 ; (ii) if Sjj is the zz, - p¡ - q¡ model for Mrxs(L2(N)), then there exists

partial isometries u,ve Mn¡x„2(N) such that x i-> u*xv defines a unitary

isomorphism of #1 onto Sj2 .

5. Examples, (a) L2(N) is naturally an A^-bimodule; the vector 1 is cyclic

for the left- as well as the right-actions of N ; further, in this case, 7t°(N°)

agrees with n(N)' ; it follows from the definitions that dimN L2(N) = 1 and

dhritfo L2(N) = 1.

(b) As has already been noted, Mrxs(L2(N)) is a left Afr(/Y)-module; an easy

application of the facts listed in §3 shows that dim^jv) Mrxs(L2(N)) = s/r.

6. Finite extensions of N. By an extension of N, we shall mean a IL factor

Af containing N as a subfactor. (To be precise, we must consider a pair

(Af, p) where p is a faithful normal unital *-homomorphism of N into Af.)
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We shall say the extension Af is finite if dim/v L2(M) is finite. In fact, this

dimension is just the Jones index [Af : Af] and it should be recalled that if Sj

is a left Af-module, then Sj is left Af-finite if and only if Sj is left /Y-finite
and that dim/v Sj = [M : N]- dim^ Sj.

Let 0 < r, s < oo and let a : N —> Mr(N) be a unital normal *-homomor-

phism. Then Mrxs(L2(N)) is left-finite as an Afr(/v")-module; it follows from

the last paragraph that Mrxs(L2(N)) is left-finite as an TV-module (where the

action is given by a •£ = a(a)£) if and only if [Mr(N) : a(N)] < oo . It further

follows from the last paragraph that

(6.1) dima{N) Mrxs(L2(N)) = [Mr(N) : a(N)]-s/r.

7. Definitions and some notation. If a : N —> Mr(N) is a unital normal *-

homomorphism such that [Mr(N) : a(N)] < oo, we shall call such an a a

'cofinite morphism of AT' and we shall write S?(r x s; a) for Mrxs(L2(N))

viewed as a left /V-module as in the last paragraph. Dually, we shall write

¿%(sxr;a) for Msxr(L2(N)) viewed as a right A-module via a. In conjunc-

tion, given a pair of cofinite morphisms a : N —► Mr(N) and ß : N —> MS(N),

then the Hilbert space Mrxs(L2(N)) acquires, naturally, the structure of an N-

bimodule which we shall denote by ¿¡§(rxs; a, ß). Given a cofinite morphism

a : N -> Mr(N), we shall write da = r.

The symbols a, ß, y, ... will, in this paper, always denote cofinite mor-

phisms. The symbol 1 will also be used, when the context is clear, to denote

the identity automorphism, when viewed as a cofinite morphism—e.g., d\ = 1.

Finally, we shall consistently use the notation Sja = 38(1 x da ; 1, a). Thus, for

instance, if a is an automorphism of N, then Sja is just L2(N) as a Hilbert

space, while the actions are given by a-Ç-b = aÇa(b).

Also, if Sj and ÍH are /V-bimodules, we shall write #-?(•£>, SK), 3n($J, M)
and NJ2fN(Sj, 9Í) for the spaces of bounded operators from Sj to ÍH which are,

respectively, left-, right- and bi-/V-linear.

8. Lemma, (i) T e N¿¿?(Sja) if and only if there exists a matrix T~ e Mda(N)

such that TÇ = ti,T~ (matrix multiplication) for all Ç in Sja ;

(ii) T e /v-2/v(£)a) if and only if there exists a matrix r~ as in (i) above

which further satisfies T~ e Mda(N) n a(N)'.

Proof. Assume that we are working with'the zz-l-c7 model' of MXxda(L2(N)).

Let (/('>, ... , #("> denote the rows of the matrix q and note that—due to the

idempotence of q—each qW> may be regarded as a vector in Sja ; in fact, note

that

(8.1) Í = («/)) G Sja «.f = Zq *> i; = Y.ÏJ • QU) ■

Let TqW = ((?,;)) ; the proof of the assertion, with T~ = ((f,;)), would be

complete once we show that T~ = qT~q and that ty e N for all z and j.

The first assertion follows from the definitions; as for the second, note that if
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x e N and i, j < n , then

llalli .< fe llalli) <l|x.r^||2 = ||r(x.^))||2

< lirii2- í^iix^ii2 j < \\t\\2- ¡TWquWl J ||x||2;

it follows that each r,7 is a 'right-bounded vector' in L2(N) and must conse-

quently belong to N ; it is clear conversely that any T as above is necessarily
left-ZV-linear.

As for the second assertion, suppose T e n-&n(L2(N)) ; it follows from (i)

that r^ = <^r~ for some T~ in Mda(N) ; it is easily seen that T(Ç-a) = (TÇ)-a
for all a e N if and only if a(a)T~ = T~a(a) for all a e N. The proof is

complete.   D

In anticipation of the next and further results to come, we make the following

definition.

9. Definition. Two cofinite morphisms a and a' will be said to be outer

equivalent if there exists a (partial isometry) u in MdaXda,(N) suchthat a'(x) =

u*a(x)u for all x in N and uu* = a(l). (Note that then, necessarily da =

tra(l) = tra'(l) = da>.)

10. Proposition. Every bifinite bimodule is equivalent to Sja for some cofinite

morphism a ; further under the above passage from bimodule to cofinite mor-

phism, isomorphism of bimodules corresponds precisely to outer equivalence of

cofinite morphisms.

Proof. Let d = dim^f} where Sj is the bimodule under consideration. In

view of §3(2), we may assume that, as a Hilbert space, Sj = Mlxd(L2(N)).

Deduce now from Lemma 8 that there exists a map a : N -* Md(N) such that

C • a = Ça(a) for all a in N. It is a matter of routine verification to see that
a is indeed a unital *-homomorphism—whose normality is ensured by that of

the right action—and it then follows that Sj is just Sja .

As for the second assertion, begin by noting that dim/v Sja = da (cf. §5.(2)

and the definition of da). It follows that if Sja ~ fja>, then da = da< ; hence

we may assume that the underlying Hilbert space for Sja as well as Sjai is

Mixd(L2(N)). Suppose that w~ is a unitary operator that is /V-bilinear. De-

duce from our reduction and Lemma 8 that there exists a unitary u e Md(N)

such that m~¿; = t\u for all <* e Sj. The right /V-linearity of m~ ensures that

£a(a)u = u~(£ • a) = u~£, • a = Çua'(a) ;

the desired conclusion follows immediately.   D

(We remark here that there is a right version of the above proposition, namely

that each bifinite bimodule determines—uniquely up to outer automorphism—

a cofinite morphism a* such that Sj ~ 38 (da* x 1 ; a*, 1) ; we do not prove this

separately here since it will follow from general assertions about the contragre-

dient that we shall later establish.)
We now wish to discuss some representation-theoretic aspects of the theory

of bifinite bimodules.   The starting point is the deduction from §8(ii)—and



232 V. S. SUNDER

the basic fact from Jones' theory of subfactors that a subfactor of finite index

necessarily has a finite-dimensional relative commutant—that if Sj is a bifinite
bimodule, then A = N^N(Sj) is a finite-dimensional C*-algebra of operators.

(If Sj ~ Sja , then A ~ Mda(N) n a(N').) Note that there is a natural bijection

between projections in A and sub-bimodules of Sj such that the Murray-von

Neumann notion of equivalence of projections corresponds to equivalence of

sub-bimodules. The following lemma must be obvious; its proof is omitted.

11. Lemma,   (a) The following conditions are equivalent:

(i)   Sja is an irreducible bimodule,

(ii)   Mda(N)na(N)'^C;
(b) The following conditions are equivalent:

(i)   Sja is isotypical—i.e., any two nonzero submodules contain further

nonzero sub-bimodules which are equivalent;

(ii)   Mda(N) n a(N)' ~ Mm(C) for some integer m.

We shall say that a cofinite morphism a is irreducible or isotypical when Sja

has that property.

12. Schur's lemma. If a is irreducible and ß is arbitrary, then /v-2/VCíia, %)

consists only of scalar multiples of isometries.

Proof. If t e N-&N(fJa, %) has polar decomposition t = u\t\, it is easy to see

that u e /v=2^(i)a > fiß) and \t\ e /v=2/v(íüa) and consequently \t\ is a nonnega-
tive scalar; it follows that u is either the zero operator or an isometry and the
proof is complete.

13. Theorem. Every bifinite bimodule Sj admits a decomposition.

n

£~0(£;©C"<)
¡=i

where each Sj¡ is an irreducible bimodule and zn, are integers. Such a decom-

position is unique up to permutations and isomorphisms of the Sj¡.

Proof. Assume, without loss of generality that Sj = Sja. As has already been

noted, bifiniteness ensures the finite-dimensionality of A = n-S'n&o) ■

To prove existence of the decomposition, let {P\, ■ ■ ■ , Pk} be the partition

of 1 into minimal central projections of A ; each p¡ can be decomposed as

Pi — Yl%\ Qj » where the q'j are minimal projections in A. It follows fairly

easily that Sj = 0,(©7 q'jSj) is a decomposition of the desired sort.

Uniqueness follows from the fact that every partition of 1 into minimal

projections must necessarily refine any partition of 1 into central projections. In

fact, it is evident that the decomposition into isotypical summands is canonical,

while the decomposition into irreducible summands is determined only up to

conjugation by a unitary operator in A .   D

We conclude this section with a brief discussion of the contragredient of a

module.

14. Definition. Let Sj be a left- (resp., right-) ZV-module. By (a model of) the
contragredient of Sj, we shall mean any right- (resp., left-) /V-module Sj* for
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which there exists an anti-unitary operator J: Sj ^ Sj* satisfying J(a • Ç) =

(JÇ) • a* (resp., J(i -a) = a* • (/{)) for all a in N and £ in Sj.
If Sj is an /V-bimodule, and if Sj* is any /V-bimodule for which there exists

an anti-unitary operator / : Sj —> Sj* satisfying J(a-Ç- b) = b* • JÇ- a* for all

a, b in N and Ç in Sj, then the bimodule Sj* will be called (a model for) the
contragredient of the bimodule Sj.   D

Note that the contragredient clearly exists and is determined up to unitary

isomorphism (since the composite of two anti-unitaries is unitary).

15. Lemma. 33(da x dß\ a, ß)* ~ 3§(dß x da ; ß, a).

Proof. Define / : MdaXdß(L2(N)) -+ MdßXda(L2(N)) by (H)u = Jrfj,; the

fact that Jn establishes the self-contragredience of the bimodule L2(N) to-
gether with a routine computation involving simple matrix-multiplication, suf-

fices to complete the verification that the above J does the required job.   D

16. Notation, if a is a cofinite morphism of N, then, by (a model for) a*,

we shall mean any cofinite morphism of N such that Sja» ~ (Sja)* •

Note that if Sj is a left /V-module, then dim/v Sj = dimij^; in particular

da* = dim SjaN , and we see (cf. 6.1) that

da(da*) = Wda(N) : a(N)] = [Md,(N) : a*(N)],

the second equality following from the obvious fact that (Sj*)* ~ Sj.   D

II. Bounded vectors

Henceforth, the symbols Sj and ÍR will always denote bifinite /Y-bimodules

and the symbols a, ß, y, k , p, and p will be reserved for cofinite morphisms

of N.

1. Definition. A vector Ç in Sj will be said to be left- (resp., right-) bounded

for (the right- (resp., left-) action of) N if there exists a constant C such that

||f-a||<q|a||2 (resp., \\a^\\ < C\\a\\2) for all a in N.

2. Lemma. Suppose N c Af are IIj factors such that [M : N] < oo. Let Sj
be a left M-module (so that it can also be regarded as a left N-module). The
following conditions on a vector £ in Sj are equivalent:

(i) c; is right-bounded for the left-action of M ;

(ii) £, is right-bounded for the left-action of N.

Proof. Since (i) clearly implies (ii), assume (ii). As is well known—cf. [PP]—

the assumption of finite index implies that there exists a finite set {X\, ... , Xn}

in Af and a positive constant K such that any element x in Af has a repre-

sentation of the form x = YT\^iai where a, e N and ||a,||2 < AT||jc||2 for each
i. It then follows that

II* • «B <¿ Halloo-II«/-€11
i

<¿P,||«-C.|Nl2
1

<C'.||x||2

where C is an appropriate constant, thus completing the proof.   D
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3. Lemma. The following conditions on a vector £ z'zz Mrxs(L2(N)) are equiv-

alent:
(i) ¿¡ is right-bounded for the left-action of Mr(N) ;

(ii) £ e Mrxs(N).

Proof. Since (ii) clearly implies (i), assume (i). We are, thus, given an integer

n> r, s, and projections p, q e Mn(N) satisfying tr/z = r/n and trq = s/n,
and we are given that ¿¡ = pÇq and that t\ is right-bounded for the left-action

of pMn(N)p on pMn(L\N))q .
Note, first that, for any b e Mn(N), the vector ¿; • b is right-bounded for

the left-action of pMn(N)p on pMn(L2(N)). Apply this to b = up, where

u is an arbitrary unitary element of Mn(N), to find that the vector £ • up is

right-bounded for the left-action of pMn(N)p on pM„(L2(N))p. However,

pM„(L2(N))p is the standard left /zAf„(/v")/z-module and it follows that neces-

sarily, ¿¡-up epMn(N)p.
It follows, in particular that £ • upu* e Mn(N), and this is true for every

unitary u in M„(N). On the other hand, we can clearly find unitary elements

u\,... ,un in Mn(N) such that a = Yl"uiPu*i 1S an invertible element of

M„(N). We then deduce from the above that Ç • a e M„(N), and deduce

finally that £, = (¿;-a)-a~1 e Mn(N) ; since £ = p-Ç-q , we have ¿¡ e pM„(N)q ,

and the proof of the lemma is complete.   G

Obviously, there is a dual proposition valid for vectors that are left-bounded

under an appropriate right-action. On the other hand, Lemma 2 implies that
a vector Ç in 33(da x dß ; a, ß) is left- (resp., right-) bounded for the right-

(resp., left-) action of N if and only if it is left- (resp., right-) bounded for the

right- (resp., left-) action of Mdß(N) (resp., Mda(N)). Coupled with Lemma

3. we have

4. Proposition. A vector ¡t, in a bifinite N-module Sj is left-bounded if and only

if it is right-bounded. If Sj=&(dax dß\ a, ß), this happens precisely when all

the entries of the matrix ¿f come from N.

Proof. This follows easily from the preceding remark and §3.

5. Notation. Given a bifinite /V-bimodule Sj, we may thus ignore the quali-

fying adjectives left and right and simply talk about bounded vectors. We shall

denote the class of all bounded vectors in Sj by Sjo .

6. Proposition. Let Sj and <K denote bifinite N-bimodules.

(i) fjo is stable under both the left- and right-actions of N ;

(ii) Sjo is dense in Sj ;
(iii) The association T —► T\SJo sets up a bijection between operators T in

nJÉn(Sj,9K) and the class NLN(SJo,%)) of linear maps S from Sj0 into 9to
that are N-bilinear in the sense that S(a • ¿¡ • b) = a • SÇ • b for all a, b in N

and t, in Sjo ■

Proof, (i) Let a, b e N and c\ e Sjq be fixed; for arbitrary x in N, we have

||x •(«•£• 6)11 <||6||oo-II*«-£ll

<  Hftlloo • C||*fl||2

<CHÔ|UI«||oo||*||2,

thus establishing that a • t; • b e Sjo ■
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(ii) This follows immediately from the obvious fact that Mixd(N) is dense

in Mlxd(L2(N)).
(iii) If c; e Sjo , the fact that TÇ e ÍRn follows from the inequalities

l|fl.mi = ||r(a.i)||<||r||.||a.(?||<c||r||.Nl2;

thus the restriction of T maps Sjç, to ÍRn . Suppose conversely that we are

given a linear map S : Sjç, -* ÍRn which is /Y-bilinear. We may, and do assume

that Sj = Sja and that ÍR = Sjß for some cofinite morphisms a and ß of N.

Fix a suitably large integer zz and assume that a, ß : N -> Mn(N) and satisfy

tra(l) = da/n and tr/?(l) = dß/n . Let X' denote the z'th row of the matrix

a(l). Then, X' e MXxda(N) = Sjç, and so SX' = s' e ÍRn = MXxdß(N) ; suppose

s' = (5,i, ... , Sin) ■ Since s1 e ÍRn, it follows that s' = s'' • ß(l) and that

Stj e N ; note now that if ¿; = (£1, ... , £„) e (Sja)ç>, then

st=s(J2Zi-A=¿2&'si=zs~

where the last term denotes the matrix-'product' of the row-vector t, and the

matrix S~ whose (i, j)th entry is sy. Simply define T¿¡ = ÇS~ for t, in

Sj—noting that this makes sense since the entries Sy belong to N, which acts

from the right on L2(N)—and note that T is a bounded operator from Sj to

ÍR which extends S and consequently inherits ZV-bilinearity from S.   D

We now relate bifinite /V-bimodules with the theory of Hilbert modules.

7. Proposition. For any bifinite N-bilinear bimodule Sj, there exists a unique

mapping Sjo x Sjç, i-> N, denoted (£, zz) i-> (¿¡, ij)n which satisfies the following

relations, for arbitrary ¡t,, n, Ç z'zz Sjç, and a in N :

(a) (£, £)/v is a positive element of N that can be zero only if ¿; = 0 ;

(b) (t,r,)N = ({«,{)„)•;

(c) (£ + zz,0/v = (£> £>* + (>/> Oaz;
(d) (a-c¡, n)N = a(Ç, t])N;

(e) (Ç-a,n)N = (Ç, n-a*)N;
(f) {i,a-n)N = (Ç,n)Na*; and
(g) (¿,zz)=tr(£,zz)„.

Proof (Existence). Assume, with no loss of generality, that Sj = Sja where

a: N -» Mda(N) is a cofinite morphism. If £ = (<*,•), n = (z/,) e (Sja)0,

define (¿;, n)^ = Yï.Çi'l* (= £'/*) where the product occurring in the paren-
theses is matrix multiplication. The verification of the above conditions is a
painless triviality; the proof of (e), for instance, is: (£ • a, z/)# = (Ça(a))n* =

S,a(a*Yn*=^(r}a(a*)Y = (^,n'a*)N.

(Uniqueness). Suppose ( , ) is another function from (Sja)ç, x (i>a)o to N

which satisfies conditions (a)-(g) above. Note, as before, that if we let X' denote

the z'th row of a(\), then X1 e (Sja)ç, ; define py = (X', Xj) ; then, for any ¿¡, n

in (Sja)o, we have

«i, n) = (¿2 & ■ *'. E 7j • ̂ ) = E E to«*; = fr**
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where, of course, the last product is a matrix-product and p denotes the matrix

with (i, j)th entry /?y .

It follows from the identity in the last paragraph and the definition of p that

Pij = (Xi,X>)=XipV*,

which, in turn, implies that p = a(l)pa(l).

Appeal to condition (e) to deduce that, for all Ç, n in (Sja)ç,, we have

Ça(a)pr,* = ({ • a, zz) = (£, n • a*) = &(na(a*)y = tpa(a)n* ;

by allowing ¿; and r\ to range over X' and XJ, we easily deduce that this must

imply that pa(a) = a(a)p for every a in N. Thus p is a projection in

Mda(N) n a(N)'. Condition (g) can now be translated as saying that trt\pn* =

(Ç, n) ; in other words the operator, which is defined on Sja as multiplication on

the right by the matrix p, induces the same sesquilinear form as the identity
operator; this last conclusion forces p to be the matrix a(l) (which is the
matrix which corresponds to the identity operator on Sja). Hence, if £, r\ e Sjç,,

then, (Ç, n) = trÇa(l)n* = trCn*, and the proof is complete.   D

It goes without saying that there is a corresponding left-handed version of

the above result, which we state here since we will later need this form.

7 (left version). Proposition. There exists a unique map from Sjç, x Sjç, to N,

denoted (£, zz) -+ N(Ç, n), that satisfies the following conditions, for all Ç, n, Ç

in Sjo and a in N :
(a) /v(£, ¿;) is a positive element of N that can be zero only if ¡t, = 0 ;

(b) *«;,*> = Ufo, €»*;
(c) N(i + ti,0 = N(C,0 + N(ri,0;
(d) N{a-i, n) = n(£, a* ■ n);
(e) N(¿¡-a, n) = N{£, n)a;

(f) N(Ç,a-Ti) = fljv(í, r¡); and

(g) tr/v(£,z7) = (¿,z/).

Further, if Sj* is a contragredient of Sj, and if ' c; —> £,* is the 'implementing'

anti-unitary operator, then #(£, zz) = (n*, ¿¡*)N.

Proof. The reader should have no difficulty in verifying the proposition either by

perfectly reflecting the proof of the right-handed version or by taking a cue from

the final assertion of the proposition and converting the problem concerning

the 'right-handed /V-valued inner-product' on Sj to the problem concerning the

'left-handed A-valued inner-product' on Sj* . In terms of the model, if Sj = Sja ,

then N(t,ti) = Z'lîZi-   D

For convenience of later reference, we give here a suitable formulation of the

Riesz representation theorem.

8. Proposition, (a) Each n in Sjç, induces a unique operator T„ in

N&{fy, L2(N)) such that T„£, = ({, n)N for all £, in Sj0.

(b) Conversely every operator in ^2C(Sj, L2(N))  is of the form  T„ for a

unique n in Sjç,.

Proof. Assume that Sj = Sja for some a. (a) Define T„C; = £&»/* for t\ in Sj

and observe that T„ fits the bill.
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(b) Conversely, if T e n^(^), L2(N)), note first that T maps Sjç,, the set

of bounded vectors in S), into the set of bounded vectors in L2(N) which is

just N. Let a' = TX', where as usual we write X' for the z'th row of a(l) ;

thus, a' e N for all i, and if t\ = (£,-) e Sjç,, we then have

n = r(E6-A<)=E&-a';

write a for the column vector with z'th entry a', define n = a*a(l), and note

that n = zza(l) so that n e Sjç,; further, if £, e Sjç,, then

rC = fc = ({a(l))a = {if = «[,*)*;

thus T agrees (on the dense subspace Sjç,, and consequently on all of Sj) with

the bounded operator Tn.   D

9. Remarks. Note that, dually, every element z/ of Sjç, determines a unique

operator nT~ in LN(Sjç>, N) suchthat „T~Ç = N{Ç, n) for all £ in 5)0, which

operator, in turn, extends uniquely to an element ,7 of 5?n(Sj, L2(N)) ; and

conversely, any operator T~ in LN(Sjç,, N) extends uniquely to an operator T

in NJî?(Sj, L2(N)) which in turn is nT for a unique n in Sjo.

III. Tensor products

Recall—cf. II.6(iii) and its proof—that if Sj and ÍR are bifinite /V-bimod-
ules, the association T >-> T\%0 sets up a bijection between N¿¿?N(Sj, ÍR) and

nLn(Sjq ,%))', further, if Sj = Sja and ÍR = Sjß, then every operator T in

N¿¿N(Sja, Sjß) is given by TÇ = £,T~ for a uniquely determined matrix T~ in

MdaXdß(N) that satisfies a(a)T~ = T~ß(a) for all a in N.

1. Proposition. Gz'vezz azzv two bifinite N-bimodules Sj and ÍR, there exists a

bifinite N-bimodule, denoted by Sj ®N ÍR, satisfying
(i) There exists a surjective linear transformation from the algebraic tensor-

product Sjo ® ÍRn ozzío (Sj®N iR)o—íAe z'zwage under which map ofÇ<8>n we shall

denote by Ç <s>n n—such that, for all (Ç, n) e Sjç, x ÍRn and a, b e N, we have

£,-a®Nn = l;®N a-n   and   a • £ ®n <] • b = a • (f ®N zz) • b ;

(ii) if S is any linear map from £)n<8>ÍRo into 9Jtn—where SETI is any bifinite N-

bimodule—satisfying S(Ç-a<8>n) = S(Ç®a-n) and S(a-Ç®n-b) = a-S(t¡®n)-b, for
arbitrary a, b e N and (Ç, n) e (Sj0 x ÍRn), then there exists a unique operator

5~ z'zz NSfN(f)®NW.,Wl) suchthat

S~(£, ®n n) = S(£ ® n)  for all {(, n) e So x iRo.

Proof. Assume Sj = Sja and ÍR = Sjß , where a, ß : N -> Mn(N).

Assertion: 33 (da* x dß\ a*, ß) is a model for Sa ®jv % ■

Note, to start with, that Sja ~ (£a#)# ~ 33 (da* x 1 ; a*, 1). Let

(Í,, ... , £„) = (Çj) =ÇeSja~ (rO = €~ € Af(/Q#xl(L2(AT))

denote such an isomorphism. For £ e (i)a)o and z/ e (%)n, define

^®^z/ = ((r,z/;))€M„(/V)

and note that
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(a*(l)(£®,vZ/)/?(l)),7 = S4(l)r*ií/Ay(l)
k,l

= Cirij = (Ç®Ntl)ij,

so that Ç ®n n does indeed belong to Md §xdß(N).

The equations of (i) are easily seen to be verified; as for the assertion concern-

ing surjectivity, begin by noting that the columns of a*(I) belong to Af¿ #x ¡(N) ;

thus we may find Xj in Sja such that Xj is the jth column of a*(I). Also, let

p' denote the z'th row of ß(l). For a e N, compute thus:

(Xj ■ a ®N /»')*./ = (Xj • «)~V)/ = (A; • a)V)/ = a*kj(l)aßit(\) ;

also, if £ = ({w) e MdatXdß(N) = (33(da* x dß ; a*, ß))0 , then,

^ = (a*(i)^(i))w = E«!fc,(i)^//(i);

and hence £ = £)y(A/ •{.//) ®zv/¿' > thereby establishing the asserted surjectivity

and completing the proof of (i).

As for (ii), if S is given as in the proposition, simply define 5"" by S~Ç =

Y,i,jS((Xj-Çji)®ti') for any £ in (Sja®NSjß)0 = Mdat)Xdß(N) ; it is easily verified

that S~ € ffLN((Sja ®jv %)o> SCRo) ; it follows from the remark preceding the

proposition that S~ extends uniquely to an /Y-bilinear bounded operator from

Sja ®/v Sjß to QJÍ. This extension, that we shall continue to denote by S~ ,

clearly has all the desired features.   D

It follows easily from the above proposition that the tensor-product Sj ®n 9t

is uniquely defined up to isomorphism.

2. Corollary. dim^S <g>/v ÍR) = dhruv # • dimyv ÍR ; and dim(.fj ®jv ÍR)/v =
dim Sat -dimiRjv.

Proo/.

dimN33(da* xdß;a*,ß) = dima#(iV)Mda§xdß(L2(N))

= [MdAN) : a*(N)] • dimA/^(tf)A/¿a,xrf,(L2(AT))

= í/ada# • í/^/ííq#

= ¿a • dß ,

thus proving the first identity. The second identity can be proved in exactly the

same manner, or may be deduced from the first by considering contragredients

and appealing to the next result.   D

3. Corollary.   (Sj ®N ÍR)# ~ ÍR# ®N Sj*.

Proof. Assume that Sj = Sja and ÍR = Sjß , and note that

(Sa ®N Sjß)* S (33(da* xdß;a*, ß))*

~33(dßxda*;ß,a*)

=* Sjß* ®N fia* ■     D

We now wish to give an alternative description to the tensor-product which

brings to focus the relationship between the cofinite morphisms involved.
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4. Definition. If a : N -> Mm(N) and ß : N -> Mn(N) are maps, we shall

use the symbol a®ß for the map from A^ into Mmn(N)—where the rows and

columns are indexed by {\ ,2, ... , m) x {1,2, ... , zz}—defined by

(a®ß)ij,ki(a) = aik(ßji(a)).

5. Lemma. If a and ß are faithful normal *-homomorphisms, sois a®ß.

Proof. This is an easy and routine verification; for instance, the verification

of the adjoint condition runs as follows: (a ® ß)tj ki(a*) - aik(ßji(a*)) =

otik(ßiMT) = <*ki(ßij(a)T = (a® ß)k,,lj(a)*.   D

We shall establish, by a somewhat indirect argument, that a® ß inherits

cofiniteness from a and ß ; we proceed in several steps. Note, to start with,

that

tr(a® ß)(l) = (mnr'^^ißjA1))
i, j

= m-lY,ttMn(N)a(ßjj(l))

j

= m~x ^(tra(l)) tr ßjj(l)   (by uniqueness of trace)

= (tra(l)).(tr/?(l))

and hence, Sjalg>ß is a left-finite A-module with da<S)ß = dadß .

6. Proposition. If a and ß are cofinite morphisms, then Sja<Slß is a model for

Sja ®n Sjß and in particular, a® ß is cofinite.

Proof. To begin with, we recall the following facts concerning left-finite N-

bimodules:
(a) If Sj is left-finite, then Sj ~ 33(1 x dy ; l,y) = Sjy where y : N -> Mdy(N)

is some normal unital *-homomorphism, which is cofinite precisely when Sj is
also right-finite.

(b) Arguing exactly as in the proof of Lemma I.8(i), we see that a vector in

Sjy is right-bounded for the left-action of N precisely when all its entries come

from N; consequently, Mlxdy(N) is the set of bi-bounded vectors in Sj.

(c) Deduce from (b) above—and arguing exactly as in the proof of Lemma

1.8.(i)—that if a, ß: N —> Mn(N) are normal *-homomorphisms (not neces-

sarily unital or cofinite), then a typical element T of N2'(S)a, Sjß) is induced

by multiplication on the right by a matrix T~ in MdaXdß(N) ; thus, T£,=t;T~

V£ G Sja.
(d) It follows from (c) above that if Sj and ÍR are left-finite /Y-bimodules,

and if we let Sjç, and ÍRn denote the collections of bi-bounded vectors in S) and

ÍR respectively, then, the association T -* T\f,0 sets up a bijection between

N¿2?N(Sj, ÍR) and the linear space nLn(Sj0, ÍRo) of A-bilinear maps from Sjç,

to ÍRo.
(e) It is easily deduced from (d) above that Proposition III. 1 (ii) remains valid

even when M is only required to be left-finite, provided that 97l0 is interpreted
as the set of bi-bounded vectors in 371.
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We complete the proof by showing that Sja<Slß satisfies the conditions of

Proposition III. 1, when condition (ii) is modified as in (e) above, and by in-

voking the uniqueness imposed by that universality condition. We begin by

defining T : (Sja)o ® (Sjß)o -» (#a<8>yff)o   (= MXxdadß(N)) by the prescription

[7^®z/)],7 = £<>n(zz;);
r

we then verify as follows:

(i) [T(i ® n)(a ® ß)(l)]u = Y,(T(t ® »/))*/(« ® ß)ki,ij(l)
k,l

= E Zrark(t1l)ak1(ßlj(l)) = J2Crari(r,,ßlj(l))
k,l,r l,r

= E^a" (E IM1))  = Y,Zr<*ri(rij) = [7XÍ ® Z/)]y ;

[7*(4f. a <8> ff)]#y = 5^(i • a)r«r#(^)
r

(u) = E^MWíto/)
r

= ^2¿,sasr(a)ari(nj) = [{o(a)a(i/;)]¡

= Ka(flty)]/ = Eírt»ri((u • n)j) = lT(t ® a • z/)],7 ;
r

and

(iii) [T(a -Ç®». b)]ij = E(fl * ÊWfa • *)/)
r

= 52 a^a„ ( E flsßsj(b) J

=  ^2 ^rarp(Vs)aPi(ßSj(b))
r ,s ,p

= a Efr(£ ® ri)]pS(a ® ß)ps,ij(b)
p,s

= [a-T(Ç®t]).b]u.

We now show that T((Sja)0 x (S)ß)0) = Mlxdadß(N). As before, we let X'

and pj denote, respectively, the z'th row of a(l) and the 7th row of ß(\);
observe then that

[T(Xr ® //)],, = EAW«(^) = E ctrp(l)api(ßsj(l))
p p

= ari(ßsj(l)) = (a®ß)rsJj(l);
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also,

ieMlxdadß(N)^t: = i(a®ß)(l)

^Zij = Y,Zrs(a®ß)rs,ij(\)
r ,s

^^ = ^rs'T(Xr®ps)

r ,s

= T\Tçrs-ir®A

and hence T does have the asserted range.

Suppose now that 9Jt is a left-finite A^-module and that S : (Sja)ç, x (Sjß)c, —>

9Jîo—where, of course, 9Jto denotes the set of bi-bounded vectors of 971—is a

linear map satisfying S(Ç-a®n) = S(c¡®a-n) and S(a-¿¡®n-b) = a-S(c;®n)-b;

simply define S~ : Mlxdadß(N) = (S)a^)0 - im0 by S~£ = Zij^jS(Xi®pJ) ;
an easy computation verifies that S~ e NLN((SJa®ß)o, 2Ko) • By the observation

(d) made in the first part of the proof, the operator 5~ extends uniquely to an

operator S"~ e N-&N(SJa®ß, 9Jt) . It is clear from the definitions that S = S~oT.

In particular, take 9K to be the model of Sja ®m Sjß described in Proposition

III. 1—or any other model which satisfies the strengthened version of condition

(ii) as described in comment (e) at the start of this proof. Deduce from the

above that there exists a unique map S e N^N(SJa®ß . 9Jt) such that

S(T(£ ®r¡))=C®Nri   for all ¿ in (Sja)0 and n in (Sjß)0.

Now interchange the roles of ÜJI and £Q<8>/? to find a bounded /V-bilinear

operator R from 9Jt to Sja®ß such that R(Ç ®m n) = T(¿¡ ® n). It follows

that R o S = ids,aisß, since R o S fixes the range of T which has already been

verified to be dense in Sja<glß ; similarly we can see that S o R = idjr«. Thus

R and S1 are invertible operators; it is not hard to see that if R = U\R\ is

the polar decomposition of R, then U is an /V-bilinear unitary isomorphism
of (Söt =) Sja ®n Sjß onto Sja®ß . In particular, Sja<$ß is right-finite, thereby

establishing the cofiniteness of a® ß and completing the proof.   G

7. Corollary. If Sj,9K and 9R are bifinite N-bimodules, then

(Sj ®N?R)®NWl~Sj ®N (ÍR ®N 9Jt).

Proof. If q, ß and y are cofinite morphisms, then (a®ß)®y = a®(ß®y).   D

Before proceeding further, we identify the 'Hubert-module' structure on the

tensor-product.

8. Proposition. If Sj and ÍR are bifinite N-bimodules and if £,,£,' e Sjç, and
z/, zz' e SRq , then

(£,®Nn, £' ®n n')N = (£'(1, »/%. On

and

n(Í ®n>1,Ç' ®n n') = N(N(c¡ ,i')-n, n').



242 V. S. SUNDER

Proof. Assume that Sj = Sja and ÍR = % ; then we may take Sj ®n ÍR = SjaS)ß =

MiXdadß(N). Compute thus:

(Ç®Ntl, % ®n n')N = E^ ®N 'ME' ®* ̂ ')íz'
«i/

=   E ^aPi(nj)(i'qaqi(n'j)T
ij,p,q

=      E    tpaPi(lj)aiQ(rl'j'K*
iJ,P,Q

= e^(e^*W
= E^-^^')ac

A similar computation, using the fact that (<* ®# zz)# may be naturally iden-

tified with (n* ®n £,*), yields the second identity.   D

Using our first model for the tensor-product, it is seen that

N5?N(L2(N),Sja*®NS)ß)

is isomorphic, as a vector space, to the space ^f(a,ß) of all those matrices

T e MdaXdß(N) which satisfy a(a)T = Tß(a) for all a in A^; the latter space

has already been seen to be isomorphic to NS?N(Sja, Sjß). Instead of employ-

ing the above reasoning (which has the disadvantage of being basis- or model-
dependent), we shall use the underlying Hilbert-module structure to exhibit the

above as well as other (natural) isomorphisms between spaces of intertwiners.

We shall consistently use the notation £ —> £* to denote the anti-unitary

isomorphism of an /V-bimodule onto its contragredient that satisfies (a-Ç-b)* =

b* • Ç* • a* for all vectors ¿f and for all a, b in N.

9.    Proposition. Let Sj, ÍR and 971 denote bifinite N-bimodules.
(a) The equation (T*Q* = T*C¡* sets up a vector-space isomorphism between

NSfN(S), ÍR) and N5?N(m*, Sj*) ;

(b) The equation n(T£, n) = T~(n*®j»fÇ) sets up a vector-space isomorphism

of n3n(Sj , ÍR) onto N5?N(9Ï* ®jv Sj, L2(N)) ;  and
(c) The equation (T¿¡, zz)/v = T~(Ç®Nn#) sets up a vector-space isomorphism

between N5fN(Sj, 9t) and N5?N(Sj ®N ÍR*, L2(N)).

Proof, (a) Clearly, T e NS?N(Sj, ÍR) =► T* e N&N(ÎR, Sj) ; so if n e 91, then

T*(a -rf-b) = T*[(b* ■ n • a*)*] = [T*(b* . n • a*)]*

= [b*-T*n-a*]* = a-T*n*-b,

so that T* e N£?N(VK*, Sj*). It is clear that (T*)* = T and that the assign-

ment T i-> T* is linear; it follows that the assignment defines a vector-space

isomorphism.
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(b) Given T e N5?N(Sj, 91), just define V : 9tg ® So -» N by T'(tf®Q =
n(TÇ, n) and perform the necessary verifications thus:

T(rf ■a®c;) = N(n, a*n) = N(a -T^r,)

*N{T(a-Z),ti) = T'(n*®a-Z);

a similar computation shows that T'(a • n* ®Ç • b) = a • T'(n* ®£)-b; hence

V extends uniquely to a bounded /V-bilinear operator T~ defined on all of

W*®nSj ; it is quite painless to verify that T h-> T~ defines a linear map between

the appropriate vector spaces. We now show that the map is onto, and since

the vector spaces in question are finite-dimensional, that is all we have to do.

Suppose we are given T~ e n^n(^* ®n Sj) ; fix £ in Sjç, and consider the

map 9t0 >-> N given by n >-> [T~(n* ®n £)]* ; note that

n-a~ [T~(a* ■ rf ®N £)]* = \T~{<f ■ (n* ®n Í))]' = T~{n* ®n i)*a ;

so the above map defines a member of LN(%), N). Deduce from Remark II.9.

the existence of a unique vector, call it TÇ, in 9to such that [T~(n* ®n £)]* =

N(n, T£) , or equivalently, N(TÇ, n) = T~(n* ®n£) , for all zz in 9*o . Observe

now that

"     N(T(a-i-b),n) = T~(t1*®N(a-c:-b))

= T~((a* ■ n)* ®N (Í - b))

= T~((a*-n)*®Ntl)b

= N(n,a*-r1)b

= N(a-T£, n)b

= N(a-TÇ>b,n);

the aforementioned uniqueness imposed on T¿;' by its defining condition im-

plies now that necessarily T e mLn(Sjç, , 9to) ; hence T extends uniquely to a
bounded V-bilinear operator from all of Sj to 9t, that we shall continue to de-

note by T. This establishes the desired surjectivity thus completing the proof

of(b).
(c) This is proved in exactly as (b) above, except that n( , ) is replaced

throughout by ( ,  )# .    D

10. Corollary. If Sj, 9t and 97Î are any bifinite bimodules, then the vector

spaces N¿¿?N(Sj®Nm, 97c), n-2n(M, Sj*®Nim) and n^n(SJ, 97t®Ar9t#) are nat-

urally isomorphic and consequently have the same dimension (over C).

Proof. Two applications of (b) of the previous proposition yields

NS?N(Sj ®NV\,Wl)~ NS?N(m* ®N (Sj ®N 91), L2(N))

~ NS?N((S? ®N 97î)# ®N ÍR, L2(N))

~NS?N(V\,fy*®Nm);

similarly, two applications of (c) of the previous proposition yields

N5fN(Sj ®N ÍR, 971) ~ N5fN(Sj ,Wl®Nft*).   D

IV. Hypergroups

The term hypergroup has been used in the literature with somewhat differing

definitions (cf., for instance, [MP and Ro]); while the basic structure is almost

identical in all cases, what differs is the amount of commutativity, finiteness and
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other such features that is assumed. We present here the version that seems to

be most natural in the context of bifinite bimodules over IL factors. In order

to avoid conflicting with other definitions, we should probably call the object

defined here by some amended version such as IL-hypergroup or some such
thing; however, we shall never refer to any other kind of a hypergroup in this

paper, so we go ahead and make the following definition.

1. Definition. By a (discrete) hypergroup is meant a set 0 equipped with a

function 0 x 0 x 0 -> Z+ (= {0, 1, 2, ...})—which shall be denoted by
(a, ß, y) i-> (a ® ß, y)—that satisfies the following conditions:

(a) (local finiteness): for all a, ß in 0, (a ® ß, y) ^ 0 for only finitely

many y ;

(b) (associativity): for all a, ß, y and zc in 0,

52 (a ® ß, X)(X ®y,K) = 52(" ® A, K)(ß ® y, X) ;
i x

(c) (identity): there exists an element 1 in 0 such that, for all a, ß e © ,

(l®a,ß) = (a®l,ß)=Saß;

(d) (contragredient): there exists a self-map of 0 , denoted by ana', such

that for all a, ß, y e 0 , (a ® ß, y) = (a* ® y, ß).   D

Remark. The symbol appearing on the right of the identity axiom is the
Kronecker delta symbol and will be used in the sequel without further com-

ment.

The two sides of the equation in the associativity axiom should be thought

of as the two different ways of computing '(a ® ß ® y, k)\

The contragredient axiom would be a little more natural if we thought of the

right side as (ß, a* ® y) ; the condition would be just an adjoint condition.

2. Examples, (a) Groups: if 0 is a group, define (a® ß, y) to be 1 precisely

when y is the (group-) product aß, and to be zero otherwise; also define

a* = a-1 and verify that this defines a hypergroup structure on 0 .

(b) Duals of compact groups. The dual object of a compact group, i.e., the

collection of equivalence classes of irreducible representations of the compact

group, has the structure of a hypergroup, with (n ®n', p) denoting the mul-

tiplicity with which the irreducible representation p features in the tensor-

product n ® n' of the irreducible representations n and n', 1 denoting the

trivial 1-dimensional representation, and n* denoting the contragredient of the

representation n.
(c) The hypergroup of a IL factor: If N is a IL factor, let 0(/V) denote

the collection of isomorphism classes of irreducible (bifinite V-bimodules or

equivalently) cofinite morphisms of N. If (a ® ß, y) is interpreted as the

multiplicity with which Sjy features in Sja ®n Sjß , and if the contragredient

is interpreted as the notion already introduced, then 0(V) becomes a hyper-
group. The associativity follows from associativity of tensor-products (over N)
and distributivity of tensor-products over direct sums; the validity of the con-

tragredient axiom is an immediate consequence of Corollary III. 10. (In fact,

that result shows that, in 0(V), we also have (a ® ß, y) = (y ® ß*, a) ; we

shall soon see that this equality is valid in any hypergroup.)   D
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Given an abstract hypergroup 0, we denote by C0 the class of finitely

supported complex-valued functions on 0. The space C0 comes equipped

with a distinguished basis {fa: a e 0}, given by fa(ß) = oaß\ thus, / =

Z)a f(a)fa f°r &U / m C0. We make C0 into an algebra by demanding

that fa *fß(y) = (a®ß, y) ; more generally, for /, g e Cf, define f*g(y) =

Y,aß f(<*)g(ß)(a®ß, y) ; it is easily seen that the associativity axiom is precisely

what is needed to ensure that C0 is an associative algebra with respect to

the 'convolution' product defined above. Finally, we can make C0 into a

pre-Hilbert space by demanding that {fa : a e 0} is a (necessarily maximal)

orthonormal set of vectors. We shall write V for the inner-product space so

obtained.
Consider now the 'left-regular representation' of C0 : if / 6 C0, define

the associated left-multiplication operator Lf on V defined by Lfg = f* g.
Clearly, f ^ Lf is an algebra-homomorphism of C0 into L(V) which is

easily seen to be unital—i.e., Lf = idy—and faithful (since /j is an identity

for C0). Further, if we define f*(a) = (f(a*))*—where we write Ç* for the

conjugate of the complex number Ç—we see that the contragredient axiom is

just what is needed to ensure that (Lf, g, h) = (g, Lf.h) for f, g, h in

C0. Appealing now to the injectivity of the regular representation and to the

fact that identities and adjoints are unique in operator algebras, the following

proposition is seen to immediately follow, and we shall say nothing more about

its proof.

3. Proposition. Let 0 be any hypergroup.

(a) The identity element 1 of 0 is unique and I* = 1 ;

(b) (a*)* = a for every a in 0.   D

4. Proposition. The equation x(f) = f(l) defines a faithful positive trace on
the involutive algebra C0, for any hypergroup 0.

Proof. Clearly x(f) = (Lff , />), and hence,

r(/* * f) = (Lf.*ff , /,) = (Lf.Lff , /,)

= (Lf.f,f) = (f,Lffl) = (f,f),

and hence the faithfulness and positivity of t . Finally, the trace condition

follows from

t(f*g) = (f*g, f) = (g, r*A) = (g, n
= 52 g(a)f(a*) = 52 f(ß)g(ß#) = T(g*f).    Ü

a ß

5. Notation. If a\, ... , an, k e 0, where 0 is some hypergroup, define

(ai ® • • • ® an, k) = (fai * ■■■ * fa„)(K), noting that this definition agrees with

the already existing notion when n = 2.   D

6. Proposition. If a, ß, y, k , a\, ... , an denote elements of an arbitrary hy-

pergroup 0, we have:

(a) (a®ß, l) = Sßya*;

(b) (a®ß,y) = (y®ß*,a);

(c) (a®ß,y) = (ß*®a*, y*) ;

(d) if m < n, then
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(ai ® • ■ • <8> a„ , k) = E<ai ® • • • ® "w , ß)(am+\ ® ■ ■ ■ ®an, y)(ß ® y, k) .

ß,y

Proof, (a) (a ® ß , 1) = (a* ® 1, ß) = Sßa* ;
(b)

(a®ß,y) = x(fy* *fa* fß) = x(fß * fy* * fa)

= (fy* * fa, fß*) = (fa , fy * fß*)

= (y®ß*,a)* = (y®ß*,a)

since the inner product in question is (integral and hence) real.

(c) (a®ß,y) = x(fa*fß*f7*)\

notice that if g in C0 satisfies g(l) e R, then x(g) = x(g*) ; hence,

(a®ß,y) = x(fy * fß* * /„.) = (ß* ® a*, y*).

(d) Put f = fa]®---®fam, g = fam+l * • • • * /Q„, and notice that

(f*g)(k) = Y,f(ß)s(y)(ß®y>V
ß,7

by the definition of the convolution product.   D

7. Definitions, (a) A subset ^ of a hypergroup 0 is said to be a sub-

hypergroup if Iff is closed under taking contragredients and 'products' in the

sense that if a, ß e %f, then a* e ß? and y e Sj for any y e 0 such that

(a ® ß, y) > 0 ;
(b) A map n : 0 —» 0' between hypergroups is called a homomorphism if

7f(l) = 1 and (n(a) ® 7i(/?), 7t(y)) = (a® ß, y) for all a, ß, y in 0, and if

7t(0) is a sub-hypergroup of 0'.
(c) An (outer equivalence class of an) action of a hypergroup 0 on a IL

factor V is a homomorphism of 0 into 0(/V).   D

8. Remarks, (a) It is a consequence of Proposition IV.6(a) that homomor-

phisms of hypergroups preserve contragredients.

(b) If a is an automorphism of V, the associated bimodule Sja is just L2(N)

with the actions given by a -c¡ • b = ac¡a(b) ; clearly Sja is irreducible. Let [a]

denote the element of 0(/V) given by Sja. If ß is another automorphism

and if ß is also viewed as a cofinite morphism of V, it follows from the

definition of the tensor-product of cofinite morphisms that a ® ß = a o ß.

Since [1] is the identity of 0(V), it follows that a i-> [a] is a homomorphism

of Aut(V), viewed as a hypergroup, into 0(/V). (It is true, although it requires

some proving, that any homomorphism of a finite group G into 0(V) factors

through Aut(/V). One proof uses Theorem 10 below.)    D

9. Definition. A function a >-► da from 0 to (0, oo) is called a dimension

function for the hypergroup 0 if, for all a, ß, y in 0, we have

dadß = ^2(a®ß,y)dy.   D
y

10. Theorem. Every finite hypergroup admits a unique dimension function.
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Proof. Let 0 denote a finite hypergroup. If V denotes the finite-dimensional

inner-product space C0 with orthonormal basis {fy : y e 0} , we shall identify

a linear operator T on V with the matrix (taß) given by taß = (Tfß, fa) ;

thus the symbol La will be thought of as a matrix—with rows and columns

indexed by 0—whose entry in position (ß, y) is (a® y, ß). We shall also

make use of an auxiliary matrix A defined by A(a, y) = J2ß(a ® ß > ï) ■ (The

reason for considering this matrix will become clear later.) We begin by making
the following

Assertion; (a) A commutes with La for all a z'zz 0 ;

(b) LaLp = J2y(a®ß> y)Ly f°rall a, ß in 0; and
(c) A(a, y) > 0 for all a, y in 0 .

Proof of the assertion, (a) For arbitrary a, ß in 0, compute thus:

(ALa)(ß,y)=Y,Mß,rc)La(K,y)
K

= ^2(ß®p,K)(a®y,K)
K ,H

= Eo8®//>'c/<a#®'c>)'>
K ,fl

= E(a#®^®<"> y)">

(LaA)(ß,y)=Y/La(ß,K)A(K,y)
K

= J2(a®zc, ß)(K®p, y)
K,H

= J2(a*®ß,K)(K®p,y)

= 52(q#®/5®/u> y)-

(b) This follows from fa* fß = J2Y(a® ß, y)fy, and the fact that f ^ Lf
is an algebra-homomorphism.

(c) If A(a, y) = 0, then necessarily (a ® ß, y) = 0 for all ß e 0, or

equivalently, (a* ® y, ß) = 0 for all ß in 0 ; this says that fa* *fy = 0 ; hence,

fa* fa* * fy * fy* = 0 • Since functions of the form f*fß have nonnegative

values and since fß * fß*(\) = 1 for all p, we find that the conclusion of the

previous sentence is untenable; this contradiction completes the proof of the

assertion.

Existence. Since A is a square matrix with strictly positive entries, the Perron-

Frobenius theorem asserts the existence of a positive eigenvalue A of A with

both geometric and algebraic multiplicity one, the corresponding eigenspace be-
ing spanned by a vector v with strictly positive entries. Since any operator
that commutes with A must necessarily leave each eigenspace of A invariant,
it follows from the previous sentence that v is an eigenvector of each nonneg-

ative matrix La ; consequently, v is also, necessarily, the Perron-Frobenius

eigenvector of each La , and so Lav = dav , say, for some da that is (strictly)
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positive (since each row of La is nonzero—by (c) of the assertion above—and

nonnegative, and since v is strictly positive). Now, deduce from (b) of the

earlier assertion that

dadßv = LaLßv = 52(a ® ß > y)Lyv = E^a ® ̂  ' y)dyv >
y y

thus showing that a choice of the dimension function for 0 is given by the

Perron-Frobenius eigenvalue of the associated operator in the left regular rep-

resentation of 0.

Uniqueness. If a *-* da is a dimension function for 0, let v be the element

of V whose ath coordinate is given by da and notice that v is a vector

with strictly positive coordinates which is an eigenvector—and hence the

Perron-Frobenius eigenvector—of A.    (Reason:    (Av)(a)  =  ^2yA(a, y)dy

- Hß,y(a ® ß > y)dy - Y,ßdadß = Xv(a), where X = Ylßdß .) It follows that

v is that positive multiple of v for which the /'-norm is the Perron-Frobenius

eigenvalue of A and consequently there exists at most one dimension function

for 0.   D

11. Remarks, (i) We wish to emphasise some facts thrown to light by the proof

of the previous theorem; with the preceding notation, we thus have:

(a) All the matrices La, as well as the matrix A, have a common Perron-

Frobenius eigenvector;

(b) The naturally scaled version of this eigenvector has coordinate da at the

ath place;

(c) The Perron-Frobenius eigenvalue of La is also da .

(2) If 0 is a group G, a dimension function on G is easily seen to be nothing

but a homomorphism of G into the multiplicative group R* of positive real

numbers. For groups, the previous theorem is a consequence of the fact that
the only finite subgroup of R+ is (1); further, the group case shows that the

previous theorem is false for infinite 0 ; if 0 = Z, such homomorphisms are

determined by the image of 1 which can be any X > 0; it is an interesting

aside that for any X > 0, there exists a homomorphism n¿ : Z -» 0(7?)—

where R denotes the hyperfinite IL factor—suchthat dnxi\) =X. (Reason: let

a denote an isomorphism of N onto M¿(N) and notice that the surjectivity

of a implies that dada* = 1 and hence that the desired n^ may be defined

by sending the integer zz to a["] where a["] denotes the zz-fold tensor power

of (the irreducible cofinite morphism) a or a* according as n is positive or

negative (and of course, sending 0 to 1).)

(3) If G is a finite hypergroup, then a >->• da* is also seen to be a dimension

function, and hence da* = da for all a in G.   O

We return now to IIi factors, and make the following conjecture:

12. Conjecture. Every finite hypergroup admits an action on the hyperfinite II i

factor.   D

Our interest in the above conjecture is primarily motivated by the following

considerations. Suppose a finite hypergroup 0 admits a homomorphism a >->

a' into <3(N), for some IL factor N; it is easily checked that a i-> dai is

a (and hence the) dimension function for 0. Notice, on the other hand, that

the irreducible cofinite morphism a1 of N determines the IL factor Af^, (N)
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which contains (the copy of a'(N) of) N as a subfactor with trivial relative

commutant and index equal to (daidam) = d2 , as a result of Theorem 10 and

Remark 11(3) above. Thus, given a finite hypergroup 0 which is known to

admit an action on N, then each a in 0 will give rise to a IL factor Afa

that contains a copy of N as a subfactor with trivial relative commutant and

index given by d2 .
We now pass to some nontrivial examples of finite hypergroups which are

not groups or group-deals. In fact, all the examples we shall exhibit will cor-

respond to finite 'cyclic' hypergroups that are 2-hypergroups in the sense that

every element is self-contragredient. We begin by translating the problem of

constructing finite hypergroups into one of constructing certain kinds of sets of

nonnegative integral matrices.

13. Proposition. There is an essentially one-to-one correspondence between fi-
nite hypergroups with cardinality n on the one hand, and sets {A\, ..., A„) c

Af„(Z+) satisfying the following conditions:
(a) A\ = 1, the n x n identity matrix;

(b) the collection {A,} is linearly independent and selfadjoint—i.e., closed

under the formation of transposes;

(c) AiAj = Y,k Mk, j)Ak for \<i,j<n.

Proof. Given a finite hypergroup 0 , order the elements as aj = 1, a2, ... , a„

and let A, denote the matrix representing the operator La. with respect to the

ordered orthonormal basis {fai, ... , fan}. The standard facts about hyper-

groups—developed earlier—show that the A¡'s satisfy the conditions (a)-(c) of

the proposition.
Suppose, conversely, that we are given A\, ... , A„ satisfying (a)-(c). Simply

define (a,®a;, a¿) = A¡(k, j). We need to verify that {ai, ... , a„} becomes

the hypergroup 0 if the 'product' is defined as above, if ai is taken as the

identity, and if a* is defined as that unique element a,# for which A¡» = A*.

Put 7 = 1 in (c) to deduce that A, = ^2kA¡(k, l)-4t; it follows from the
assumed linear independence of the Afs that (a, ® a\, a^) = o¡k ; similarly,
(a) in conjunction with (c) implies that (ai ® a}■■, a^) = Sjk , thus verifying the

'identity' axiom of a hypergroup. Associativity of matrix-multiplication, the

definition of (a, ® a7, ak) and (c) imply that the associativity axiom is also

satisfied. As for the contragredient axiom, note that (a*®ak, aj) = A¡»(j, k) =

A*(j, k) = A,(k, j) = (a, ® a;, a^) and the proof is complete.   G

14. Example. This is a sequence of 2-element hypergroups. Define a\"^ to be

the 2x2 identity matrix and let

These matrices satisfy the conditions of the proposition, and the corresponding

hypergroup 0„ = {1, a„} , where f„n *f„n = f +nfCn in C0„ ; it is clear that the

Perron-Frobenius eigenvalue (= operator-norm) of A2 —which is the same as

d„n—is equal to {n+(n2+4)l/2}/2. (It must be remarked that the case zz = 1 of

this example has been known to Ocneanu (cf. [Oj]); in fact, it follows from his

description of his paragroup invariant for the inclusion R c M, where Af is

the IL factor constructed by Jones which has the hyperfinite IL factor R as a

0 1
1 zz
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subfactor with index 4 cos2 n/5, then 0¡ admits a homomorphism into 0(7?),

that sends a\ to an element a of 0(7?) such that L2(M) is isomorphic, as

an 7?-bimodule, to Sj\®Sja, where of course Sj i denotes the 'trivial' bimodule

L2(R).)   a

15. Example. This is a sequence of examples indexed by a positive integer zz.

As a sample, consider the case zz = 4 ; the matrices A, are given by

oioo-
10 10
0 10 1'
0 0 10.

0 0 0 1]
0   0   10
o  i  o o  ■
10   0   0.

In fact, the matrices A\ and At, generate a 2-element hypergroup that is iso-

morphic to the hypergroup 0i of the preceding example.

For a general zz, it is still the case that A\ is the zz x zz identity matrix and

that A„ is the matrix with l's on the 'skew-diagonal' and 0's elsewhere; for a

general k < n , form a diamond whose vertices are (at those entries of an zz x zz

matrix that correspond to) (1, k), (k, 1), (zz, zz - k + 1) and (n-k+l, n),
and on each row, mark off every second entry of the matrix, starting and ending

with the entries on the aforementioned diamond; finally, define Ak to be the

matrix with l's on the entries marked off as per the above prescription, and
with 0's elsewhere. It is not hard to see that each Ak is a symmetric and entry-
wise nonnegative matrix. A look at the first row of the A^s is enough to see

that the Ak 's are linearly independent. A not very difficult, although somewhat

tedious case-by-case, analysis reveals that the ^'s satisfy the condition (c) of

Proposition 13 also and hence give rise to an zz-element hypergroup. Let v

denote the zz-vector whose A:th coordinate is

{(sin(zc7r/zz + l))/(sin(7t/zz + 1))} ;

it is an easy consequence of basic trigonometric identities that v , whose co-

ordinates are clearly strictly positive, is an eigenvector for A2 with eigenvalue

2cos(n/n + 1) ; thus v is the Perron-Frobenius eigenvector of A2 ; it follows

from Remark 11.1 that Ak has v as the Perron-Frobenius eigenvector with

eigenvalue {sin(kn/n + I)/ sin(n/n + 1)} . Thus, if Conjecture 12 is proved,

this example would say that the hyperfinite factor admits subfactors with triv-

ial relative commutant and index equal to {sin2(kn/n + l)/sin2(n/n + 1)};
this latter fact is known and is one of the significant conclusions of [W]. As
has been remarked by Wenzl, these numbers include the Jones numbers—when

k = 2.   a

16. Example. For each zz, there exists a unique collection {Ax, ... , A„) that

satisfies the conditions of Proposition 13, such that A2 is tridiagonal, has l's
on the sub- and super-diagonals, and such that the main diagonal of A2 is given

by (0, 1, 1,..., 1).

Ax =

A,=

1 0   0   0i
0 10   0
0 0    10
0 0   0    U
0 0    1    Oí
0 10    1
10    10
0 1    0   0J

A2 =

AA =
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In fact, this hypergroup is isomorphic to the sub-hypergroup {a2*;-i : 0 <

k < n} of the 2zz-element hypergroup {ai, ... , a2n} discussed in the preceding

example. This example is also known to Ocneanu. In fact, it follows from his

description of the paragroup invariant for the inclusion 7? c Af, where Af is

the IL factor constructed by Jones which contains the hyperfinite IL factor

7? as a subfactor with index 4 cos2 n/(2n + 1), that the hypergroup given by

the previous paragraph admits an action on 7?, in such a way that, if a is the

element of the hypergroup corresponding to A2, then L2(M) is isomorphic, as

an 7?-bimodule, to Sj\®Sja.   G

Before concluding this section, we pause to mention that we have only dis-

cussed examples of some cyclic 2-hypergroups (meaning every element is self-

contragredient). In fact, there is a 5-element hypergroup of the above form,

which does not appear in the lists of examples covered by Examples 15 and 16

(or even in the more general examples treated in [BS]), in which the value of the

dimension function on the generator is (1 + vT2)/2. The point that is being

made is that if Conjecture 12 were to be proved, the above method, together with

a better understanding of finite hypergroups, would yield a plethora of numbers

that can arise as the index of a subfactor with trivial relative commutant.

V. THE HYPERGROUP OF A BIMODULE

1. Notation. Throughout this section, the symbol Sj will denote a fixed but

arbitrary bifinite V-bimodule. Then Sj uniquely determines—via Theorem
1.13—a finite subset 0i of <£>(N) and a 'multiplicity' function zzzj : 0i —> N =

{1,2,3,...} such that Sj ~ ©Q€(Sl (Sja ® Cm'^) ; for the sake of typographical

convenience we shall write Sj ~ (0], zzzi) to signify that Sj has the above de-

composition. The sub-hypergroup 0 of <S(N) that is generated by 0[ is clearly

an (isomorphism-) invariant of Sj and will be referred to as the hypergroup of

Sj.

2. Example (The group case). Suppose a finite group G admits an outer ac-
tion t —> at on Af. Let Af denote the crossed product JVx„ G and let

Sj = L2(M). By definition, Af contains the image of a unitary representation

t —> ut of G satisfying uta = at(a)ut for all a in N and t in G. Then, Sj =

©iect^'"'] = ®teG^a, is a decomposition of Sj into irreducible A^-bimodules.

Notice however that Sja¡ = 33( 1 x 1 ; 1, at) on the one hand, while on the other,

we have Sjß^y = Sjßoy for any pair of automorphisms ß and y of N. It fol-

lows easily that—in view of the assumed outerness of the action—in this case,

0 = 0i = {a, : t e 0} and that mi (a,) = 1 for all t. In other words, the

hypergroup 0 of Sj and the group 0 are isomorphic as abstract hypergroups.

This is an instance of what Ocneanu terms 'the crossed product remembering

the group'; he has remarked—cf. [O2]—that if G\ and G2 are groups acting

outerly on the hyperfinite factor 7?, and if the extensions Af, = Rxa¡ 67, of 7?

are isomorphic—meaning that there is a von Neumann algebra isomorphism of

Af] onto A/2 that fixes 7?, then (?i and G2 are isomorphic as groups. Our
considerations yield something slightly stronger. For one thing, we do not need

to assume hyperfiniteness. For another, even if one had started with a twisted
crossed product of G, the hypergroup of the bimodule given by the extension

would be identifiable with the group G. (Reason: the cocycle comes into play
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only when two group elements are multiplied.) Since the statement is quite

striking, we isolate it as the next proposition; of course, no more need be said
about the proof.

3. Proposition. For i = 1,2, let a, denote an outer action of a finite group

G¡ on any IL factor N, let o, G x G -» T be a torus-valued 2-cocycle, and let
M, denote the twisted crossed product of N by G, given by a, and a,. Then

the groups G, are isomorphic if the N-bimodules L2(M,) are isomorphic.   a

(Of course, the above statement can also be interpreted as stating that the

hypergroup does not detect certain cohomological data and consequently cannot

be expected to tell the whole story about the inclusion of one IL factor into

another, as a subfactor of finite index. We have chosen to look at the positive

side of things, since, as has already been stated, consideration of the hyper-

group invariant of the bimodule yields a transparent proof of the preceding

proposition.)
We turn next to tensor-products. Suppose Sj¡, i = 1, 2, are bifinite N-

bimodules with Sj¡ ~ (0, , mf1) as in §1 above. Thus 0^ are finite subsets

of 0(/V) and znj'' are nonnegative integer-valued elements of the hypergroup

algebra C<£>(N) with support 0^ . It is not hard to see that

fli ® Sj2 ~ (0{x) • 0(j2), m[x) * m\2))

where the second term is just convolution in the hypergroup algebra, and the

product X • J£ of two subsets of a hypergroup © is defined naturally as the

set of those y in 0 for which there exist a in %f and ß in X such that

(a® ß, y) > 0. Thus, for instance,

m[l) * m[2)(y) =      52      m\x) (a)m(2) (ß)(a ® ß, y).

a€0, ,/Z€»2

We wish, in particular, to examine the invariant corresponding to the tensor

powers of Sj. The underlying structure becomes much more transparent if we

make some mild assumptions on Sj. We assume in the rest of this section that

Sj, apart from being required to be a bifinite /V-bimodule, will be assumed to

satisfy the following conditions:
(i) Sj is self-contragredient; and

(ii) Sj contains the trivial V-bimodule Sj\ = L2(N) as an /V-submodule.

(Notice that if Af isa IL factor containing N as a subfactor of finite index—or

more generally, if Af is any finite von Neumann algebra containing N as a von

Neumann subalgebra such that dimN L2(M, tr) < oo—then the A-bimodule

L2(M) satisfies the above conditions.)

4. Proposition. Let Sj ~ (0i, zzii) and suppose Sj" = (g)" Sj ~ (0„ , mn) ; then

(a) 1 €0i C02c---c0„c0„+i c--- ;
(b) each 0„ is closed under taking contragredients;

(c) mn(y) = Y.a€<s,k E/ze», mk(oc)mi(ß) -(a®ß,y), whenever k,l>0 and

k + l = n;
(d) for y e <S(N), y e 0„ if and only if mn(y) > 0 ;
(e) mn(a*) = mn(a) for all a in 0„ .
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Proof. The assumptions (i) and (ii) on Sj are clearly equivalent to the require-

ments '1 e 0i' and '0i and mi are invariant under taking contragredients.'

Since Sj" clearly inherits properties (i) and (ii) from Sj, the validity of (a), (b)
and (e) follow. The assertions (c) and (d) follow from the remarks made above

concerning the 'multiplicity function' associated with a tensor-product, and the

associativity of the convolution product in any hypergroup algebra.   G

5. Lemma. With the notation as above, define An : ©„ x0n+i —► Z+ by An(a, y)

= Eßee,mi(ß)(<*®ß,y). Then
(a) if we think of m„ as a row-vector (of size 1 x 0„) and A„ as a matrix

(of size 0„ x 0„+i), then mn+l = mnAn ;

(b) A„(a, y) = An+i(y, a) Va e 0„ and y e 0„+( ;
(c) A„(a ,y) = Am(a, y)  Va e 0„ and y e 0„+i, Vzrz > n .

Proof, (a) This follows easily from (c) of the previous proposition and the

definition of A„.
(b) Note to start with that the right side of the equality to be proved makes

sense since 0„ c 0„+2. We have

An(a,y)=  52 mi(ß)(a®ß,y)
¿see,

= 52m,(7J#)<y®/>'#,c*>=A«+i(}',a),

thanks to (e) of the previous proposition.
(c) This is clear from the definition of the A„ n

6. Proposition. Let kn = #(0„\0„_i) (with 0O = 0). Then there exist sym-

metric matrices A„ e Mkn(Z+) and rectangular matrices Bn e MknXkn+l(Z+)

such that the matrix A„ has the block decomposition

An =

Ai    Bi     0     0

B\    A2   B2    0
0     B'2    A3   B3

0
0
0

0
0
0

0
0
0

0     0     0     0    •••    B'n_x   An   Bn.

for all n, where of course we write C for the transpose of the matrix C.

Proof. Write Tn = 0„\0„_i and express A„ in terms of the block-decomposi-
tion arising from the partition 0„ = Y\ U • • • U T„ . The desired conclusion
follows from the previous lemma. For instance, (c) and (b) of the lemma show

that A„(a, y) = A„(y, a) for a, y e 0„, whence the symmetry of the first

« (blocks of) columns; on the other hand, it is clear that if a e 0¿, ß e 0/,

y e 0OT and if m > k + l, then (a ® ß, y) = 0, thereby explaining the tri-
(block)-diagonality of A„.   G

(The preceding proof shows that it is the contragredient axiom for hyper-

groups that is responsible for much of the 'reflection' symmetries found in the

Bratteli diagrams associated with the tower of the basic construction.) The fol-

lowing corollary is seen to follow easily from the last proposition. We continue

with the preceding notation.
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7. Corollary. The following conditions are equivalent:

(a) 0 is finite;
(b) 3n such that 0„ = 0„+i ;
(c) 3zz such that 0 = 0„ = <5n+k for all k>0.
If these conditions are satisfied, then there exists a symmetric matrix A—of

size #0—such that An+k = A for all k > 0 (zz > #0 will suffice); further the
matrix A2" has strictly positive entries.

Proof. Recall that {0„} is an increasing sequence of self-contragredient subsets

of the hypergroup 0(/V) and that 0^-0/ c 0/¿+/. Consequently, the sub-
hypergroup 0 generated by 0i is clearly the (increasing) union of the 0„'s.

Since 0i is finite, the equivalence of (a)-(c) is obvious.

If these conditions are satisfied, the last column in the block-decomposition

of A„ given by the above proposition is nonexistent, and the resulting matrix,

which is the same for all large n , is clearly symmetric. As for the last assertion,

it suffices to show that A"(a, 1) > 0; we shall show, by induction, that more
generally, it is true that Aw(a, 1) > 0 if a e 0m. If m = 1, so a e 0i,

hence A(a, 1) = X^60| m\(ß)(a ® ß, I) > 1 • (a ® a*, I) > 0. Suppose the

assertion holds for zzz and suppose a e &m+i ', then there exists zc e 0m and

ß e 0i such that (zc ® ß, a) > 0 ; hence (a ® ß*, zc) > 0, whence it follows

that A(a, zc) > mi (ß*)(a ® ß*, zc) > 0 ; on the other hand, we know from the

induction hypothesis that Am(zc, 1) > 0; the desired inequality follows from

the obvious inequality: Am+1(a, 1) > A(a, zc)Am(zc, 1).

Although the proof is complete, we would like to point out that an essentially

identical reasoning shows that even if 0 is not finite, if we let Z„ denote

the square matrix obtained by restricting A„ to 0„ x 0„—or equivalently, by

deleting the last column in the block-decomposition of A„ given by Proposition

6—then Z2" has strictly positive entries.   G

It turns out that there is a natural relationship between the matrices A„ and

the tensor powers of Sj. We continue to work with the notation of Proposition

4.

8. Proposition, (a) n^n(SJ") — ®j,6®„ ̂ m„{y)(C), so that the minimal central

projections of nJ2?n(Sj") are parametrised by G„ ;

(b) The inclusion of n-3n(Sj") into n^n(Sj"+1) given by T —► T ®n idß is

governed by the inclusion matrix A„ defined earlier.

Proof, (a) By definition, we have Sj" ~ (&yeiSii(Sjy ®Cm"^) ; since distinct ele-

ments of 0„ yield inequivalent irreducible V-bimodules, and since irreducible

A^-bimodules admit only the scalars as bounded /V-bilinear self-maps, it is clear

that N5fN(Sj") ~ 05,6(6n AfmnW(C).
(b) It is easily verified—cf. [C], for instance—that if 971 and 9î are bifinite

V-bimodules and if T e #-2^(971), there exists a unique operator T®NÍd& in

#.2^(971 ® 9i) which sends ¿,®n V to Té; ®N n whenever £ 6 97l0 and n e%>,

and that, furthermore, the map T —>• T®n idf» is a unital *-monomorphism of
N¿¿?N(9Jl) into ArJz?Ar(97t ®n 91). For typographical convenience, we shall write

r®l in the sequel for T®Nidfj for T in N¿¿fN(Sjm) for any zzz. If we tem-

porarily let A'„ denote the inclusion matrix corresponding to the inclusion map
T —» T ® 1, and if a e 0„ and y e 0„+i , then by definition A^,(a, y) is the
maximum number of pairwise orthogonal minimal projections of n-&n(SJ"+1)
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that are subordinate to (pa ® l)ey, where pa denotes any minimal projec-

tion of ff^fff(Sjn) that belongs to the central summand corresponding to a,

and ey denotes the minimal central projection of n-&n(Sj"+1) corresponding

to y. A moment's thought shows that fixing a pa amounts to fixing an isom-

etry in N£?N(Sja , Sj"), while finding pairwise orthogonal minimal projections

of /v-2/v(.£)n+I) that are all subordinate to ey amounts to finding isometries in

NJ¿?N(Sjy, Sj"+i) with pairwise orthogonal ranges. Since ran T c raney for any

T in NJ?N(Sjy, Sjn+l) and since (pa®l)(fjn+l) is isomorphic as an /V-bimodule

tO   (Sja ®N Sj) , it follOWS

A'n(a, y) = dimCN&N(S)y,ey(pa ® l)(Sjn+l))

= dimC N^N(SJy , Sja ®N Sj)

= dimc N&N I Sjy, 0 (S)a ®N (Sjß ®c Cm'{ß)) j

\ Z?€®, /

=  52 m,(ß)(a®ß,y)
ßee,

= An(a, y),    as desired.   G

9. Remarks. (I) The data about the tower {N^fN(Sj") : n > 1} is completely

contained in the abstract hypergroup 0 , its generating (finite) subset 0i and

the multiplicity function z«i : 0i —> Z+ ; the point being made is that 0 need

not be realized as a sub-hypergroup of 0(/V)—or equivalently, it is not necessary

'a priori' to be given a faithful action of 0 on N—in order to make sense of

the above ^-algebra.
(2) In case the hypergroup 0 of Sj is finite, it follows from Corollary 7

that the tower {N^fN(Sj")} admits a unique normalized tracial state; in partic-

ular, the completion of the above AF -algebra with respect to the trace is the

hyperfinite IL factor.
(3) We have considered the 'left', rather than the 'right' inclusion T —> 1 ® T

in building the tower. It is more than likely that it is possible to imitate the
work of Doplicher and Roberts—cf. [DR]—with the role of the group dual of

a compact group being replaced by more general hypergroups.   G

We conclude with a list of questions (of varying levels of difficulty) which,

for the sake of emphasis, we start with what was earlier stated as Conjecture
IV. 12.

VI. Some questions

(a) Does every finite hypergroup admit a faithful action on the hyperfinite

Hi factor, and if so, what is the extent of uniqueness of such an action?

(b) Is there a classification of finite abelian hypergroups? What about finite

cyclic hypergroups? 2-hypergroups?

(c) What are some nontrivial examples of finite nonabelian hypergroups

which are not groups?
(d) If a and a' are generators of finite hypergroups 0 and 0', is it possible

for 0 and 0' to be nonisomorphic and yet admit faithful actions on a II i
factor V in such a way that the cofinite morphisms corresponding to a and a'

yield isomorphic extensions of NI (The reason for this question is that there
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are instances—the cases / = 0 and / = 1, for instance—of nonisomorphic

0 and 0' such that the generators have the same value for the dimension

function.)
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