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ON BIUNITARY PERMUTATION MATRICES

AND SOME SUBFACTORS OF INDEX 9

UMA KRISHNAN AND V. S. SUNDER

Abstract. This paper is devoted to a study of the subfactors arising from
vertex models constructed out of ‘biunitary’ matrices which happen to be
permutation matrices. After a discussion on the computation of the higher
relative commutants of the associated subfactor (in the members of the tower
of Jones’ basic construction), we discuss the principal graphs of these subfac-
tors for small sizes (N = k ≤ 3) of the vertex model. Of the 18 possibly
inequivalent such biunitary matrices when N = 3, we compute the principal
graphs completely in 15 cases, all of which turn out to be finite. In the last
section, we prove that two of the three remaining cases lead to subfactors of
infinite depth and discuss their principal graphs.

1. Introduction

The importance of the notion of a commuting square of finite-dimensional C∗-
algebras and its connection with subfactors has been amply demonstrated - for
instance, see [GHJ], [P] and [P2]. While there is a well-understood prescription
for constructing a subfactor of the hyperfinite II1 factor from such a commuting
square, what still seems a mystery is the relation between the initial commuting
square and the so-called principal (or standard) graph invariant of the subfactor
(in the absence of what Ocneanu terms ‘flatness of the connection’). In this paper,
we examine a seemingly simple class of such commuting squares, namely the ones
arising from ‘vertex models given by biunitary matrices which also happen to be
permutation matrices’, and discuss the principal graphs of the associated subfactor.
We give below a brief section-by-section description of the contents of this paper.
§2: Notation and Preliminaries: We recall here the definition of the specific

family of commuting squares which have been referred to as vertex models, and
also the prescription for constructing a subfactor of the hyperfinite II1 factor from
a vertex model (or more generally, from a commuting square which is symmetric
(in the terminology of [HS]) or non-degenerate (in the terminology of [P2])).
§3: Biunitary permutation matrices: Here, we re-cast - in a form that we shall

work with in the rest of the paper - what it means to have a vertex model given
by a biunitary matrix which also happens to be a permutation matrix; we also
define some mappings associated with such matrices, which play a central role in
the subsequent analysis.
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§4: Computation of the higher relative commutants: In this section, we describe
a compact prescription (due to Jones) for computing the higher relative commutants
(at least in principle), and we identify what this abstract prescription amounts to
in our case.
§5: Some simple special cases: Here we discuss some particularly simple special

cases, and describe the resulting principal graphs, most of which may be described
as Cayley graphs for a group or a group-dual with respect to a suitable set of
generators.
§6: The case k = N ≤ 3 : We begin by discussing a natural equivalence relation in

the set of biunitary permutation matrices. After quickly disposing of the case N =
2, we go on to show that when N = 3 there are precisely 18 distinct equivalence
classes of such matrices; we explicitly list a matrix from each class, and note that
nine of these cases are already covered by the discussion in §5, and give the principal
graph of the associated subfactor.
§7: The finite principal graphs (for N = 3) : In this section, we compute the

principal graphs of six of the remaining cases, which all turn out to be finite.
§8: Two infinite depth subfactors: In this section, we prove that two of the

remaining cases lead to infinite principal graphs, and give a partial description of
what those graphs look like.
§9: Concluding Remarks: Here we observe : (a) that all subfactors arising from

vertex models given by 9× 9 biunitary permutation matrices are self-dual; (b) the
peculiar fact that all the 15 finite principal graphs obtained when N = 3 turn
out to be Cayley graphs of groups or group-duals; and (c) a relation - in the cases
computed - between the principal graphs of the subfactors obtained from a biunitary
permutation matrix and its adjoint, and raise a natural question.

2. Notation and preliminaries

We shall use the expression ‘vertex model’, throughout this paper, to mean a
commuting square - see [HS],[K],[O],[OK], [P] - of the form

u(1⊗Mk(C))u∗ ⊆ MN (C)⊗Mk(C)
∪ ∪
C ⊆ MN(C)⊗ 1

(†)

where u = ((uαaβb )) is a unitary element of MN (C) ⊗ Mk(C). (We shall find
it convenient to use the convention, at least in §§2 - 4, of denoting elements of
ΩN by Greek letters and elements of Ωk by Roman letters, where we write, here
and in the sequel, the symbol Ωl for the set {1, 2, · · · , l}. (From §5 onwards, we
consider, for the sake of simplicity, the case k = N, and dispense with this Greek
vs. Roman convention.) It is well-known that (†) is a commuting square precisely
when the unitary matrix u satisfies the following biunitarity condition: if we define
the element ũ = ((ũαaβb )) of MN(C)⊗Mk(C) by

ũαaβb = uβaαb(1)

then also ũ is unitary. (Thus ũ may be thought of as the ‘block-transpose’ of u in
the sense that if we write u in block-form as u = ((uαβ)), then ũαβ = uβα.)

In the rest of this paper, we shall reserve the term biunitary matrix for a unitary
matrix u ∈MN(C)⊗Mk(C) which satisfies the above biunitarity condition.



BIUNITARY PERMUTATION MATRICES 4693

If we rewrite the commuting square (†) as

B0 ⊆ B1

∪ ∪
A0 ⊆ A1

there is a well-known prescription - see [GHJ] - for constructing a subfactorRu of the
hyperfinite factor R with [R : Ru] = k2. (Namely, let B0 ⊂ B1 ⊂ B2 ⊂ B3 ⊂ · · ·
denote the tower obtained by repeated applications of Jones’ basic construction - see
[J],[GHJ]; if en denotes the projection in Bn+1 which implements the conditional
expectation of Bn onto Bn−1, for n ≥ 1, let An+1 be the subalgebra of Bn+1

generated by An∪{en}; then R and Ru are, respectively, the von Neumann algebra
completions, with respect to the unique tracial state on these algebras, of

⋃
Bn and⋃

An.)
For later reference, we remark - see [O] for the general case, also [KSV] where this

special case is explicitly worked out - that there is a natural equivalence relation
on the set of biunitary matrices in MN ⊗ Mk, such that the subfactors arising
from equivalent biunitary matrices are conjugate. The relation is given by u1 ∼ u2

if and only if there exist unitary matrices a, c ∈ MN(C), b, d ∈ Mk(C) such that
u1 = (a⊗ b)u2(c⊗ d).

3. Permutation biunitary matrices

In the rest of this paper, we shall be interested in biunitary matrices which are
permutation matrices (as elements of MNk(C) = MN(C)⊗Mk(C)). We shall find
it convenient to work with an alternative description of such matrices, which we
single out in the next lemma.

Lemma 1. Let u ∈ MN(C) ⊗Mk(C). Then the following conditions on u are
equivalent:

(i) u is biunitary, and is further a permutation matrix (i.e., is a 0, 1 matrix);
(ii) there exist permutations {ρa : a ∈ Ωk} ⊂ S(ΩN ), {λα : α ∈ ΩN} ⊂ S(Ωk)

(where we write S(X) for the group of permutations of the set X) such that:
(a) the equation

π(β, b) = (ρb(β), λβ(b))

defines a permutation π ∈ S(ΩN × Ωk); and
(b)

uαaβb = δ(α,a),π(β,b) = δα,ρb(β)δa,λβ(b).

Proof. (i)⇒ (ii); If u is a biunitary 0, 1− valued matrix, then let π ∈ S(ΩN×Ωk) be
defined by uαaβb = δ(α,a),π(β,b).

Assertion. For any β ∈ ΩN , a ∈ Ωk (resp., α ∈ ΩN , b ∈ Ωk), π({β} ×Ωk) ∩ (ΩN ×
{a}) ( resp., π(ΩN × {b}) ∩ ({α} × Ωk)) is a singleton. Furthermore,

π({β} × Ωk) ∩ (ΩN × {a}) = {(φa(β), a)},
π(ΩN × {b}) ∩ ({α} × Ωk) = {(α, ψα(b))},

where

φa(β) = ρλ−1
β (a)(β) and ψα(b) = λρ−1

b (α)(b).
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The first (as well as the parenthetical) statement of the assertion is an immediate
consequence of two facts: (i) the hypothesis on u implies that the block-transpose

matrix ũ is also a permutation matrix; and (ii) π(β, b) = (α, a) ⇔ ũβaαb = 1.
The second assertion follows from the definitions.
The assertion clearly proves the implication (i) ⇒ (ii), while the implication

(ii)⇒ (i) is immediate.

We shall find the following notation convenient.

Definition 2. Define

PN,k = {π ∈ S(ΩN × Ωk) : there exist λ : ΩN → S(Ωk), ρ : Ωk → S(ΩN )

such that π(β, b) = (ρb(β), λβ(b)) for all β ∈ ΩN , b ∈ Ωk}

where we write λβ (resp., ρb) for the image of β (resp., b) under the map λ (resp.,
ρ). If π, λ, ρ are related as above, we shall simply write π ↔ (ρ, λ) ∈ PN,k. (Later,
when we consider the case N = k, we shall simply write PN for PN,N .)

Thus, Lemma 1 states that there is a bijection between biunitary permutation
matrices of sizeNk and elements π ↔ (ρ, λ) ∈ PN,k, given by uαaβb = δα,ρb(β)δa,λβ(b).

The following proposition, which is an immediate consequence of the definitions,
lists some useful properties of the various ingredients of a biunitary permutation.

Proposition 3. Let π ↔ (ρ, λ), φa, ψα be as above. Then, for arbitrary a ∈ Ωk, α ∈
ΩN , we have:

(i) φa ∈ S(ΩN ), ψα ∈ S(Ωk);
(ii) π−1 ↔ (φ−1, ψ−1) ∈ PN,k (i.e., π−1(α, a) = (φ−1

a (α), ψ−1
α (a)));

(iii) φ−1
a (α) = ρ−1

ψ−1
α (a)

(α), ψ−1
α (a) = λ−1

φ−1
a (α)

(a).

2

4. Computation of higher relative commutants

Suppose u ∈MN (C)⊗Mk(C) is biunitary; let Ru be the subfactor of the hyper-
finite factor R constructed as outlined in §2. Let

R−1 = Ru ⊆ R0 = R ⊆ R1 ⊆ R2 ⊆ · · ·

be the tower obtained by repeated applications of Jones’ basic construction to
the inclusion Ru ⊆ R. Let us write Cn = R′u ∩ Rn−1, n = 0, 1, 2, · · · . (Thus,
C0 = C, C1 = R′u ∩R, etc.)

We shall find it convenient to work with a diagrammatic description of the tower
{Cn : n ≥ 0} of relative commutants. We pause to briefly recall the conventions for
this approach (which is due to Jones ([J1],[BHJ]); also see [JS] for details).

Once and for all, we fix a biunitary matrix u ∈ MN(C) ⊗Mk(C). When u is a
permutation matrix, the symbols π, ρ, λ, φ and ψ will have the meanings they had
in the last section.



BIUNITARY PERMUTATION MATRICES 4695

An element, say F, of ⊗nMk(C) will be represented by a ‘black box’ with two
sets of n vertical strands, thus:

· · ·

· · ·

F

A state (for such a simple diagram) is a labelling of each vertical segment of
string with a Roman letter, and the box F is considered as a scalar function on the
set of possible states:

b1

a1

b2

a2

bn

an

· · ·

· · ·

F =

b

a

· · ·

· · ·

F

In addition to such boxes, our diagrams will usually contain two kinds of strands
- vertical as well as horizontal. We adopt the convention that a state labels segments
of horizontal (resp., vertical) strands with Greek (resp., Roman) letters.

Matrix multiplication corresponds to ‘concatenation of boxes’ in an obvious
sense. To be able to stick to this correspondence, we define a state on a (pos-
sibly complicated) diagram as a labelling of all ‘unbounded’ segments of strands
according to the convention of the preceding paragraph, and when evaluating the
value of a state on a diagram, we sum, over all possible (admissible) labellings of
bounded segments, the products of all the ‘local contributions’ (coming from ‘black
boxes’ as well as from crossings).

Furthermore, all the strands in our diagrams will usually be oriented, so we will
encounter two kinds of crossings:

α - β

a

b

6

Positive Crossing Negative Crossing

α - β

b

?

a
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(All the diagrams that we shall encounter will have the property that at any
crossing, the horizontal strand will always be the ‘over-string’.)

Given a diagram all segments of all of whose strands have been labelled appro-
priately, we assign ‘Boltzmann weights’ to crossings (depending upon the parity of
the crossing) by the following prescription:

Positive Crossing

Negative Crossing α

α

β

β

b

b

a

a

7→

7→

-

-
6

?

uαbβa

uβaαb

We are finally ready to state Jones’ prescription for computing the tower {Cn :
n ≥ 0} of relative commutants:

Proposition 4 (Jones). If u ∈ MN (C) ⊗Mk(C) is biunitary, and if Cn is (the
(n− 1)-th higher relative commutant ) as above, then Cn ⊆ ⊗nMk(C); in fact, Cn
consists of precisely those F ∈ ⊗nMk(C) for which there exists a G ∈ ⊗nMk(C)
such that the following equation holds:

6 6
? ?· · · · · ·

· · · · · ·

· · ·

· · ·F

G

-

-

=(2)

where the vertical strings (on each side of the equality) are alternatively oriented
upwards and downwards (starting with the one at the extreme left). 2

For the rest of this section, we fix a π ↔ (ρ, λ) ∈ PN,k and let λ, ρ, φ, ψ be as in
§3. Thus, if u is the biunitary permutation matrix that corresponds to (ρ, λ) as in
§3, then

uαaβb = δα,ρb(β)δa,λβ(b)(3)

The point of the next lemma is to point out that if uαaβb = 1, then any pair

consisting of one Greek letter from {α, β} and one Roman letter from {a, b} deter-
mines the complementary pair. We shall find some of these formulae convenient in
subsequent computations.
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Lemma 5. If α, β ∈ ΩN , a, b ∈ Ωk, then the following conditions are equivalent:
(i) uαbβa = 1;

(ii) α = ρa(β) and b = λβ(a);

(iii) β = φ−1
b (α) and a = ψ−1

α (b);
(iv) β = ρ−1

a (α) and b = ψα(a);
(v) α = φb(β) and a = λ−1

β (b).

Proof. (i)⇔ (ii) by definition.
(ii)⇔ (iii) by Proposition 3 (ii).
(ii)⇔ (iv) by the formula for φ−1 given in Proposition 3 (iii).
(iii)⇔ (v) by the formula for ψ−1 given in Proposition 3 (iii).

It follows immediately from the preceding lemma that the Boltzmann weights
associated with the two kinds of crossings (when we work with a biunitary permu-
tation matrix) are as follows:

Positive Crossing

Negative Crossing α

α

β

β

b

b

a

a

7→

7→

-

-
6

?

δβ,ρ−1
a (α)δb,ψα(a) = δα,φb(β)δa,λ−1

β (b),

δβ,ρb(α)δa,λα(b) = δα,φ−1
a (β)δb,ψ−1

β (a).

(4)

Notation. Given a biunitary permutation u and corresponding maps λ, ρ, φ, ψ as
above, then for arbitrary n ≥ 1 and a ∈ Ωnk , we define the alternating products

ρa = ρa1ρ
−1
a2
ρa3 · · · ρ±an

and

φa = φa1φ
−1
a2
φa3 · · ·φ±an .

We are now ready to introduce certain mappings that will play a central role in
the computation of the higher relative commutants.

Proposition 6. (i) For all n ≥ 1, there exists a mapping ΩN 3 α 7→ L
(n)
α ∈

S(Ωnk) such that
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α β-

· · ·

· · ·6
?

a

b

= δ
a,L

(n)
α (b)

δβ,ρ−1
a (α),

(5)

where the L
(n)
α ’s are defined as in (ii) below.

(ii) L
(1)
α = ψ−1

α ; and if n > 1 and if L
(n)
α (b) = a , then

an−1] = L(n−1)
α (bn−1])

(where we have used the obvious notation an−1] to mean (a1, · · · , an−1) if a =
(a1, · · · , an)); and

an =


λ−1

φ−1
bn−1]

(α)
(bn) if n is even,

ψ−1

φ−1
bn−1]

(α)
(bn) if n is odd.

(iii) ρ−1

L
(n)
α (b)

(α) = φ−1
b (α) .

Proof. The proof is a direct consequence of the prescription, given in equation (4),
for the Boltzmann weights associated to positive and negative crossings. (For (iii),
the two prescriptions given for each kind of crossing must be used in conjunction.)

Remark 7. If it so happens that λα = ψα, ρa = φa for all α, a (which is actually
the case more often than one might expect - see §6), then it is seen from Proposition
6(ii) that

L(n+1)
α (a, a) = (L(n)

α (a), λ−1

ρ−1
a (α)

(a))

for all a ∈ Ωnk , a ∈ Ωk, α ∈ ΩN , n = 1, 2, · · · .

In the following, we fix a biunitary u, with associated λ, ρ, φ, ψ as above, and let
{Cn} denote the sequence of higher relative commutants for this Ru.

Lemma 8. With the identification ⊗nMk(C) = MatΩnk (C), we have:

Cn = {F = ((F a
b )) ∈MatΩnk (C) : F a

b = δρ
L

(n)
α (a)

,ρ
L

(n)
α (b)

F
L

(n)
β

−1
L(n)
α (a)

L
(n)
β

−1
L

(n)
α (b)

for all α, β ∈ ΩN ,a,b ∈ Ωnk}.
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Proof. In the notation of Proposition 4, we see, from Proposition 6, that on the
one hand,

6
?· · ·

· · ·

· · ·

F

-α β

a

b

= δβ,ρ−1
a (α) F

b

(L
(n)
α )
−1

(a)
;

on the other hand, we also find that

6
?· · ·

· · ·

· · ·

G

-α β

a

b

= δβ,ρ−1

L
(n)
α (b)

(α) G
L(n)
α (b)

a ,

which, in view of Proposition 6(iii), is seen to be equal to δβ,φ−1
b (α) G

L(n)
α (b)

a .

Thus, we find that Cn consists of those F ∈ ⊗nMk(C) for which there exists
a G ∈ ⊗nMk(C) such that

δβ,ρ−1
a (α) F

b

(L
(n)
α )
−1

(a)
= δβ,φ−1

b (α) G
L(n)
α (b)

a .

Using the substitution c = (L
(n)
α )−1(a), the last equation may be rewritten -

again using Proposition 6(iii) - in a more symmetric form as

δβ,φ−1
c (α) F

b
c = δβ,φ−1

b (α) G
L(n)
α (b)

L
(n)
α (c)

.(6)

This is easily seen to imply that

Fb
c = δφ−1

b , φ−1
c
G
L(n)
α (b)

L
(n)
α (c)

(7)

for arbitrary α ∈ ΩN ,b, c ∈ Ωnk , and also (as a result of Proposition 6(iii)) that

Gb̃
c̃ = δρ−1

b̃
, ρ−1

c̃
F

(L
(n)
β )−1(b̃)

(L
(n)
β )−1(c̃)

(8)
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for arbitrary β ∈ ΩN , b̃, c̃ ∈ Ωnk . The proof of the lemma is completed by putting
together equations (7) and (8) and using the fact, which is a consequence of Propo-
sition 6(iii), that

δφ−1
b , φ−1

c
δρ−1

L
(n)
α (b)

, ρ−1

L
(n)
α (c)

= δρ−1

L
(n)
α (b)

, ρ−1

L
(n)
α (c)

.

The next lemma is the final ingredient necessary for the identification, in an
abstract sense, of the higher relative commutants.

Lemma 9. Let Ω be a finite set. Suppose we are given an equivalence relation
∼0 on Ω and a subset L ⊆ S(Ω) such that L = L−1 = {σ−1 : σ ∈ L}. Let

A = {x = ((xij)) ∈MatΩ(C) : xij = δ[i]0,[j]0 x
σ(i)
σ(j) for all i, j ∈ Ω, σ ∈ L}, where

[i]0 = {j ∈ Ω : i ∼0 j}.
Define the equivalence relation ∼ on Ω by requiring that i ∼ j ⇔ σ(i) ∼0

σ(j) for all σ ∈ G, where G is the subgroup of S(Ω) generated by L. Then G
acts on the set of ∼-equivalence classes ( by σ · [i] = [σ(i)], where of course
[i] = {j ∈ Ω : i ∼ j}). Suppose the set of ∼-equivalence classes breaks up as a
disjoint union of l orbits under this action of G.

For 1 ≤ p ≤ l, fix one equivalence class [ip] from the p-th orbit, let Hp = {σ ∈
G : σ · [ip] = [ip]} be the isotropy group of that equivalence class, and let πp denote
the natural permutation representation of Hp on [ip]. Then,

A ∼=
l⊕

p = 1

πp(Hp)
′.

Proof. To begin with, if σ1, σ2 ∈ L, note that, for any x in A, we have

xij = δ[i]0,[j]0x
σ2(i)
σ2(j) = δ[i]0,[j]0δ[σ2(i)]0,[σ2(j)]0x

σ1σ2(i)
σ1σ2(j).

Since L = L−1, clearly G = {σ1σ2 · · ·σr : r ≥ 0, σ1, · · · , σr ∈ L}, and it easily
follows now that

A = {x = ((xij)) ∈MatΩ(C) : xij = δ[i],[j]x
σ(i)
σ(j) ∀ i, j ∈ Ω, σ ∈ G}.

Suppose now that {[j(p)
1 ], · · · [j(p)

tp ]} is the p-th orbit in the set of ∼-equivalence

classes under the G-action, and suppose j
(p)
1 = ip. For 1 ≤ s ≤ tp, fix σ

(p)
s ∈ G

such that σ
(p)
s · [ip] = [j

(p)
s ]. Assume that the elements of Ω have been so ordered

that σ
(p)
s , as a map of [j

(p)
1 ] onto [j

(p)
s ], is order-preserving. It is then fairly easy to

see that x ∈ A if and only if x has the block-diagonal form

x =
l⊕

p = 1

tp⊕
s = 1

x(p)
s

with respect to the decomposition

Ω =
l∐

p = 1

tp∐
s = 1

[j(p)
s ],

where x
(p)
1 = · · · = x

(p)
tp ∈ πp(Hp)

′.

Putting the previous two lemmas together by considering the specialisation of
Lemma 9 to the case where Ω = Ωnk , a ∼0 b ⇔ ρ−1

L
(n)
α (a)

= ρ−1

L
(n)
α (b)

∀ α ∈
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ΩN , and L = {(L(n)
β )−1(L

(n)
α ) : α, β ∈ ΩN}, we can summarize the contents of

this section as follows:

Proposition 10. Let u ∈MN(C)⊗Mk(C) be a biunitary permutation matrix and
let λ, ρ, φ, ψ have their usual meaning. Let Ru ⊆ R be the hyperfinite (subfac-
tor, factor)- pair corresponding to u, and let Cn = R′u ∩ Rn−1, n ≥ 0, where
Ru = R−1 ⊆ R = R0 ⊆ R1 ⊆ R2 ⊆ · · · is the tower of the basic construction.
Then, for n = 1, 2, · · · , the algebra Cn has the following description:

Let L
(n)
α be defined as in Proposition 6; let Gn be the subgroup of S(Ωnk) generated

by {L(n)
β

−1
L

(n)
α : α, β ∈ ΩN}; and let ∼n be the equivalence relation defined on Ωnk

by

a ∼n b⇔ ρ
L

(n)
α (σ(a))

= ρ
L

(n)
α (σ(b))

∀ σ ∈ Gn, α ∈ ΩN .

Suppose the set of equivalence classes in Ωnk breaks up into ln orbits under the Gn-
action; fix an equivalence class [αp] in the p-th orbit of equivalence classes, and let
Hp = {σ ∈ Gn : σ(αp) ∼n αp}. If πp is the natural permutation representation of
Hp on [αp], then

Cn '
ln⊕

p = 1

πp(Hp)
′.

5. Some simple special cases

From now on, we assume, for the sake of simplicity, that N = k, although it
should be clear how every statement can be naturally modified in the general case.
In particular, we shall drop the convention in the preceding sections concerning
Greek and Roman letters. Instead, in the interest of typographical convenience,
we shall typically use Greek letters for elements of Ωn

N , n > 1, and reserve Roman
letters to denote elements of ΩN . Also, we shall freeze the symbol N to denote what
was so far denoted by N or k, and we shall use the symbol k as a ‘free variable’
ranging over the positive integers.

In this section, we consider four special cases, in which the subfactor is necessarily
of finite depth, and the prinicipal graph describing the tower {R′u ∩ Rk : k ≥ −1}
admits a complete and satisfactory description.

Case (0) : λ ≡ id , ρ ≡ id.

In this most trivial example, λi = ρj = idΩn for all i, j ∈ ΩN . Then π(i, j)
= (i, j), and the associated subfactor Ru of R =

⊗∞
k = 1MN(C) may be identified

with 1 ⊗
⊗∞

k = 2MN(C), and the principal graph consists of two vertices with N
bonds between them.

Case (1) : λ ≡ id, ρ arbitrary.

Let ρ : ΩN → S(ΩN ) be an arbitrary map, and let λi = idΩN for all i in ΩN .
Thus π(i, j) = (ρj(i), j), which clearly defines a permutation of ΩN × ΩN ; i.e.,
π ↔ (ρ, λ) ∈ PN . Then observe that

φi(j) = ρλ−1
j (i)(j) = ρi(j), ψi(j) = λρ−1

j (i)(j) = j = λi(j)

and thus φ = ρ, ψ = λ. Hence, by Remark 7, we see that, for all k ≥ 1,

L(k+1)
x (α, a) = (L(k)

x (α), λ−1

ρ−1
α (x)

(a)) = (L(k)
x (α), a),
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for all x, a ∈ ΩN , α ∈ ΩkN , k ≥ 1; hence, inductively, we find that L
(k)
x = idΩkN

for all k ≥ 1 and for all x ∈ ΩN . In this case, the equivalence classes of ΩkN are
the sets Eσ = {α ∈ ΩkN : ρα = σ}, as σ ranges over the group G0 generated by
{ρi : i ∈ ΩN}

In fact, it follows from Theorem 11 of [KSV] that in this case, the principal graph
G (describing the tower {Ck : k ≥ 0} of relative commutants) has the following

description: let G̃ be the bipartite graph with the sets G̃(0) and G̃(1) of even and
odd vertices given by G̃(j) = G0×{j}, and suppose (g0, 0) is connected to (g1, 1) by
Λ(g0, g1) bonds, where Λ(g0, g1) = #{i ∈ ΩN : g1 = ωg0ρi, ω ∈ C, |ω| = 1}; then

G is the connected component in G̃ containing the vertex (1, 0), where 1 denotes
the identity element of G0.

It should be remarked that these are precisely the ‘diagonal subfactors’ of Popa
(see [P2]) for appropriate finite groups.

Case (2) : ρ ≡ id, λ arbitrary.

Let λ : Ωn → S(ΩN ) be an arbitrary map and let ρj = idΩN for all j;
thus, π(i, j) = (i, λi(j)), which is again clearly a permutation of ΩN , whence
π ↔ (ρ, λ) ∈ PN . We assume, for simplicity, that λ1 = id. Observe again that
φi(j) = ρλ−1

j (i)(j) = j = ρi(j) and that ψi(j) = λρ−1
j (i)(j) = λi(j), so that

φ = ρ, ψ = λ. Again, by Remark 7, we have

L(k+1)
x (α, a) = (L(k)

x (α), λ−1

ρ−1
α (x)

(a)) = (L(k)
x (α), λ−1

x (a))

and hence, inductively, we see that

L(k)
x = λ−1

x × λ−1
x × · · · × λ−1

x .

If G1 denotes the subgroup of S(ΩN ) generated by {λi : i ∈ ΩN}, we see that,
in the notation of Proposition 10, Gk = {σ × σ × · · · × σ : σ ∈ G1}, that the
equivalence relation on ΩkN is the trivial one (α ∼ β for all α, β) - as a result of
the triviality of the ρi’s - and if π denotes the natural representation of G1 on CN ,
then Ck ∼= (π ⊗ π ⊗ · · · ⊗ π)(G1)′.

Here, too, it follows from Theorem 10 of [KSV] that the principal graph G has the

following description: let G̃ be the bipartite graph with the set of even (resp., odd)

vertices being given by G̃(0) = Ĝ1×{0} (resp., G̃(1) = Ĝ1×{1}), where Ĝ denotes
the collection of equivalence classes of irreducible representations of G, and with the
number of bonds joining (π0, 0) and (π1, 1) given by Λ(π0, π1) = 〈π0⊗π, π1〉 where
π is the given representation of G1 on CN . Then G is the connected component of
G̃ containing (1, 0), where 1 denotes the trivial representation of G1.

Case (3) : This may be thought of as the tensor product of cases (1) and (2).
Suppose λ(1) : Ω1 → S(Ω1) and ρ(2) : Ω2 → S(Ω2) are arbitrary maps, where

Ω1 = {1, · · · , N1}, Ω2 = {1, · · · , N2}.Again, we assume, for simplicity that λ
(0)
1 =

id. Define Ω = Ω1 × Ω2 and λ, ρ : Ω→ S(Ω) by

λ(i1,i2)(j1, j2) = (λ
(1)
i1

(j1), j2),

ρ(j1,j2)(i1, i2) = (i1, ρ
(2)
j2

(i2)),

so π((i1, i2), (j1, j2)) = ((i1, ρ
(2)
j2

(i2)), (λ
(1)
i1

(j1), j2), ); it is easy to verify that π is
a permutation of Ω1 × Ω2. The equations defining λ and ρ show that

λρ(i1,i2)(j1,j2)(k1, k2) = λ(j1,j2)(k1, k2) = λρ−1
(i1,i2)(j1,j2)(k1, k2)



BIUNITARY PERMUTATION MATRICES 4703

and that

ρλ(i1,i2)(j1,j2)(k1, k2) = ρλ−1
(i1,i2)

(j1,j2)(k1, k2) = ρ(j1,j2)(k1, k2)

for all (i1, i2), (j1, j2), (k1, k2). It follows easily that φ = ρ, λ = ψ, and hence
from Remark 7 that

L
(k)
(i1,i2) = λ−1

(i1,i2) × λ
−1
(i1,i2) × · · ·λ

−1
(i1,i2), for all i1, i2, k.

Similarly,

ρ
L

(k)
(i1,i2)(α)

= ρα for all (i1, i2) ∈ Ω1 × Ω2, k ≥ 1 and α ∈ (Ω1 × Ω2)k.

Hence, the ∼k-equivalence classes of (Ω1 × Ω2)k, as described in Proposition 10,

may be identified with the sets Eσ = Ωk1 × {α ∈ Ωk2 : ρ
(2)
α = σ} for σ in the

subgroup G(2) of S(Ω1) generated by {ρ(2)
j : j ∈ Ω2}. (In the above, we make the

natural identification (Ω1×Ω2)k ' Ωk1×Ωk2, and use the fact that ρ(α1,α2) = ρ
(2)
α2 .)

Similarly if we let G(1) be the subgroup of S(Ω1) generated by {λ(1)
i : i ∈ Ω1}

and let π denote the natural representation of G(1) on CN1 , we see that the group
Gk of Proposition 10 may be identified with ⊗k(π ⊗ idCN2 )(G(1)).

From the preceding two paragraphs and the discussion in cases (1) and (2),
we see that in this case, the principal graph G has the following description : let
G̃1 (resp. G̃2) denote the bipartite graph with the sets of even and odd vertices

given by G̃(ε)
1 = Ĝ(1) × {ε} (resp. G̃(ε)

2 = G(2) × {ε}), for ε = 0, 1, and
with adjacency matrix given by Λ(1)((π0, 0), (π1, 1)) = 〈π0 ⊗ π, π1〉 (resp., by

Λ(2)((g0, 0), (g1, 1)) = #{j ∈ Ω2 : g0ρ
(2)
j = ωg1, ω ∈ C, |ω| = 1}); let G̃ be the

bipartite graph with the sets of even and odd vertices given by G̃(ε) = G̃(ε)
1 × G̃

(ε)
2 ,

for ε = 0, 1, and with adjacency matrix given by Λ = Λ(1) ⊗ Λ(2):i.e.,

Λ(((π0, 0), (g0, 0)), ((π1, 1), (g1, 1))) = Λ(1)((π0, 0), (π1, 1))Λ(2)((g0, 0), (g1, 1)).

Finally, G is the connected component in G̃ containing ((11, 0), (12, 0)), where 11

denotes the trivial representation of G(1) and 12 denotes the identity element of
G(2). 2

6. The case N ≤ 3

Recall from the last paragraph of §2 that biunitary matrices u, ũ ∈ MN (C) ⊗
MN(C) are considered equivalent if there exist unitary matrices a, b, c, d ∈ U(N)
such that ũ = (a ⊗ b)u(c ⊗ d). It makes sense, therefore, to call biunitary per-
mutation matrices u and ũ equivalent if there exist permutation matrices a, b, c, d
in MN (C) such that ũ = (a⊗ b)u(c⊗ d). In terms of the corresponding elements

π ↔ (ρ, λ), π̃ ↔ (ρ̃, λ̃) ∈ PN , it is not hard to see that the above relation takes the
following form.

Definition 11. If (ρ, λ), (ρ̃, λ̃) ∈ PN , say that (ρ, λ) ∼ (ρ̃, λ̃) if and only if there

exist permutations µ1, µ2, ν1, ν2 ∈ S(ΩN ) such that λ̃i = µ1 ◦ λν1(i) ◦ ν2 and
ρ̃j = µ2 ◦ ρν2(j) ◦ ν1 for all i, j in ΩN .

By the way in which this equivalence was arrived at, it is clear that equivalent
elements of PN yield conjugate subfactors. In order to understand the partition of
PN into the equivalence classes given by the above definition, we proceed as follows:
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Suppose (ρ, λ) ∈ PN . Suppose there are l (resp., r) distinct permutations in
the set {λ1, · · ·λN} (resp., {ρ1, · · ·ρN} ); call these permutations ξ1, · · · , ξl (resp.,
η1, · · · , ηr), say. Let Dj = {i ∈ ΩN : λi = ξj} for 1 ≤ j ≤ l, and Ej = {i ∈
ΩN : ρi = ηj} for 1 ≤ j ≤ r. We shall write λ =

∑l
j = 11Dj (·)ξj and

ρ =
∑r
j = 11Ej(·)ηj , and call (#D1, · · · ,#Dl) and (#E1, · · ·#Er) the partitions

of N induced by λ and ρ respectively.

Lemma 12. Let (ρ, λ) ∈ PN , and let λ =
∑l
j = 11Dj (·)ξj and ρ =

∑r
j = 11Ej(·)ηj

as above. Then,
(i) if (ρ̃, λ̃) ∈ PN and (ρ, λ)) ∼ (ρ̃, λ̃) and if

λ̃ =
l̃∑

j = 1

1D̃j(·)ξ̃j and ρ̃ =
r̃∑

j = 1

1Ẽj(·)η̃j

are the corresponding decompositions of λ̃ and ρ̃, then l̃ = l, r̃ = r, and
(#D̃1, · · ·#D̃l) (resp. (#Ẽ1, · · ·#Ẽr)) is a permutation of (#D̃1, · · ·#D̃l) (resp.

(#Ẽ1, · · ·#Ẽr)); and
(ii) if

ΩN =
l∐

j = 1

D̃j =
r∐

j = 1

Ẽj

are any two partitions of ΩN such that #D̃j = #Dj and #Ẽj = #Ej, then

there exists (ρ̃, λ̃) ∈ PN such that (ρ, λ) ∼ (ρ̃, λ̃), λ̃ =
∑l
j = 11D̃j (·)ξ̃j and

ρ̃ =
∑r
j = 11Ẽj (·)η̃j , where {ξ̃1, · · · , ξ̃l} and {η̃1, · · · η̃r} are some two sets of

distinct elements such that ξ̃1 = η̃1 = idΩN .

Proof. (i) If µ1, µ2, ν1, ν2 are as in Definition 11, then, after a possible re-labelling,

D̃j = ν−1
1 (Dj), ξ̃j = µ1 ◦ ξj ◦ ν2, Ẽj = ν−1

2 (Ej), and η̃j = µ2 ◦ ηj ◦ ν1.

(ii) Pick permutations ν1, ν2 ∈ S(ΩN ) such that ν1(D̃j) = Dj and ν2(Ẽj) = Ej .

Put µ1 = ν−1
2 ◦ξ−1

1 and µ2 = ν−1
1 ◦η−1

1 . Now define λ̃i = µ1◦λν1(i)◦ν2, ρ̃ = µ2◦
ρν2(j) ◦ ν1, and note that this (ρ̃, λ̃) does the job.

Corollary 13. If P 0
N = {(ρ, λ) ∈ PN : λ1 = ρ1 = idΩN }, then: (i) if (ρ, λ) ∈

PN , there exists (ρ̃, λ̃) ∈ P 0
N such that (ρ, λ) ∼ (ρ̃, λ̃); in fact, we may choose (ρ̃, λ̃)

so that #{i : λ̃i = idΩN } ≥ #{i : λ̃i = σ} and #{i : ρ̃i = idΩN} ≥ #{i :

ρ̃i = σ} for all σ ∈ S(ΩN ); (ii) if (ρ, λ), (ρ̃, λ̃) ∈ P 0
N , then (ρ, λ) ∼ (ρ̃, λ̃) if and

only if there exist permutations ν1, ν2 ∈ S(ΩN ) such that λ̃i = ν−1
2 ◦λ−1

ν1(1)◦λν1(i)◦ν2

and ρ̃j = ν−1
1 ◦ ρ−1

ν2(1) ◦ ρν2(j) ◦ ν1 for all i, j in ΩN .

Proof. (i) is an immediate consequence of Lemma 12(ii)
As for (ii), if µ1, µ2, ν1, ν2 ∈ S(ΩN ) are as in Definition 11, the assumptions

λ1 = λ̃1 = ρ1 = ρ̃1 = id imply that id = µ1 ◦ λν1(1) ◦ ν2 = µ2 ◦ ρν2(1) ◦ ν1

and hence µ1 = ν−1
2 ◦ λ−1

ν1(1) and µ2 = ν−1
1 ◦ ρ−1

ν2(1).

In view of the corollary, we shall henceforth restrict ourselves to P 0
N rather than

PN and think of the equations in Corollary 13(ii) as the definition of the equivalence.
In the sequel, if (ρ, λ) ∈ PN we shall use the notation λ = (λ1, λ2 · · · , λN ) and

ρ = (ρ1, ρ2, · · · , ρN ). It is easy to see that P 0
2 consists of precisely three elements,
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which, in the above notation, may be written as :
(a) λ = (id, id) = ρ;
(b) λ = (id, (12)), ρ = (id, id);
(c) λ = (id, id), ρ = (id, (12)).

All these three examples are covered by cases (1) and (2) of §5, and so we
find that the only principal graphs arising from permutation biunitary matrices in
M2(C)⊗M2(C) are given in Figure A.

u

u

u

u

u

u
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�
�
�
�
�
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@
@
@

(a) (b) and (c)

Figure A

In fact, Lemma 12 shows that the three elements of P 0
2 listed above are pair-

wise inequivalent, although the subfactors for examples (b) and (c) yield the same
principal graph.

Remark 14. Suppose (ρ, λ) ∈ P 0
N ; suppose ν ∈ S(ΩN ) and λ̃i = ν−1 ◦ λi ◦ ν for

all i in ΩN . Then, ∃ ρ̃j ∈ S(ΩN ), j ∈ ΩN such that (ρ, λ) ∼ (ρ̃, λ̃) ∈ P 0
N . (Reason:

in the notation of Corollary 13(ii), let ν2 = ν, ν1 = id, and ρ̃j = ρ−1
ν(1) ◦ ρν(j).)

We assume, in the rest of this section, that N = 3.

Lemma 15. Let (ρ, λ) ∈ P3. Then ∃ (ρ̃, λ̃) ∈ P 0
3 such that (ρ, λ) ∼ (ρ̃, λ̃) and λ̃ is

one of the following:
(i) λ̃ = (id, id, id);

(ii) λ̃ = (id, id, (12));

(iii) λ̃ = (id, id, (123));

(iv) λ̃ = (id, (12), (13));

(v) λ̃ = (id, (123), (132)).
Furthermore, the five possibilities above are mutually exclusive.

Proof. Let γ be the partition of 3 induced by λ (in the sense described in the lines
preceding Lemma 12). We consider the three possibilities, γ = (3), γ = (2, 1), γ =
(1, 1, 1).

Case (i) : γ = (3).

In this case, if λ̃ = (id, id, id), it follows from Corollary 13(i) that there exists

ρ̃ such that (ρ, λ) ∼ (ρ̃, λ̃) and (ρ̃, λ̃) ∈ P 0
3 .

Case (ii) : γ = (2, 1).

Again, it follows from Corollary 13 (i) that there exists (ρ′, λ′) ∈ P 0
3 such that

(ρ, λ) ∼ (ρ′, λ′) , where λ′ = (id, id, σ) for some σ ∈ S3 \ {id} . Appeal now to

Remark 14 to deduce that there exists (ρ̃, λ̃) ∈ P 0
3 such that (ρ̃, λ̃) ∼ (ρ′, λ′) and

λ̃ = (id, id, (12)) or (id, id, (123)) according as σ is an odd or even permutation in
S3 \ {id}.
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Case (iii) : γ = (1, 1, 1).

As before, we may assume that λ = (id, λ1, λ2) with λ1 6= λ2 and λi 6= id for
i = 1, 2. Now consider three subcases depending upon the number k = #{i ∈
{1, 2} : λi is an odd permutation}. If k = 0, then {λ1, λ2} = {(123), (132)}
and an application of Remark 14 shows that possibility (v) of the lemma occurs.
If k = 2, one application of Remark 14 shows that there exists (ρ′, λ′) ∈ P 0

3

such that (ρ, λ) ∼ (ρ′, λ′) and λ′ = (id, (12), τ) where τ = (13) or (23). Since
(12)(23)(12) = (13), we may (by another application, if necessary, of Remark 14)
assume without loss of generality that τ = (13); i.e., the possibility (iv) of the
lemma occurs. If k = 1, a similar argument to the one used in the case k = 2, but
now using the fact that (12)(123)(12) = (132), shows that there exists (ρ′, λ′) ∈ P 0

3

such that (ρ, λ) ∼ (ρ′, λ′) and λ′ = (id, (12), (123)). Now set ν1 = ν2 = (12)
and define

λ̃i = ν−1
2 ◦ (λ′ν1(1))

−1 ◦ λ′ν1(i) ◦ ν2, ρ̃j = ν−1
1 ◦ (ρ′ν2(1))

−1 ◦ ρ′ν2(j) ◦ ν1.

Then (ρ, λ) ∼ (ρ′, λ′) ∼ (ρ̃, λ̃), (ρ̃, λ̃) ∈ P 0
3 , and it is seen that λ̃ = (id, (12), (13));

thus the case k = 1 also leads to possibility (iv) of the lemma.
Thus we have shown that the five possibilities are exhaustive; to prove that they

are mutually exclusive, we need to show that if (ρ, λ), (ρ̃, λ̃) ∈ P 0
3 , if λ 6= λ̃ and if

λ, λ̃ ∈ {(id, id, id), (id, id, (12), (id, id, (123)), (id, (12), (13)), (id, (123), (132))}, then

(ρ, λ) is not equivalent to (ρ̃, λ̃). In view of Lemma 12 (i), we only need to consider
two possibilities :

(a) λ = (id, id, (12)), λ̃ = (id, id, (123));

(b) λ = (id, (12), (13)), λ̃ = (id, (123), (132)).
The desideratum is a consequence of the observation that, in general, if (ρ, λ),

(ρ̃, λ̃) ∈ P 0
3 , if (ρ, λ) ∼ (ρ̃, λ̃), and if all the λi’s are even permutations, the same

must be true of all the λ̃i’s.

We are finally ready to describe the equivalence classes in P 0
3 .

Proposition 16. Any element of P3 is equivalent to one and only one from among
the following list of 18 elements of P 0

3 :

(1) λ = (id, id, id), ρ ∈ {(id, id, id), (id, id, (12)), (id, id, (123)),
(id, (12), (13)), (id, (123), (132))};

(2) λ = (id, id, (12)), ρ ∈ {(id, id, id), (id, id, (12)), (id, id, (13)),
(id, id, (123)), (id, (12), id), (id, (12), (13))};

(3) λ = (id, id, (123)), ρ ∈ {(id, id, id), (id, id, (12))};
(4) λ = (id, (12), (13)), ρ ∈ {(id, id, id), (id, id, (12)), (id, (13), (12))};
(5) λ = (id, (123), (132)), ρ ∈ {(id, id, id), (id, (132), (123))}.

Proof. In view of Lemma 15, it suffices to prove that if (ρ, λ) ∈ P 0
3 , and if λ belongs

to the set {(id, id, id), (id, id, (12)), (id, id, (123)), (id, (12), (13)), (id, (123), (132))},
then there exists a unique ρ̃ such that:
(a) (ρ, λ) ∼ (ρ̃, λ) and (b) (ρ̃, λ) satisfies one of the conditions (1)− (5) above.

(1) If λ = (id, id, id), the proof of the assertion is exactly like the proof of
Lemma 15, with ρ in place of λ of that proof. One only needs to observe, further,
that if (ρ, λ) ∼ (ρ̃, λ̃), (ρ, λ), (ρ̃, λ̃) ∈ P 0

3 and λ = (id, id, id), then necessarily

λ̃ = λ (because of Lemma 12).



BIUNITARY PERMUTATION MATRICES 4707

(2) Suppose λ = (id, id, (12)). In this proof, and in the sequel, we shall
sometimes denote an element π ∈ P 0

N by an N × N matrix with (i, j)-th entry
π(i, j). (Note that in order for a permutation π ∈ S(Ω2

N) to be biunitary, it is
necessary and sufficient that its matrix representation has the following features:
along the ith row (resp., jth column), the second (resp., first) coordinates yield
a permutation of ΩN , namely λi (resp., ρj).) Thus, if π ↔ (ρ, λ) ∈ P 0

3 , with
λ = (id, id, (12)) we see that π has the form

π =

 11 ∗2 ∗3
21 ∗2 ∗3
32 ∗1 ∗3

 .
Since π ∈ S(Ω3×Ω3), we see that the (3, 2)- entry of the above matrix must be 31;
thus ρ2 ∈ {id, (12)} and ρ3 can be any element of S3.

Suppose now that (ρ, λ) ∼ (ρ̃, λ). Then there exist ν1, ν2 as in Corollary 13 (ii),

with λ̃ = λ. Then, we find that λi = ν−1
2 ◦λ−1

ν1(1)◦λν1(i)◦ν2 and ρ̃i = ν−1
1 ◦ρ−1

ν2(1)◦
ρν2(i) ◦ ν1, for i = 1, 2, 3. Since {1, 2} and {3} are the ‘sets of constancy’ of λ, we
find from Lemma 12(i) that necessarily ν1({1, 2}) = {1, 2} and ν1(3) = 3, whence
ν1 = id or (12); in particular, (12) = λ3 = ν−1

2 ◦λ−1
ν1(1)◦λν1(3)◦ν2 = ν−1

2 (12)ν2,

and so ν2 fixes 3, i.e., also ν2 ∈ {id, (12)}. Thus, (ρ̃, λ) ∼ (ρ, λ) and (ρ̃, λ) ∈ P 0
3 if

and only if ρ̃i = ν−1
1 ◦ ρ−1

ν2(1) ◦ ρν2(i) ◦ ν1 where ν1, ν2 ∈ {id, (12)}.
This says that for λ = (id, id, (12)), (ρ, λ) ∼ (ρ̃, λ) ∈ P 0

3 if and only if ρ̃ ∈
{ρ = (id, ρ2, ρ3), (id, ρ−1

2 , ρ−1
2 ρ3), (id, (12)ρ2(12), (12)ρ3(12)), (id, (12)ρ−1

2 (12),
(12)ρ−1

2 ρ3(12))}. Recall that (ρ, λ) ∈ P 0
3 if and only if ρ2 ∈ {id, (12)} and ρ3 is

arbitrary. Deduce finally that :

(a) ((id, id, ρ3), λ) ∼ (ρ̃, λ) ∈ P 0
3

⇔ ρ̃ = (id, id, π), where π ∈ {ρ3, (12)ρ3(12)};
and

(b) ((id, (12), ρ3), λ) ∼ (ρ̃, λ) ∈ P 0
3

⇔ ρ̃ = (id, (12), σ), where σ ∈ {ρ3, (12)ρ3, ρ3(12), (12)ρ3(12)}.
This finishes the proof of Case (2).

(3) Suppose λ = (id, id, (123)). If π ↔ (ρ, λ) ∈ P 0
3 , then the matrix representa-

tion of π has the form

π =

 11 ∗2 ∗3
21 ∗2 ∗3
32 ∗3 ∗1

 .
Since π ∈ S(Ω3 × Ω3), we argue first that the (3, 3)-entry must be 31; since ρ3 ∈
S(Ω3), this implies that ρ3 ∈ {id, (12)}; since π ∈ S(Ω3×Ω3), this implies that the
(3, 2)-entry of π must be 33, whence also ρ2 ∈ {id, (12)}.

Next, (ρ, λ) ∼ (ρ̃, λ) ∈ P 0
3 if and only if there exist ν1, ν2 ∈ S(Ω3) as in Lemma

13(ii), with λ̃ = λ. Argue as in Case (2) above; we see that this forces ν1 ∈
{id, (12)} and ν2 ∈ {id, (123), (132)} (since no odd permutation commutes with
(123)). Thus (ρ, λ) ∼ (ρ̃, λ) ∈ P 0

3 if and only if ρ̃i = ν−1
1 ◦ ρ−1

ν2(1) ◦ ρν2(i) ◦ ν1, where

ν1 ∈ {id, (12)} and ν2 ∈ {id, (123), (132)}.
It is not hard to deduce from this that ((id, id, (12)), λ) ∼ ((id, (12), (id)), λ) ∼

((id, (12), (12)), λ). This finishes the proof of Case (3).
(4) Suppose λ = (id, (12), (13)). We then find, arguing as in Case (3) above, that

(ρ, λ) ∈ P 0
3 if and only if ρ1 = id, ρ2 ∈ {id, (13)} and ρ3 ∈ {id, (12)}; i.e., there are
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only four possibilities: ρ ∈ {(id, id, id), (id, (13), id), (id, id, (12)), (id, (13), (12))}.
Of these, we find, by Lemma 12, that the first, third and fourth possibilities are mu-
tually exclusive; on the other hand, the second and third possibilities are equivalent,
since if ρ = (id, (13), id) and ρ̃ = (id, id, (12)), and if we put ν1 = ν2 = (23),
we see that λi = ν−1

2 ◦λ−1
ν1(1) ◦λν1(i) ◦ ν2 and ρ̃i = ν−1

1 ◦ρ−1
ν2(1) ◦ρν2(i) ◦ ν1 for all i.

(5) λ = (id, (123), (132)).
In this case we find that (ρ, λ) ∈ P 0

3 ⇔ ρ ∈ {(id, id, id), (id, (132), (123))} and
the two possibilities are inequivalent by Lemma 12(i).

For the sake of convenience of reference, we list the 18 inequivalent cases below;
in each case, we write the matrix representations of π and π−1; the description of
the matrix for π−1 immediately yields the φ and ψ in each case - and we observe
the striking fact that in the first 17 of the 18 cases, we have λ = ψ, φ = ρ !
Further, in those cases where λi = idΩ3 for all i or ρj = idΩ3 for all j, we also
display the principal graph (as per the analysis of §5). Other principal graphs will
be given later.

(1)

π = π−1 =

 11 12 13
21 22 23
31 32 33

 ,
λ = (id, id, id) = ψ, ρ = (id, id, id) = φ. Principal graph:

x

x

Figure 1

(2)

π =

 11 12 23
21 22 13
31 32 33

 = π−1;

λ = (id, id, id), ρ = (id, id, (12));φ−1 = (id, id, (12)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

�
�
�
�
�
�

@
@
@
@
@
@

Figure 2

(3)

π =

 11 12 23
21 22 33
31 32 13

 ; π−1 =

 11 12 33
21 22 13
31 32 23

 ;
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λ = (id, id, id), ρ = (id, id, (123));φ−1 = (id, id, (132)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

u

u

�
��
��
��
��
��
�

@
@
@
@
@
@

@
@
@
@
@
@

Figure 3

(4)

π =

 11 22 33
21 12 23
31 32 13

 = π−1;

λ = (id, id, id), ρ = (id, (12), (13));φ−1 = (id, (12), (13)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

u

u

u

u

u

u

u

u
@
@
@
@
@
@

@
@
@
@
@
@�
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�
�
�
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�
�
�
�
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�
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�HH

HH
HH
HH
HH
HH

HH
HH
HH
HH

HH
HH

HH
HH
HH
HH
HH
HH

HH
HH
HH
HH
HH
HH

Figure 4

(5)

π =

 11 22 33
21 32 13
31 12 23

 ; π−1 =

 11 32 23
21 12 33
31 32 13

 ;

λ = (id, id, id), ρ = (id, (123), (132));φ−1 = (id, (132), (123)), ψ−1 = (id, id, id).
Principal graph:

u

u

u

u

u

u

�
��
��
��
��
��
�

@
@
@
@
@
@

@
@
@
@
@
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�
�

Figure 5

(6)

π =

 11 12 13
21 22 23
32 31 33

 = π−1;

λ = (id, id, (12)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, id, (12)).
Principal graph: same as Case (2)
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(7)

π = π−1 =

 11 12 23
21 22 13
32 31 33

 ,
λ = ρ = φ−1 = ψ−1 = (id, id, (12)).

(8)

π =

 11 12 33
21 22 23
32 31 13

 = π−1;

λ = (id, id, (12)), ρ = (id, id, (13));φ−1 = (id, id, (13)), ψ−1 = (id, id, (12)).
(9)

π =

 11 12 23
21 22 33
32 31 13

 ; π−1 =

 11 12 33
21 22 13
32 31 23

 ;

λ = (id, id, (12)), ρ = (id, id, (123));φ−1 = (id, id, (132)), ψ−1 = (id, id, (12)).
(10)

π =

 11 22 13
21 12 23
32 31 33

 = π−1;

λ = (id, id, (12)), ρ = (id, (12), id);φ−1 = (id, (12), id), ψ−1 = (id, id, (12)).
(11)

π =

 11 22 33
21 12 23
32 31 13

 = π−1;

λ = (id, id, (12)), ρ = (id, (12), (13));φ−1 = (id, (12), (13)), ψ−1 = (id, id, (12)).
(12)

π =

 11 12 13
21 22 23
32 33 31

 ; π−1 =

 11 12 13
21 22 23
33 31 32

 ;

λ = (id, id, (123)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, id, (132)).
Principal graph: same as Case (3)

(13)

π =

 11 12 23
21 22 13
32 33 31

 ; π−1 =

 11 12 23
21 22 13
33 31 32

 ;

λ = (id, id, (123)), ρ = (id, id, (12));φ−1 = (id, id, (12)), ψ−1 = (id, id, (132)).
(14)

π =

 11 12 13
22 21 23
33 32 31

 = π−1;

λ = (id, (12), (13)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, (12), (13)).
Principal graph:
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u

u

u

u

u

u

@
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@
@
@
@

@
@
@
@
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�

�
�
�
�
�
�

Figure 14

(15)

π =

 11 12 23
22 21 13
33 32 31

 = π−1;

λ = (id, (12), (13)), ρ = (id, id, (12));φ−1 = (id, id, (12)), ψ−1 = (id, (12), (13)).
(16)

π =

 11 32 23
22 21 13
33 12 31

 = π−1;

λ = (id, (12), (13)), ρ = (id, (13), (12));φ−1 = (id, (13), (12)), ψ−1 = (id, (12),
(13)).

(17)

π =

 11 12 13
22 23 21
33 31 32

 ; π−1 =

 11 12 13
23 21 22
32 33 31

 ;

λ = (id, (123), (132)), ρ = (id, id, id);φ−1 = (id, id, id), ψ−1 = (id, (132), (123)).
Principal graph: same as Case (5)

(18)

π =

 11 32 23
22 13 31
33 21 12

 ; π−1 =

 11 33 22
32 21 13
23 12 31

 ;

λ = (id, (123), (132)), ρ = (id, (132), (123)); φ−1 = ((23), (13), (12)), ψ−1 =
((23), (12), (13)).

We conclude this section with some useful facts about a special class of biunitary
permutation matrices. (Some of these facts are true for more general permutation
biunitary matrices, but we will not need that here.)

Proposition 17. Assume (ρ, λ) ∈ PN satisfies λi = λ−1
i = ψi, ρi = ρ−1

i = φi
for all i ∈ ΩN . Then the following hold :

(a) L
(k)
x (α) = (λx(α1), λρα1 (x)(α2), λρα2ρα1 (x)(α3), · · · , λραk−1

···ρα1 (x)(αk)) for

all x ∈ ΩN , k ∈ N and α ∈ ΩkN ; in particular, if (α, γ) ∈ Ωk+l
N where α ∈ ΩkN and

γ ∈ ΩlN , then, for all x ∈ ΩN ,

L(k+l)
x (α, γ) = (L(k)

x (α), L
(l)

ρ−1
α (x)

(γ)).

(b) L
(k)
x

2
= idΩkN

for all x ∈ ΩkN .
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(c) If α, β ∈ ΩkN and ∼k is the equivalence relation considered in Proposition 10
then

α ∼k β ⇔ ρ
L

(k)
x1 L

(k)
x2 ···L

(k)
xn (α)

= ρ
L

(k)
x1 L

(k)
x2 ···L

(k)
xn (β)

for all n ∈ N, x1, x2, · · · , xn ∈ ΩN .

(d) If α ∈ ΩkN , then (α, a, a) ∼k+2 (α, b, b) for all a, b ∈ ΩN .
(e) If α, β ∈ ΩkN and γ ∈ ΩlN , then

α ∼k β ⇔ (α, γ) ∼k+l (β, γ)⇔ (γ, α) ∼l+k (γ, β).

Proof. (a) Begin by recalling (cf. Remark 7) that the hypothesis implies that, for
k ∈ N, α ∈ ΩkN , a, x ∈ ΩN , we have

L(k+1)
x (α, a) = (L(k)

x (α), λρ−1
α (x)(a));(9)

it follows easily by induction that

L(k)
x (α) = (λx(α1), λρα1 (x)(α2), · · · , λραk−1

ραk−2
···ρα1(x)(αk));

this equation is easily seen to imply that if α ∈ ΩkN , γ ∈ ΩlN and x ∈ ΩN , then

L(k+l)
x (α, γ) = (L(k)

x (α), L
(l)

ρ−1
α (x)

(γ)).

(b) Since L
(1)
x = λ−1

x = λx, it is clear that L
(1)
x

2
= idΩN∀x ∈ ΩN . Suppose

we have shown that L
(k)
x

2
= idΩkN

. Then, it follows from equation 9 that, for

α ∈ ΩkN and a, x ∈ ΩN , we have

L(k+1)
x

2
(α, a) = L(k+1)

x (L(k)
x (α), λρ−1

α (x)(a)) = (L(k)
x

2
(α), λρ−1

L
(k)
x (α)

(x)λρ−1
α (x)(a));

appeal now to Proposition 6(iii) (which says that ρ−1

L
(k)
x (α)

(x) = φ−1
α (x) = ρ−1

α (x))

the induction hypothesis and the assumption that λi
2 = idΩN for all i ∈ ΩN to

deduce that, indeed, L
(k+1)
x

2
= idΩk+1

N
.

(c) By definition of the equivalence relation ∼k (and (b) above), we have, for
α, β ∈ ΩkN ,

α ∼k β ⇔ ρ
L

(k)
x1 L

(k)
x2 ···L

(k)
x2n+1

(α)
= ρ

L
(k)
x1 L

(k)
x2 ···L

(k)
x2n+1

(β)
∀ n ∈ N, x1, · · · , x2n+1 ∈ ΩN .

On the other hand, we noticed in the proof of Lemma 8 that α ∼k β ⇒ φα = φβ .
Also if x1, x2, · · ·x2n ∈ ΩN , the definition of ∼k and (b) above show that

α ∼k β ⇒ L(k)
x1
· · ·L(k)

x2n
(α) ∼ L(k)

x1
· · ·L(k)

x2n
(β);

hence α ∼k β ⇒ φ
L

(k)
x1 ···L

(k)
x2n(α)

= φ
L

(k)
x1 ···L

(k)
x2n(β)

∀x1, x2 · · · , x2n ∈ ΩN . Since

φ = ρ, this finishes the proof of (c).
(d) Two applications of equation 9 show that, for all α ∈ ΩkN , a, x ∈ ΩN ,

L(k+2)
x (α, a, a) = (L(k)

x (α), λρ−1
α (x)(a), λρaρ−1

α (x)(a));

but since λ = ψ and ρ = φ, it follows from Proposition 3(iii) that

λρaρ−1
α (x)(a) = λ−1

φ−1
a (ρ−1

α (x))
(a) = ψ−1

ρ−1
α (x)

(a) = λρ−1
α (x)(a);

hence

L(k+2)
x (α, a, a) = (L(k)

x (α), λρ−1
α (x)(a), λρ−1

α (x)(a)).
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Thus, if α ∈ ΩkN and a ∈ ΩN , we find that, for all x ∈ ΩN , L
(k+2)
x (α, a, a)

has the form (L
(k)
x (α), a′, a′) for some a′ in ΩN , which implies, in particular, that

ρ
L

(k+2)
x (α,a,a)

= ρ
L

(k)
x (α)

. Repeated application of the above fact shows that

ρ
L

(k+2)
x1 L

(k+2)
x2 ···L(k+2)

xn (α,a,a)
= ρ

L
(k)
x1 L

(k)
x2 ···L

(k)
xn (α)

for arbitrary x1, · · · , xn ∈ ΩN and

n ∈ N. This proves (d), since ρ
L

(k+2)
x1 ···L(k+2)

xn (α,a,a)
is independent of a.

(e) Suppose first that α ∼k β. Then, by (a), we have

L(k+l)
x (α, γ) = (L(k)

x (α), L
(l)

ρ−1
α (x)

(γ)),

so that ρ
L

(k+l)
x (α,γ)

= ρ
L

(k)
x (α)

ρ
L

(l)

ρ
−1
α (x)

(γ)
; but α ∼k β ⇒ ρα = φα = φβ = ρβ;

thus, α ∼k β ⇒ L
(k+1)
x (α, γ) = (L

(k)
x (α), γ′) and L

(k+l)
x (β, γ) = (L

(k)
x (β), γ′) for

some γ′, and ρ
L

(k+l)
x (α,γ)

= ρ
L

(k+l)
x (β,γ)

. It follows that if n ∈ N and x1, · · ·xn ∈ ΩN ,

then

L(k+l)
x1

· · ·L(k+l)
xn (α, γ) = (L(k)

x1
· · ·L(k)

xn (α), γ̃)

and

L(k+l)
x1

· · ·L(k+l)
xn (β, γ) = (L(k)

x1
· · ·L(k)

xn (β), γ̃),

for some γ̃, and hence (α, γ) ∼k+l (β, γ). In a similar manner, we have, for any

x ∈ ΩN , L
(k+l)
x (γ, α) = (L

(l)
x (γ), L

(k)

ρ−1
γ (x)

(α)), and we may deduce that (γ, α) ∼l+k
(γ, β).

Now for the more important cancellation assertion of the reverse implication. To
start with, if (α, γ) ∼k+l (β, γ), then ραργ = ρ(α,γ) = ρ(β,γ) = ρβργ , whence
ρα = ρβ; hence, for x in ΩN , we see that if γ′ = Lρ−1

α (x)(γ) = Lρ−1
β (x)(γ),

then L
(k+l)
x (α, γ) = (L

(k)
x (α), γ′) and L

(k+l)
x (β, γ) = (L

(k)
x (β), γ′); the assumpion

(α, γ) ∼k+l (β, γ) implies that ρ
L

(k+l)
x (α,γ)

= ρ
L

(k+l)
x (β,γ)

and hence, as before, that

ρ
L

(k)
x (α)

= ρ
L

(k)
x (β)

. It follows easily that ρ
L

(k)
x1 ···L

(k)
xn (α)

= ρ
L

(k)
x1 ···L

(k)
xn (β)

for all

x1, · · · , xn ∈ ΩN , i.e., that α ∼k β. The proof of left-cancellation, i.e.,(γ, α) ∼l+k
(γ, β)⇒ α ∼k β, is similar.

Corollary 18. Suppose (ρ, λ) ∈ PN satisfies the conditions of Proposition 17.
Then,

(i) if ∆ = {(a, a) : a ∈ ΩN}, then L
(2)
x (∆) ⊆ ∆ for all x in ΩN ;

(ii) if Xk = {α ∈ ΩkN : αi 6= αi+1 for 1 ≤ i < k}, k ≥ 2, then L
(k)
x (Xk) ⊆ Xk

for all x in ΩN .

Proof. (i) We have

L(2)
x (a, a) = (λx(a), λρa(x)(a))

= (λx(a), ψx(a))

= (λx(a), λx(a)).

(ii) Write α = (β, γ, δ) where β = (α1, · · · , αi−1), γ = (αi, αi+1) and δ =

(αi+2, · · · , αk). Then α ∈ Xk ⇒ γ 6∈ ∆ ⇒ L
(2)
y (γ) 6∈ ∆ for all y ∈ ΩN (by (i)

above); but L
(k)
x (α) = (L

(i−1)
x (β), L

(2)

ρ−1
β (x)

(γ), L
(k−i−1)

ρ−1
γ ρ−1

β (x)
(δ)); hence L

(k)
x (α) has

distinct coordinates at places i and i + 1. Since i was arbitrary, this shows that

L
(k)
x (Xk) ⊆ Xk.
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7. The finite principal graphs, when N = 3

In the last section, we obtained 18 special permutation biunitary matrices, when
N = 3, such that every permutation biunitary matrix, when N = 3, is equivalent
to one from among these 18. Also, the principal graphs of the cases numbered
1−6, 12, 14 and 17 were described. In this section, we compute the principal graphs
of the cases numbered 7− 10, 13 and 18, and show that the graphs are finite. (We
also observe, at the end of this section, a sufficient condition, for general N , for the
principal graph to be finite.) In the next and final section, we show that two of the
remaining cases - namely, cases 11 and 15 - correspond to infinite depth subfactors,
and give some idea of what the principal graphs look like. About the last remaining
case, numbered 16 in our list, we say nothing, as we know nothing beyond the first
two relative commutants in that case.

As is to be expected, all the computations are based on Proposition 10, and we
shall use the following notation in the rest of the paper: for k = 1, 2, · · · , we

write G̃k (resp. Gk) for the subgroup of S(ΩkN ) generated by {L(k)
x : x ∈ ΩN}

(resp. {L(k)
x

−1
L

(k)
y : x, y ∈ ΩN}); for α, β in ΩkN , we write α ∼k β if and only if

ρ
L

(k)
x (σ(α))

= ρ
L

(k)
x (σ(β))

for all x in ΩN and σ in Gk; finally, for α in ΩkN , we write

H[α] = {σ ∈ Gk : σ([α]) = [α]}, where [α] = {β ∈ ΩkN : β ∼k α}.
Case (8) : λ = (id, id, (12)) = ψ, ρ = (id, id, (13)) = φ.

This case is covered by Proposition 17. Note first that ρx(2) = 2 for all x ∈ Ω3,
hence also ρα(2) = 2 for all α ∈ Ωk3 , k ≥ 1; since λ2 = id, this implies - cf.

Proposition 17(a) - that L
(k)
2 = idΩk3

, and hence G̃k = Gk.

Note next that λx(3) = 3 for all x; it follows that if α ∈ Ωk3 and α = (w1, 3, w2,
3, · · · ), where w1, w2, · · · are (possibly empty) words in 1 and 2, then - since clearly
ργ = (13)l3(γ) for all γ ∈ ΩmN , where l3(γ) = #{i : 1 ≤ i ≤ m, γi = 3}− it
follows that

L
(k)
1 (α) = (w1, 3, w̃2, 3, w3, 3, w̃4, 3, · · · )

and

L
(k)
3 (α) = (w̃1, 3, w2, 3, w̃3, 3, w4, 3, · · · ),

where w̃i is obtained by changing each 1 (resp. 2) in wi to 2 (resp. 1). It

follows that L
(k)
1 , L

(k)
3 and L

(k)
1 L

(k)
3 are all elements of order 2, and hence that

Gk = {idΩk3
, L

(k)
1 , L

(k)
3 , L

(k)
1 L

(k)
3 } ∼= Z2 × Z2 for all k ≥ 2 (and G1

∼= Z2).

The above description of the L
(k)
x ’s shows that l3(L

(k)
x (α)) = l3(α) for all x,

whence ρα = ρ
L

(k)
x (α)

= ρσ(α)∀σ ∈ Gk; it follows that α ∼k β ⇔ l3(α) ≡ l3(β)

(mod 2), and hence Ωk3 splits into two equivalence classes Ek and Ok, where Ek
(resp. Ok) is the set of those α’s in Ωk3 with an even (resp. odd) number of 3’s
appearing in it. It should be clear that Ek+1 = (Ek × {1, 2})q (Ok × {3}) and
Ok+1 = (Ok × {1, 2})q (Ek × {3}).

Further, the above description of L
(k)
x , x = 1, 3, shows that

L
(k+1)
1 |Ek+1

= L
(k)
1 × id, L

(k+1)
3 |Ek×{1,2}

= L
(k)
3 × (12),

L
(k+1)
3 |Ok×{3}

= L
(k)
3 × id, L

(k+1)
1 |Ok×{1,2}

= L
(k)
1 × (12),

L
(k+1)
1 |Ek×{3}

= L
(k)
1 × id, L

(k+1)
3 |Ok+1

= L
(k)
3 × id.
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(In particular, each of the equivalence classes Ek and Ok is invariant under Gk, and
so H[α] = Gk for all α ∈ Ωk3.)

Note now that if π is a representation of Gk on an inner product space V , if we

write Vε1,ε3 = {v ∈ V : π(L
(k)
1 )v = ε1v, π(L

(k)
3 )v = ε3v} for ε1, ε3 ∈ {1,−1} and

if we let pε1,ε3 denote the orthogonal projection onto Vε1,ε3 , then {pε1,ε3 : ε1, ε3 ∈
{1,−1}} is a set of minimal central projections in π(Gk)′.

The foregoing remarks, together with Proposition 10, are seen fairly easily to
imply that the Bratteli diagram for the inclusion of Ck in Ck+1 (where Ck embeds
in Ck+1 via x 7→ x⊗ 1) is given, when k ≥ 2, by the following:
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Ẽ++ Ẽ+− Ẽ−+ Ẽ−− Õ++ Õ+− Õ−+ Õ−−

Figure 8

We may now conclude that the above graph is the principal graph for the sub-
factor, since: (a) it has norm 3, and (b) it should be a subgraph of the principal
graph.

Case (7) : λ = ρ = ψ = φ = (id, id, (12)).

This case is also covered by Proposition 17. Note first that ρx(3) = 3 for all x
in Ω3; hence also ρα(3) = 3 and ρα{1, 2} = {1, 2} for all α ∈ Ωk3 k ≥ 1; since

λ1 = λ2 = id and λ3 = (12), it follows that L
(k)
1 = L

(k)
2 = id and

L
(k)
3 = (12)× (12)× · · · × (12) (k terms). Hence Gk = G̃k = {1, L(k)

3 } ∼= Z2 for
all k.

Also, ρα = (12)l3(α) for α ∈ Ωk3 , where l3(α) is as before; it follows from the
above description of Gk that also ρα = ρσ(α) for all σ in Gk. Hence α ∼k β ⇔
l3(α) ≡ l3(β) (mod 2).

As in Case 8, we see that there are precisely two equivalence classes Ek and Ok
in Ωk3, these sets having the same description as before. Further, each of Ek and
Ok is stable under Gk; we have Ek+1 = (Ek × {1, 2})q (Ok × {3}) and Ok+1 =

(Ek × {3})q (Ok × {1, 2}); also, L
(k+1)
3 = L

(k)
3 × (12).

Since any unitary representation π of Gk on V has two isotypical subrepresen-

tations corresponding to the subspaces given by V± = {v ∈ V : π(L
(k)
3 )v = ±v},

we may deduce, as in case 7, that the principal graph is given, in this case, by
Figure 7.

Case (10) : λ = (id, id, (12)) = ψ, ρ = (id, (12), id) = φ.

This case is also covered by Proposition 17. Begin by noting that ρx(3) = 3

for all x; hence ρα(3) = 3 for all α, and so L
(k)
3 = (12) × (12) × · · · (12) (k

terms). Also ρα{1, 2} = {1, 2} for all α and λ1 = λ2 = id, which implies

that L
(k)
1 = L

(k)
2 = id. Hence, again, Gk = G̃k = {id, L(k)

3 }. Also
ρα = (12)l2(α), where, as before, we set lx(α) = #{i : αi = x}; on the
other hand, ρ

L
(k)
3 (α)

= (12)l1(α); we conclude that α ∼k β ⇔ l1(α) ≡ l1(β) (mod
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Figure 7

2) and l2(α) ≡ l2(β) (mod 2). Hence, Ωk3 splits into four equivalence classes E
(k)
ij ,

i, j ∈ {0, 1}, where E
(k)
ij = {α ∈ Ωk3 : l1(α) ≡ i (mod 2), l2(α) ≡ j (mod 2)}.

Notice that E
(k)
00 and E

(k)
11 are stable under Gk whereas Gk maps E

(k)
01 to E

(k)
10 and

vice versa. It follows that

H[α] =

{
Gk, if α ∈ E(k)

00 ∪E
(k)
11 ,

(1), if α ∈ E(k)
10 ∪E

(k)
01 .

Notice next that

E
(k+1)
ij = (E

(k)

i+̇1,j
× {1})q (E

(k)

i,j+̇1
× {2})q (E

(k)
ij × {3}),

where +̇ denotes addition modulo 2. Since L
(k+1)
3 = L

(k)
3 × (12), and since the

groups in question are Z2 and (1), we may deduce, as in the earlier cases, that the
principal graph is given thus:
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Figure 10

Case (18) : λ = ρ−1 = (id, (123), (132)), φ = ((23), (13), (12)), ψ = ((23), (12),
(13)).

First consider the case k = 1. Since ρx 6= ρy for x 6= y, we see that x ∼1

y ⇔ x = y for x, y ∈ Ω3. Further, since L
(1)
x = ψ−1

x , we find from the above

description of ψ that G1 = A3, G̃1 = S3. Since G1 acts transitively on Ω1, it
follows that in this case, C1 = C.

Next, letting k = 2, use the definitions and find, after a small computation,

that, in terms of their decompositions into disjoint cycles, the permutations L
(2)
x of

Ω2
3 are given by

L
(2)
1 = ((2, 1)(3, 2)) ((2, 2)(3, 3)) ((2, 3)(3, 1)),

L
(2)
2 = ((1, 1)(2, 2)) ((1, 2)(2, 3)) ((1, 3)(2, 1))
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and

L
(2)
3 = ((1, 1)(3, 3)) ((1, 2)(3, 1)) ((1, 3)(3, 2)).

If we set ∆0 = {(1, 1), (2, 2), (3, 3)},∆1 = {(1, 2), (2, 3), (3, 1)} and ∆2 =
{(1, 3), (2, 1), (3, 2)}, we find that :

(a) ρα = (123)j if α ∈ ∆j for j = 0, 1, 2; and

(b) L
(2)
x (∆j) = ∆j for all x ∈ Ω3 and j = 0, 1, 2.

It follows easily that ∆0,∆1,∆2 are the distinct equivalence classes in Ω2
3.

Note that G2 is the subgroup generated by {L(2)
1 L

(2)
2 , L

(2)
2 L

(2)
3 }. From the above

formulae for the L
(2)
x ’s, we find that L

(2)
1 L

(2)
2 and L

(2)
2 L

(2)
3 have cycle decompositions

given by

L
(2)
1 L

(2)
2 = L

(2)
2 L

(2)
3 = ((1, 1)(3, 3)(2, 2)) ((1, 2)(3, 1)(2, 3)) ((1, 3)(3, 2)(2, 1)).

It follows now from Proposition 10 that C2 ' (C⊕C⊕C)⊕(C⊕C⊕C)⊕(C⊕C⊕C).
Hence the Bratteli diagram for C1 ⊆ C2 is given by :

u u u u u u u u u
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Figure 18

Since this graph has norm 3, we see as before that this agrees with the principal
graph (except that the vertices at the lower level are now the even vertices).

Case (9) : λ = ψ = (id, id, (12)), ρ = φ = (id, id, (123)).

Since λ = ψ and ρ = φ, it follows from Remark 7 that L
(k+1)
x (α, a) =

(L
(k)
x (α), λ−1

ρ−1
α (x)

(a)) for all k ≥ 1, α ∈ Ωk3 and a, x ∈ Ω3. Since λy(3) = 3 for all

y, it follows from the previous equation that if α ∈ Ωk3 , l ≤ k and αl = 3, then

(L
(k)
x (α))l = 3. Since ρα = (123)l3(α) with lx(α) = #{i : αi = x} as before, it

follows that ρ
L

(k)
x (α)

= ρα for all α in Ωk3 and x ∈ Ω3; hence ρα = ρσ(α) for all σ ∈
Gk. It follows that α ∼k β if and only if l3(α) ≡ l3(β) (mod 3). Hence, Ωk3 splits into

three equivalence classes {E(k)
j : j = 0, 1, 2}, where E

(k)
j = {α ∈ Ωk3 : l3(α) ≡ j

(mod 3)}; then, if α ∈ E(k)
j , it follows that ρα = (123)j; in particular, we also see

that E
(k)
j = {α ∈ Ωk3 : ρα = (123)j}.

Notice next that if x, y ∈ Ω3, then, since ρσ(α) = ρα for all σ in Gk, we have,

for k ≥ 1, α ∈ Ωk3 and a ∈ Ω3,

L(k+1)
y L(k+1)

x (α, a) = L(k+1)
y (L(k)

x (α), λ−1

ρ−1
α (x)

(a))

= (L(k)
y L(k)

x (α), λ−1

ρ−1

L
(k)
x (α)

(y)
λ−1

ρ−1
α (x)

(a))

= (L(k)
y L(k)

x (α), λ−1

ρ−1
α (y)

λ−1

ρ−1
α (x)

(a));
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since λiλj = λjλi for all i, j , it follows by induction on k that L
(k)
x and L

(k)
y

commute. Also, since λ2
i = idΩ3 for all i, the above equations show , in addition,

that L
(k)
x

2
= idΩk3

for all k, and for all x. It follows, in particular, that, for all

k, Gk = {idΩk3
, L

(k)
1 L

(k)
2 , L

(k)
2 L

(k)
3 , L

(k)
3 L

(k)
1 } is a group of involutions; it can be

seen that when k = 2, the four elements above are distinct, and hence we see that
Gk ' Z2 × Z2 for k ≥ 2.

Notice next that for any k ≥ 1 and j = 0, 1, 2, we have

E
(2k+1)
j = (E

(2k)
j × {1, 2})q (E

(2k)

j+̇2
× {3}),

where +̇ denotes addition modulo three. Notice too that L
(2k+1)
x |

E
(2k)
j ×{1,2}

=

L
(2k)
x × λ(123)−j(x) and that L

(2k+1)
x |

E
(2k)
j ×{3}

= L
(2k)
x × id.

If we now use the fact that any representation of Z2 × Z2 breaks up naturally
into four isotypical subrepresentations we may deduce that the Bratteli diagram
for the inclusion of C2k into C2k+1 ( via x 7→ x⊗ 1) is given thus:

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

���
��
���

���
��
���

���
��
��

���
��
���

���
��
���

���
��
��

���
��
���

���
��
���

���
��
��

���
��
���

���
��
���

���
��
��H

HH
HH
HH
HH
HHH

H
HH
HH
HH
HH
HHH

H
HH
HH
HH
HH
HHH

H
HH
HH
HH
HH

HHH

H
HH
HH
HH
HH
HHH

H
HH
HH
HH
HH
HHH

H
HH
HH
HH
HH
HHH

H
HH
HH
HH
HH
HHH

A
A
A
A
A
A

A
A
A
A
A
A�

�
�
�
�
�

�
�
�
�
�
� @

@
@
@
@
@

@
@
@
@
@
@�

�
�
�
�
�

�
�
�
�
�
� Q

Q
Q
Q
Q
Q
Q
QQ�

�
�
�
�
�
�
��A

A
A
A
A
A�

�
�
�
�
�

E
(0)
++ E

(0)
+− E

(0)
−+ E

(0)
−− E

(1)
++ E

(1)
+− E

(1)
−+ E

(1)
−− E
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−+ E

(2)
−−

Ẽ
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++ Ẽ
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+− Ẽ

(0)
−+ Ẽ
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−− Ẽ

(1)
++ Ẽ

(1)
+− Ẽ
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−+ Ẽ
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(2)
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+− Ẽ
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−+ Ẽ
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Figure 9

(We use the convention here that if V is a representation space for Gk, then

Vε1,ε2 = {v ∈ V : π(L
(k)
1 L

(k)
2 )v = ε1v and π(L

(k)
2 L

(k)
3 )v = ε2v} for ε1, ε2 ∈

{±1}.)

Case (13) : λ = (id, id, (123)) = ψ, ρ = (id, id, (12)) = φ.

As before, since λ = ψ and ρ = φ, we have the inductive formula

L(k+1)
x (α, a) = (L(k)

x (α), λ−1

ρ−1
α (x)

(a)).

Notice now that ρα(3) = 3 and ρα{1, 2} = {1, 2}, whence λ−1

ρ−1
α (3)

= (132) and

λ−1

ρ−1
α (x)

= id for x ∈ {1, 2} and for all α; it follows that, for all k, L
(k)
1 = L

(k)
2 =

idΩk3
and L

(k)
3 = (132)× (132)× · · · × (132) (k terms), and so

G̃k = Gk = {idΩk3
, L

(k)
3 , L

(k)
3

2
}.

Note next that ρα = (12)l3(α) for α in Ωk3 , k ≥ 1, where, as before, lx(α) = #{i :

αi = x}. Clearly l3(L
(k)
3 (α)) = l1(α) and l3(L

(k)
3

2
(α)) = l2(α), and so we

find that α ∼k β if and only if lx(α) ≡ lx(β) (mod 2) for x = 1, 2, 3. Since
l1(α) + l2(α) + l3(α) ≡ k, we see that α ∼k β ⇔ l1(α) ≡ l1(β) (mod 2) and
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l2(α) ≡ l2(β) (mod 2). Thus, we see that Ωk3 splits into four equivalence classes

E
(k)
ij , 0 ≤ i, j ≤ 1, where E

(k)
ij = {α ∈ Ωk3 : l1(α) ≡ i (mod 2), l2(α) ≡ j (mod 2)}.

Since l3(α) ≡ l1(α) + l2(α) + k (mod 2) for α ∈ Ωk3 , it follows that L
(k)
3 (E

(k)
i,j ) =

E
(k)

j,i+̇j+̇k
(where +̇ denotes addition modulo 2). It follows that if k is even, then

E
(k)
00 is stable under Gk while L

(k)
3 (E

(k)
01 ) = E

(k)
11 and L

(k)
3 (E

(k)
11 ) = E

(k)
10 ; thus,

when k is even, we find that H[α] is Gk or {1} according as to whether α ∈ E(k)
00

or α ∈ E
(k)
01 ∪ E

(k)
11 ∪ E

(k)
10 . Similarly, if k is odd then E

(k)
11 is stable under Gk,

L
(k)
3 (E

(k)
01 ) = E

(k)
10 and L

(k)
3 (E

(k)
10 ) = E

(k)
00 , whence H[α] is Gk or {1} according

as to whether α ∈ E(k)
11 or α ∈ E(k)

01 ∪ E
(k)
10 ∪ E

(k)
00 .

Notice the obvious identity

E
(2k+1)
ij = (E

(2k)
ij × {3})q (E

(2k)

i+̇1,j
× {1})q (E

(2k)

i,j+̇1
× {2})

where +̇ denotes addition modulo 2.
Since a typical representation of Z3 splits into three isotypical summands, it is

not too hard to see now, in view of the foregoing analysis and Proposition 10, that
the Bratteli diagram for the inclusion of C2k in C2k+1 (via x 7→ x⊗ 1) is given, for
k ≥ 1, by:
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Figure 13

Remark 19. Suppose (λ, ρ) ∈ P 0
N , andGk, G̃k are the subgroups of S(ΩkN ) discussed

earlier. By definition of the L
(k)
x ’s we know that there is a unique epimorphism of

G̃k+1 into G̃k which maps L
(k+1)
x to L

(k)
x for all x in ΩN . Let G̃ denote the inverse

limit of the sequence {G̃k : k ≥ 1}. If it turns out that G̃ is finite, it is not hard to
deduce from the definition of ∼k and Proposition 10 that the principal graph must
be finite. (In fact, we suspect that the above condition is also a necessary condition
for the principal graph to be finite.)

8. Two infinite-depth subfactors

In this section, we discuss the cases numbered 11 and 15 in the list of §6. We
show that in both cases the principal graph is infinite, and give a partial description
of the graph in Case 11 and a complete description of the graph in Case 15.

Both these cases are covered by Proposition 17, and hence the conclusions of
that proposition are valid in these cases.

We shall find it convenient to work with the limiting case k = ∞ in the following
sense : for x in Ω3, we consider the transformation Lx of the sequence space ΩN3
defined by the requirement that (Lxα)k] = L

(k)
x αk], where we use the symbol
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βk] to denote the truncation, to the first k coordinates, of the infinite sequence β.
Thus, by Proposition 17 (a), we have

Lxα = (λx(α1), λρα1 (x)(α2), · · · , λραk−1
···ρα1 (x)(αk), · · · ).(10)

It follows easily from the fact that each L
(k)
x is an involution - see Proposition 17

(b) - that L2
x = idΩN3

for all x ∈ Ω3; in particular, Lx ∈ S(ΩN3 ) for all x ∈ Ω3. As

in the case of finite k, we define G̃ (resp., G) to be the subgroup of S(ΩN3 ) generated
by {Lx : x ∈ Ω3} (resp., {LxLy : x, y ∈ Ω3} ).

Before proceeding to a discussion of the cases 11 and 15, we pause to record a
simple fact that will be of use in both cases.

Lemma 20. Let (λ, ρ) ∈ P 0
N satisfy the hypothesis of Proposition 17; then for any

k ≥ 1, α ∈ ΩkN , a ∈ ΩN , it is the case that (α, a, a) ∼k+2 (a, a, α).

Proof. By induction (and the easy half of the cancellation rule - see Proposition 17
(e)), it suffices to consider the case k = 1; but if b ∈ ΩN , then by Proposition 17
(d), we have (b, a, a) ∼3 (b, b, b) ∼3 (a, a, b).

Case (11) : λ = (id, id, (12)), ρ = (id, (12), (13).

We break the argument into a sequence of lemmas.

Lemma 21. If α ∈ ΩN3 and l ∈ N, then

αl = 3⇔ (Lxα)l = 3 for all x ∈ Ω3.

Proof. Since λx(3) = 3 for all x ∈ Ω3, this follows from equation (10).

Lemma 22. α ∈ Ωk3, k ≥ 1⇒ (α, 1, 2) ∼k+2 (α, 2, 1).

Proof. Let {a, b} = {1, 2}. Then, since λρa(y) = λy for all y ∈ Ω3, we have, for
any x ∈ Ω3,

Lk+2
x (α, a, b) = (L(k)

x α, λρ−1
α (x)(a), λρaρ−1

α (x)(b))

= (L(k)
x α, λρ−1

α (x)(a), λρ−1
α (x)(b));

since λy{1, 2} = {1, 2} for all y ∈ Ω3, we see that L
(k+2)
x (α, a, b) = (L

(k)
x α, a′, b′)

for some a′, b′ such that {a′, b′} = {1, 2}. It follows that for any n ≥ 1 and
x1, · · · , xn ∈ Ω3,

L(k+2)
x1

L(k+2)
x2

· · ·L(k+2)
xn (α, a, b) = (Lkx1

Lkx2
· · ·Lkxnα, a

′, b′),

where {a′, b′} = {a, b} = {1, 2}. Hence, as ρ1ρ2 = ρ2ρ1 = (12), we see that

ρ
L

(k+2)
x1 L

(k+2)
x2 ···L(k+2)

xn (α,a,b)
= ρLkx1

Lkx2
···Lkxn(α) · (12)

and the lemma is proved.

Lemma 23. If α ∈ Ωk3 , k ≥ 1, there exists α′ ∈ Ωk3 such that α ∼k α′, and α′ has
the form

α′ = (w1, 3, w2, 3, w3, 3, · · · )(11)

where each wi either is non-existent or is one of the following ‘words’ involving only
1 and 2 : wi = (1) or wi = (2) or wi = (1, 2) or wi = (2, 1); further, if some
wi is the ‘empty word’, then so also is every wj for 1 ≤ j ≤ i.
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Proof. Begin by locating all the 3’s in α and writing α in the form given for α′ in
equation (11), with each wi being a word involving only 1 and 2. Then, by Lemma
22, we may assume that if some wi is non-empty, then without going out of the
∼k-equivalence class of α we may assume without loss of generality that wi is a
string of p ( say ) 1’s followed by a string of q (say) 2’s, where p, q ≥ 0. Then, using
Lemma 20, we may even assume that p, q ≤ 1. (Reason : if p = 3 for instance,
then we may move two 1’s all the way to the front, and then those two 1’s may be
replaced by 3’s in view of Proposition 17 (d).)

This shows that α ∼k α′ where α′ is as in equation (11), where each wi is either
empty or (1), (2) or (1, 2). The final assertion, about being able to move all the
empty words all the way to the front, is an easy consequence of Lemma 20.

Definition 24. An element α̃ ∈ Ωk3 will be said to be reduced if α̃ is as in equation
(11) where the ‘words’ wi satisfy the conditions described in Lemma 23.

Two reduced elements will be said to have the same configuration if either
of them can be obtained from the other by ‘flipping’ some of the words to their
‘opposites’, where the words (1) and (2) are considered to be opposites of one
another, as also are the words (1, 2) and (2, 1).

For example, with k = 6, the element α = (1, 2, 1, 3, 2, 1) is not reduced, but
it is equivalent to the reduced word α̃ = (3, 3, 2, 3, 1, 2); the set of reduced words
with the same configuration as α̃ is {(3, 3)} × {1, 2} × {3} × {(1, 2), (2, 1)}.

Lemma 25. Let α ∈ Ωk3 be reduced; suppose there are precisely l non-empty ‘words’
in α; then the set {{α}} of reduced words with the same configuration as α is a set
with precisely 2l elements which is invariant under the action of the group Gk.

Proof. Clearly the set {{α}} has cardinality 2l, and it is invariant under the action
of Gk in view of Lemma 21.

Lemma 26. . Let k = 2n+ 1, and let α0 = (1, 3, 1, 3, · · · , 1, 3, 1) be the unique
reduced element of Ω2n+1

3 with (n+1) coordinates equal to 1. Let X2n+1 = {{α0}}
be the set of reduced elements of Ω2n+1

3 with the same configuration as α0. (Thus
X2n+1 = {β ∈ Ω2n+1

3 : βl = 3⇔ l is even}.) Then,

(a) the cyclic group generated by L
(k)
2 L

(k)
3 acts transitively on X2n+1;

(b) no two distinct elements of X2n+1 are equivalent (with respect to ∼2n+1);
(c) α ∈ Ω2n+1

3 and α ∼2n+1 β ∈ X2n+1 ⇒ α = β.

Proof. (a) It follows from the definitions and equation (10) that if γ ∈ ΩN3 and
x ∈ Ω3, then

Lx(1, 3, γ) = (λx(1), 3, L(13)(x)(γ))

and

Lx(2, 3, γ) = (λx(2), 3, L(123)(x)(γ));

we write out these equations explicitly in the following table, where the entry in
the i-th row and j-th column is Lj(i, 3, γ), for i = 1, 2, j = 1, 2, 3 :

L1 L2 L3

(1, 3, γ) (1, 3, L3γ) (1, 3, L2γ) (2, 3, L1γ)
(2, 3, γ) (2, 3, L2γ) (2, 3, L3γ) (1, 3, L1γ)
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From this table, we deduce the following table which has a similar interpretation:

L1L2 L2L1 L1L3

(1, 3, γ) (1, 3, L3L2γ) (1, 3, L2L3γ) (2, 3, L2L1γ)
(2, 3, γ) (2, 3, L2L3γ) (2, 3, L3L2γ) (1, 3, L3L1γ)

L3L1 L2L3 L3L2

(1, 3, γ) (2, 3, L1L3γ) (2, 3, L3L1γ) (2, 3, L1L2γ)
(2, 3, γ) (1, 3, L1L2γ) (1, 3, L2L1γ) (1, 3, L1L3γ)

In particular, it follows that if we write S = {LxLy : x, y ∈ Ω3, x 6= y} and
X2n = {α ∈ Ω2n

3 : αl = 3 ⇔ l is even}, then for any x, y ∈ Ω3 with x 6= y, and

for any α ∈ X2n, there exists σ in S such that LxLy(α, γ) = (L
(2n)
x L

(2n)
y (α), σ(γ))

for all γ in ΩN3 . For σ in S, say σ = LpLq with p 6= q, we define w(σ) = 1{p,q}(3),
i.e., w(σ) is 1 if 3 ∈ {p, q} and 0 if 3 6∈ {p, q}.

We shall prove (a) by establishing, by induction, the more complicated statement
below:

(a)′: Let α
(2n+1)
0 = (1, 3, 1, 3, · · · , 1, 3, 1) ∈ Ω2n+1

3 ; define

α
(2n+1)
j = (L

(2n+1)
2 L

(2n+1)
3 )jα

(2n+1)
0 ,

for 0 ≤ j ≤ 2n+1, and write α
(2n+2)
j = (α

(2n+1)
j , 3) for 0 ≤ j ≤ 2n+1. For

0 ≤ j < 2n+1, define σ
(n)
j ∈ S by the requirement that

(L2L3)(α
(2n+2)
j , γ) = (α

(2n+2)
j+1 , σ

(n)
j (γ))

for all γ ∈ ΩN3 . Then,

(i) α
(2n+1)
j 6= α

(2n+1)
l for 0 ≤ j < l < 2(n+1);

(ii) α
(2n+2)
2n+1 = α

(2n+2)
0 ; and

(iii)
∑

0≤j<2n+1w(σ
(n)
j ) is an odd integer.

The proof of (a)′ is by induction on n. If n = 0, then α
(1)
0 = (1), α

(1)
1 = (2)

and α
(1)
2 = (1) (since L

(1)
3 = (12)), and the second table above shows that

σ
(0)
0 = L3L1, σ

(0)
1 = L2L1, and so w(σ

(0)
0 ) + w(σ

(0)
1 ) = 1 + 0 = 1; hence the

statement (a)′ is valid for n = 0.
Suppose we know that (a)′ is valid for n. Temporarily fix j, 0 ≤ j < 2n+1. It is

fairly clear that, for any γ in ΩN3 ,

(L2L3)2n+1

(α
(2n+2)
j , γ) = (α

(2n+2)
j , σ

(n)
j−1σ

(n)
j−2 · · ·σ

(n)
0 σ

(n)
2n+1−1σ

(n)
2n+1−2 · · ·σ

(n)
j (γ));

but, by Lemma 25, we must have α
(2n+3)
j = (α

(2n+2)
j , aj) for some aj ∈ {1, 2};

since L
(1)
1 = L

(1)
2 = idΩ3 and L

(1)
3 = (12), it follows from (iii) that

(L
(2n+3)
2 L

(2n+3)
3 )2n+1

(α
(2n+3)
j ) = (α

(2n+2)
j , ãj)

where ãj is the ‘flip’ of aj ( = (12)(aj)).

It follows that {α(2n+3)
l = (L

(2n+3)
2 L

(2n+3)
3 )lα

(2n+3)
0 : 0 ≤ l < 2n+2} is a set of

2n+2 distinct elements. Lemma 25 now implies that this set must be all of X2n+3;

thus the cyclic group generated by L
(2n+3)
2 L

(2n+3)
3 does indeed act transitively on

X2n+3 ; since the order of that cyclic group (viewed as permutations of X2n+3)
must necessarily equal the cardinality of X2n+3, we have proved (i) and (ii) of (a)′.
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The above proof also shows that {α(2n+4)
j , α

(2n+4)
j+2n+1} = {α(2n+2)

j }×{(1, 3), (2, 3)}
for 0 ≤ j < 2n+1. Let us write C

(l)
x,y = #{j : 0 ≤ j < 2l+1, σ

(l)
j = LxLy} for

x, y ∈ Ω3, x 6= y. The first statement of this paragraph, the definition of the

σ
(l)
j ’s, and the last two tables occurring in this proof, show that C

(n+1)
1,3 = C

(n)
3,1 +

C
(n)
3,2 , C

(n+1)
3,1 = C

(n)
1,3 + C

(n)
2,3 , C

(n+1)
2,3 = C

(n)
2,1 + C

(n)
1,2 , C

(n+1)
3,2 = C

(n)
1,2 + C

(n)
2,1 .

Hence,

2n+2−1∑
j = 0

w(σ
(n+1)
j ) = C

(n+1)
1,3 + C

(n+1)
3,1 + C

(n+1)
2,3 + C

(n+1)
3,2

= C
(n)
3,1 + C

(n)
3,2 + C

(n)
1,3 + C

(n)
2,3 + 2(C

(n)
1,2 + C

(n)
2,1 )

≡
2n+1−1∑
j = 0

w(σ
(n)
j ) (mod 2),

thus establishing (iii) of (a)′.
This completes the inductive step and hence the proof of (a)′, and, in particular,

the proof of (a).
(b) The proof is by induction on n. When n = 0, we have X1 = {1, 2}, and

1 6∼1 2 since φ1 = ρ1 = id 6= ρ2 = φ2. Assume that the statement (b) is valid
with n replaced by n− 1, and that n > 1.

Suppose X2n+1 contains two distinct elements which are equivalent (with respect
to ∼2n+1). Since G2n+1 acts transitively on X2n+1 and preserves equivalence, we

may assume that α
(2n+1)
0 ∼2n+1 α

(2n+1)
j for some j with 0 < j < 2n+1; further, we

may assume that j is the smallest positive integer l for which α
(2n+1)
l ∼2n+1 α

(2n+1)
0 .

Since L2L3 preserves equivalence, this minimality assumption is seen to imply that
j | 2n+1; thus j = 2m for some m.

Thus α
(2n+1)
0 ∼2n+1 α

(2n+1)
2m , where 1 ≤ m < n. By (a)′ (ii) with m in place of n,

we see that there exists γ ∈ X2n+1−(2m+2) such that α
(2n+1)
j = (α

(2m+2)
0 , γ). An

appeal to the cancellation law - cf. Proposition 17(e) - and the induction hypothesis
results in the desired contradiction, thus completing the proof of (b).

(c) Suppose α ∈ Ω2n+1
3 and α ∼2n+1 β ∈ X2n+1. We shall prove that α ∈ X2n+1

and appeal to (b). Let α̃ ∈ Ω2n+1
3 be a reduced element such that α ∼2n+1 α̃

and α̃ is constructed from α as in the proof of Lemma 23. Since G2n+1 preserves
∼2n+1, and since the G2n+1-orbit of β contains 2n+1 elements which are pairwise
inequivalent, it follows that the G2n+1-orbit of α̃ contains at least 2n+1 elements.
It follows easily now from Lemma 25 that α̃ ∈ X2n+1. The manner in which α̃
was constructed from α in the proof of Lemma 23 shows that α must have been in
X2n+1 to start with.

Corollary 27. Let α
(2n)
0 = (1, 3, 1, 3, · · · , 1, 3) and β

(2n)
0 = (3, 1, 3, 1, · · ·3, 1).

Let X2n (resp. Y2n) denote the set of reduced elements of the same configuration

as α
(2n)
0 ( resp., β

(2n)
0 ). Then α ∼2n α̃ ∈ X2n ⇒ α = α̃ and β ∼2n β̃ ∈ Y2n ⇒

β = β̃.

Proof. Suppose α ∼2n α̃ ∈ X2n. Then (α, 1) ∼2n+1 (α̃, 1) ∈ X2n+1, and so Lemma
26 implies that (α, 1) ∈ X2n+1, whence α ∈ X2n and (α, 1) = (α̃, 1), and hence
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α = α̃. The proof of the second assertion is similar; just append a 1 at the
beginning.

We are now ready to state the main fact about this example.

Theorem 28. The principal graph, in this case, is infinite.

Proof. Suppose a subfactor N ⊂M has finite principal graph G ; let the set of even
(resp., odd) vertices be denoted by G(0) (resp., G(1)).

If N = M−1 ⊂M = M0 ⊂M1 ⊂M2 ⊂ · · · is the tower of the basic construc-
tion, then (see [O], [P]) there exist identifications N ′∩M2k

∼=
⊕

v∈G(1) Mn2k+1(v)(C)
and N ′ ∩M2k−1

∼=
⊕

v∈G(0) Mn2k(v)(C), where nl(v) denotes the number of paths

in G of length l which start at ∗ in G(0) and end in v. In particular, for any
v ∈ G(1), limk→∞ n2k+1(v) = ∞ (and for any v ∈ G(0), limk→∞ n2k+1(v) = ∞).

In particular if N ⊂ M is a subfactor such that for each k ≥ 1 there exists a
minimal central projection pk in N ′∩Mk such that (N ′∩Mk)pk ∼= C, then N must
be of infinite depth.

In view of Proposition 10, Lemma 26(c) and Corollary 27, the subfactor we are
concerned with in Case 11 satisfies the property of the preceding paragraph, and
the proof of the theorem is complete.

Without going through the computations, we just show what the subgraph of the
principal graph induced by the set of vertices at distance at most 4 from ∗ looks like.
(This amounts to computing the Bratteli diagrams for the tower {N ′∩Mk}−1≤k≤3.)
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It is our belief that the infinite principal graph is a tree, and we have a guess as
to its description, but we shall say no more about this case.

Case (15) : λ = (id, (12), (13)) = ψ, ρ = (id, id, (12)) = φ.

The analysis of this case will also be broken into a series of lemmas.

Lemma 29. (a) ρα(3) = 3 and ρα{1, 2} = {1, 2} for all a ∈ Ωk3 , k ≥ 1;
(b) L3 = (13)× (13)× (13)× · · · .

Proof. (a) Clear.
(b) Since λρ−1

α (3) = λ3 = (13) for all α ∈ Ωk3 , k ≥ 1, and since

(L3α)k = λρ−1
(α1,··· ,αk−1)(3)(αk),

the conclusion follows.

Lemma 30. Let α ∈ ΩN3 be written in the form α = (w1, 3, w2, 3, w3, 3, · · · ) where
each wi is a (possibly empty) sequence of 1’s and 2’s. Then

L1(α) = (w1, 3, w̃2, 3, w3, 3, w̃4, 3, · · · ) , L2(α) = (w̃1, 3, w2, 3, w̃3, 3, w4, 3, · · · )

where w̃ denotes the word obtained by changing every 1 in w to 2 and changing
every 2 in w to 1. In particular,

L1L2 = L2L1 = (12)× (12)× (12)× · · ·

Proof. Since ρα{1, 2} = {1, 2} for all α ∈ Ωk3, k ≥ 1, and since λx(3) = 3 for
x = 1, 2, it is clear that if x ∈ {1, 2} and αl = 3, then also (Lx(α))l = 3.

Since ρα = (12)l3(α), it follows that if {l : αl = 3} = {n1, n2, · · · } where
n1 < n2 < · · · , then

ρ(α1,··· ,αl) =

{
(12), if n2p+1 ≤ l < n2p+2, p = 0, 1, 2, · · · ,
idΩ3 , if n2p ≤ l < n2p+1, p = 0, 1, 2, · · · ,

where we write n0 = 0.
The conclusion of the lemma follows from the foregoing fact and equation (10).

Corollary 31. There exists an embedding χ : S3 7→ G̃ such that χ((13)) = L3

and χ((12)) = L1L2. Furthermore, G̃ = G.

Proof. The first assertion is clear, in view of the preceding lemmas. For the second,
note that by definition G is the subgroup of G̃ consisting of elements of G which
are expressible as a product of an even number of Lx’s. Notice, however, that
L1L2L3 = χ((132)) is an element of order 3, and hence (L1L2L3)3 is a product
of nine Lx’s which is equal to the identity. Hence, for any x in Ω3, we have
Lx = Lx(L1L2L3)3 ∈ G̃; hence G = G̃.

Before proceeding further, let us introduce the notation Xk = {α ∈ Ωk3 : αi 6=
αi+1 for 1 ≤ i < k}. ( We shall not, while discussing Case 15, need the set denoted
by Xk used while discussing Case 11; so no confusion should arise.)

Recall Corollary 18(b), which says that Xk is stable under Gk. We now come to
a crucial step in our analysis.
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Lemma 32. Fix an integer k ≥ 1.
(a) #Xk = 3 · 2k−1.

(b) Let γ
(k)
0 denote the restriction to Xk of L

(k)
1 L

(k)
3 , and let Γ

(k)
0 denote the

cyclic subgroup generated by γ
(k)
0 . Then,

(i) #Γ
(k)
0 = 2k;

(ii) Xk splits into two orbits, B
(k)
j , j = 1, 2, under the action of Γ

(k)
0 , where

B
(k)
1 = {α ∈ Xk : α1 ∈ {1, 3}}

and

B
(k)
2 = {α ∈ Xk : α1 = 2};

(c) Gk acts transitively on Xk.
(d) α, β ∈ Xk and α 6= β ⇒ α 6∼k β.

Proof. (a) Trivial.
(b) As in the proof of Lemma 26, we start with a table, which has the same

interpretation as the tables occurring in the proof of that lemma; here β ∈ ΩN3 :

L1 L2 L3 L1L3 L2L3

(1, β) (1, L1β) (2, L2β) (3, L3β) (3, L2L3β) (3, L1L3β)
(2, β) (2, L1β) (1, L2β) (2, L3β) (2, L1L3β) (1, L2L3β)
(3, β) (3, L2β) (3, L1β) (1, L3β) (1, L1L3β) (2, L2L3β)

The last two columns of the table show that: if we write S = {L1L3, L2L3},
and if σ ∈ S - say σ = LxLy, with (x, y) ∈ {(1, 3), (2, 3)} - then for any k ≥ 1 and
any α ∈ Ωk3 , there exists a uniquely defined σ′ ∈ S such that

σ(α, β) = (L(k)
x L(k)

y (α), σ′(β))

for all β ∈ ΩN3 . Set w(L1L3) = 1 and w(L2L3) = 0.
We shall need the above observation in the statement (and proof) of the following

crucial assertion:

Assertion(∗): Fix a positive integer k. Then there exists α
(k)
0 in Xk with first

coordinate equal to 1, with the following properties: define α
(k)
j = (γ

(k)
0 )j(α

(k)
0 )

for 1 ≤ j ≤ 2k, and let σ
(k)
j be the uniquely defined element of S such that

(L1L3)(α
(k)
j , β) = (α

(k)
j+1, σ

(k)
j (β)) for all β ∈ ΩN3 for 0 ≤ j < 2k. Then, the

following statements are valid:

α
(k)
j 6= α

(k)
l for 0 ≤ j < l < 2k;(∗ i)

α
(k)

2k
= α

(k)
0 ;(∗ ii)

2k−1∑
j = 0

w(σ
(k)
j ) is an odd integer.(∗ iii)

We prove Assertion(∗ ) by induction on k. When k = 1, we have X1 = {1, 2, 3}
and γ

(1)
0 = (13); put α

(1)
0 = (1); then α

(1)
1 = (3) and α

(1)
2 = (1); the preceding
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table shows that σ
(1)
0 = L2L3 and σ

(1)
1 = L1L3, whence w(σ

(1)
0 )+w(σ

(1)
1 ) = 0+

1 = 1.
Suppose Assertion(∗ ) is valid for some integer k. Note that for any β in ΩN3 , we

have, by the induction hypothesis,

(L1L3)2k(α
(k)
0 , β) = (α

(k)
0 , σ

(k)

2k−1
σ

(k)

2k−2
· · ·σ(k)

0 (β)).

Observe that L
(1)
1 L

(1)
3 = (13), while L

(1)
2 L

(1)
3 = (132); hence any product

πm · · ·π0, where each πj is either L
(1)
2 L

(1)
3 or L

(1)
1 L

(1)
3 , is an even or odd permutation

according as w is even or odd, where w = #{i : 0 ≤ i ≤ m,wi = L
(1)
1 L

(1)
3 }. Let

πj ∈ S3, 0 ≤ j < 2k, be defined by πj = L
(1)
x L

(1)
y if σ

(k)
j = LxLy. Then, by the

statement (∗ iii), it follows that π = π2k−1π2k−2 · · ·π0 is an odd permutation in
S3; i.e.,π is a transposition. Let a0 ∈ {1, 2, 3} be such that a0 is moved by π, and

such that a0 is distinct from the last coordinate of α
(k)
0 . Put α

(k+1)
0 = (α

(k)
0 , a0).

Then α
(k+1)
0 ∈ Xk+1, the first co-ordinate of α

(k+1)
0 is 1, and, more importantly,

(L
(k+1)
1 L

(k+1)
3 )2k(α

(k+1)
0 ) = (α

(k)
0 , ã0)

where ã0 = π(a0); hence (γ
(k+1)
0 )2k(α

(k+1)
0 ) 6= α

(k+1)
0 .

For this choice of α
(k+1)
0 , let α

(k+1)
j , 1 ≤ j ≤ 2k+1, and σ

(k+1)
j , 0 ≤ j ≤ 2k+1, be

defined as in Assertion(∗ ). It must be clear that, for 0 ≤ j < 2k, α
(k+1)
j = (α

(k)
j , aj)

for some aj ∈ Ω3; by choice, we have α
(k+1)

2k
= (α

(k)
0 , ã0) with ã0 6= a0. It follows

easily that α
(k+1)

2k+j
= (α

(k)
j , ãj) for some ãj ∈ Ω3, 0 ≤ j < 2k; since α

(k+1)
0 6= α

(k+1)

2k

and since γ
(k+1)
0 is injective, it follows that aj 6= ãj for 0 ≤ j < 2k. Thus, we have

proved (∗ i) for k + 1.

As for (∗ ii), since (L
(k)
1 L

(k)
3 )(α

(k)

2k−1
) = α

(k)
0 , it must be the case that

(L
(k+1)
1 L

(k+1)
3 )(α

(k+1)

2k+1−1
) = (L

(k+1)
1 L

(k+1)
3 )(α

(k)

2k−1
, ã2k−1) = (α

(k)
0 , b)

for some b in Ω3. But since Xk+1 is stable under Gk, we know that a and ã are

the only two elements of Ω3 such that (α
(k)
0 , a), (α

(k)
0 , ã) ∈ Xk+1. Hence b ∈ {a, ã}.

Since γ
(k+1)
0 is injective and γ

(k+1)
0 (α

(k+1)

2k−1
) = (α

(k)
0 , ã), it must be that b = a;

i.e., α
(k+1)

2k+1 = α
(k+1)
0 , as desired.

Now for (∗ iii). For l = k, k + 1, x ∈ Ω3 and σ ∈ S( = {L1L3, L2L3}), define

C(l)
x,σ = #{j : 0 ≤ j < 2l, (α

(l)
j )l = x, σ

(l)
j = σ}

(where, of course, (α
(l)
j )l denotes the l-th coordinate of α

(l)
j ).

To make the exposition clear, suppose some α
(k)
j ends in 2 and σ

(k)
j = L1L3.

Then, the proof of (∗ i) shows that {α(k+1)
j , α

(k+1)

2k+j
} = {α(k)

j }×{1, 3}. The column

indexed by L1L3 and the rows indexed by (1, β) and (3, β) in the table at the start

of this proof show then that {σ(k+1)
j , σ

(k+1)

2k+j
} = {L2L3, L1L3}.

More generally, consider the bipartite graph Λ with the sets Λ(0) and Λ(1) of
even and odd vertices both being indexed by Ω3 × S: if (x, σ)0 is an even vertex
in Λ, let Ω3 \ {x} = {y, z}; if σ(y, β) = (ỹ, σ1(β)) and σ(z, β) = (z̃, σ2(β)), for
arbitrary β ∈ ΩN3 , and appropriate σ1, σ2 ∈ S, then(x, σ)0 is joined, in the graph Λ,
to the odd vertices (y, σ1)1 and (z, σ2)1. Thus the graph is
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Figure B

A little thought and an inspection of the above graph shows that

C
(k+1)
1,L1L3

= C
(k)
2,L2L3

+ C
(k)
3,L2L3

, C
(k+1)
1,L2L3

= C
(k)
2,L1L3

+ C
(k)
3,L1L3

,

C
(k+1)
2,L1L3

= C
(k)
1,L1L3

+ C
(k)
3,L1L3

, C
(k+1)
2,L2L3

= C
(k)
1,L2L3

+ C
(k)
3,L2L3

,

C
(k+1)
3,L1L3

= C
(k)
1,L1L3

+ C
(k)
2,L1L3

, C
(k+1)
3,L2L3

= C
(k)
1,L2L3

+ C
(k)
2,L2L3

.

These relations hold for all k.
Thus, the C

(k)
x,σ ’s are defined by the above recursion relations, and the initial

conditions C
(1)
1,L2L3

= C
(1)
3,L1L3

= 1, C
(1)
x,σ = 0 otherwise. We claim that for all

k ≥ 1 the number C
(k)
1,L1L3

+C
(k)
2,L2L3

+C
(k)
3,L2L3

is even, andC
(k)
1,L1L3

+C
(k)
2,L1L3

+C
(k)
3,L1L3

is odd.
These are true for k = 1; if they are known to be true for k, then the foregoing

recursion relations show that

C
(k+1)
1,L1L3

+ C
(k+1)
2,L2L3

+ C
(k+1)
3,L2L3

= 2(C
(k)
1,L2L3

+ C
(k)
2,L2L3

+ C
(k)
3,L2L3

)

= even integer

and

C
(k+1)
1,L1L3

+ C
(k+1)
2,L1L3

+ C
(k+1)
3,L1L3

= (C
(k)
1,L1L3

+ C
(k)
2,L1L3

+ C
(k)
3,L1L3

) + (C
(k)
1,L1L3

+ C
(k)
2,L2L3

+ C
(k)
3,L2L3

)

= odd integer (by the induction hypothesis).

In particular we have proved that

2k+1−1∑
j = 0

w(σ
(k+1)
j ) ≡ C(k+1)

1,L1L3
+ C

(k+1)
2,L1L3

+ C
(k+1)
3,L1L3

(mod 2),

which is odd, and the proof of Assertion(∗ ) is complete.
To proceed with the proof of the lemma, notice from our table that (L1L3)(2, β)

= (2, L1L3β) for all β in ΩN3 . Hence, in the notation of the statement (b) in the

lemma, the group Γ
(k)
0 leaves B

(k)
2 (and hence B

(k)
1 = Xk \B(k)

2 ) invariant. Since

#B
(k)
1 = 2k, it follows from Assertion(∗ ) that Γ

(k)
0 acts transitively on B

(k)
1 for

each k.
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However, B
(k)
2 = {2} × B(k−1)

1 , and since γ
(k)
0 acts on B

(k)
2 = {2} × B(k−1)

1

as id × γ(k−1)
1 , the preceding conclusion about B

(k)
1 , for each k, now shows that

γ
(k)
0 |

B
(k)
2

has order 2k−1. This completes the proof of (b).

(c) Notice that, by Lemma 30, (L
(k)
1 L

(k)
2 )(1 3 1 3 · · · ) = (2 3 2 3 · · · ); this

observation, together with (b), completes the proof of (c).

(d) Since the cyclic group Γ
(k)
0 acts transitively on each of B

(k)
1 and B

(k)
2 , we

can repeat the argument given to prove Lemma 26 (b) to see that for j = 1, 2,

no two distinct elements of B
(k)
j are equivalent (with respect to ∼k) . Since Γ

(k)
0

preserves equivalence, since B
(k)
1 (resp., B

(k)
2 ) consists of 2k (resp., 2k−1) inequiv-

alent elements, no element of B
(k)
1 can be equivalent to B

(k)
2 . (The argument for

this is exactly like the proof of Lemma 26 (c).) The proof of the lemma is finally
complete.

In the sequel, if a ∈ Ω3, we shall find it convenient to denote by a(k) the constant
sequence in Ωk3 with all coordinates equal to a. In the proof of the next lemma, we
shall need the obvious consequence of Proposition 17(d) that (α, a(m)) ∼ (α, b(m))

for any α ∈ Ω
(l)
3 , l ≥ 1, and any a, b ∈ Ω3, provided m is even.

Lemma 33. Let k ≥ 1 and β ∈ Ωk3 . Then there exist a unique integer l ≤ k and
an element α ∈ Xl such that:

(i) β ∼k (α, α
(k−l)
l ); and

(ii) 0 ≤ l ≤ k and l ≡ k (mod 2), where the possibility l = 0 is interpreted to
mean that k is even and β ∼k 1(k) ∼k 2(k) ∼k 3(k).

Proof. Existence. It follows easily from Lemma 20 and Proposition 17 (d) that

there exist an l ≤ k and α ∈ Xl such that β ∼k (α, α
(k−l)
l ). If this l were such that

l ≡ k (mod 2 ), we are done; if (k − l) is odd, and l = 0, then β ∼k 1(k) with k
odd, and we may just as well choose l = 1 and α = (1); if (k − l) is odd and
l ≥ 1, then

β ∼k (α1, · · ·αl, α(k−l)
l ) = (α1, · · ·αl−1, α

(k−l+1)
l ) ∼k (α1, · · ·αl−1, α

(k−l+1)
l−1 ),

and the proof of existence is complete.

Uniqueness. Suppose β ∼k β′ = (α, α
(k−l)
l ), with l, α as in the statement of

the lemma. Corollary 18(ii) implies that {π(β′) : π ∈ Gk} ⊆ {(γ, γ(k−l)
l : γ ∈ Xl};

however, Lemma 32 (c) and Corollary 18 (ii) imply that the above inclusion is
actually an equality.

Since (k− l) is even, observe that, in view of Proposition 17 and Lemma 32 (d),
for γ, κ ∈ Xl, and m even, we have:

(γ, γ
(m)
l ) ∼l+m (κ, κ

(m)
l )⇒ (γ, γ

(m)
l ) ∼ (κ, γ

(m)
l )

⇒ γ = κ.
(12)

Suppose β ∼k β′ = (α, α
(k−l)
l ) as above.

Case (i) : k is even and l = 0. Then β ∼k 1(k) ∼k 2(k) ∼k 3(k). Since
{1(k), 2(k), 3(k)} is a Gk-orbit, and since Gk preserves ∼k, we find that all elements
in the Gk-orbit of β must be equivalent;
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Case (ii) : l 6= 0. Then the Gk-orbit of β′ consists of precisely 3 · 2l−1 elements,
which are pairwise inequivalent. Hence, the Gk-orbit of β meets precisely 3 · 2l−1

equivalence classes.

In any case, we see that if β, β′, l and α are as above, the Gk-orbit of β meets
precisely nl distinct equivalence classes, where

nl =

{
1, if l = 0,
3 · 2l−1, if l ≥ 1.

Since l 7→ nl is clearly an injective function, we see that β determines l uniquely.
The proof is now complete in view of equation (12).

If k is a positive integer, then the number of integers l satisfying 0 ≤ l ≤ k and
l ≡ k (mod 2) is given by {k/2} where {x} is the smallest integer which is strictly
greater than x. ( Thus { 2n+1

2 } = { 2n
2 } = n+ 1. )

Proposition 34. Let k be a positive integer, and let Ik = {l : 0 ≤ l ≤ k, l ≡
k (mod 2)}. For each l in Ik and α ∈ Xl, define E

(k)
l,α = [(α, α

(k−l)
l )]∼k = {β ∈

Ωk3 : β ∼k (α, α
(k−l)
l )} ( with the obvious convention that if k is even, then

E
(k)
0,· = {β ∈ Ωk3 : β ∼k 1(k)} ). Then,

(a) {E(k)
l,α : l ∈ Ik, α ∈ Xl} is the partition of Ωk3 into ∼k-equivalence classes.

(b) For each fixed l in Ik, the group Gk acts transitively on the collection O
(k)
l =

{E(k)
l,α : α ∈ Xl} of equivalence classes, and hence {O(k)

l : l ∈ Ik} is the collection
of Gk- orbits of equivalence classes.

(c) {σ ∈ Gk : σ(E
(k)
l,α ) = E

(k)
l,α } = {σ ∈ Gk : σ(α) = α} for each l ∈ Ik and

α ∈ Xl.

Proof. (a) is just a reformulation of Lemma 33.

(b) For fixed l in Ik, let Rl = {(α, α(k−l)
l ) : α ∈ Xl}. It follows from Corollary

18 and Lemma 32 (c) that Gk acts transitively on Rl. This proves (b).

(c) Notice that E
(k)
l,α ∩ Rl = {(α, α(k−l)

l )}, thanks to Lemma 33. Since Rl is

stable under Gk, (c) is proved.

Definition 35. Fix a positive integer k. Define the following objects:

(a) πk : G 7→ S(Ωk3) is the unique homomorphism such that πk(Lx) = L
(k)
x for

all x in Ωk3 ;
(b) α(k) = (1, 3, 1, 3, · · · ) ∈ Ωk3 ;
(c) Hk = {σ ∈ G : πk(σ)(α(k)) = α(k)}; we shall find it convenient to also

write H0 = G;

(d) for 0 ≤ l ≤ k, l ≡ k (mod 2) , π
(k)
l : Hl 7→ S(E

(k)

l,α(l)) is given by π
(k)
l (σ) =

πk(σ)|
E

(k)

l,α(l)

.

Recall that, by Proposition 34(c), the set E
(k)

l,α(l) is stable under Hl.

Notice that G acts transitively on Xk ( via σ 7→ πk(σ)|Xk
) and that the isotropy

subgroup of the point α(k) is precisely Hk; hence [G : Hk] = 3 · 2k−1 for k ≥ 1.
Also, clearly, Hk ⊇ Hk+1. Thus we see that {Hk}∞k = 1 is a decreasing sequence of
subgroups of G such that for k ≥ 0 we have

[Hk : Hk+1] =

{
3, if k = 0,
2, if k ≥ 1.
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Also, in view of Proposition 10 and Proposition 34, we may deduce that the k-th
relative commutant is given in this case by

Ck ∼=
⊕
l∈Ik

π
(k)
l (Hl)

′

(where we view π
(k)
l as a unitary (permutation) representation in the natural man-

ner).
In order to describe the inclusion of Ck into Ck+1 ( via x 7→ x⊗ 1 ), we need the

next result.

Lemma 36. With the preceding notation, we have, for k ≥ 1 and l ∈ Ik,

π
(k)
l = ResHl−1↓Hl π

(k−1)
l−1 ⊕ IndHl+1↑Hl π

(k−1)
l+1 ,

where, of course, Res and Ind denote restriction and induction, and we adopt the
convention that the first (resp., second) summand above is non-existent when l = 0
( resp., k = l).

Proof. In the following, if α ∈ Ωk3 , we write [α]k = {α′ ∈ Ωk3 : α ∼k α′}.
Begin by observing the following consequence of the cancellation law (cf. Propo-

sition 17(e)) : if β ∈ Ωk+1
3 and x ∈ Ω3, then either [β]k+1 ∩ ( Ωk3 × {x}) = ∅ or

there exists an α in Ωk3 such that [β]k+1 ∩ ( Ωk3 × {x}) = [α]k × {x}. Thus, for
instance, if k ≥ 2 and if k is even, then

E
(k)
0,· =

∐
a∈Ω3

E
(k−1)
1,(a) × {a}.

Next, suppose k ≥ 2, l ∈ Ik and 0 < l < k; suppose β = (α, a) ∈ Xl, - where
α ∈ Xl−1 and a ∈ Ω \ {αl−1}. Then observe that

(α, a, a(k−l)) = (α, a(k−l), a) ∼ (α, α
(k−l)
l−1 , a);

similarly, for any b ∈ Ω3 \ {a}, observe that

(α, a, a(k−l)) ∼ (α, a, b(k−l)) = (α, a, b, b(k−l−1)).

Deduce that

E
(k)
l,(α,a) = (E

(k−1)
l−1,α × {a})q

⋃
b∈Ω3\{a}

(E
(k−1)
l+1,(α,a,b) × {b}).

In view of Lemma 33 we also have, for β = (α, a) ∈ Xk, α ∈ Xk−1, a ∈ Ω3,

E
(k)
k,(α,a) = E

(k−1)
k−1,α × {a}.

Recall our notation α(l) = (1, 3, 1, 3, · · · ) ∈ Xl. Let us also simply write E
(k)
l

for E
(k)

l,α(l) . The preceding equations now imply that

E
(k)
l = (E

(k−1)
l−1 × {al})q

⋃
b∈Ω3\{al}

(E
(k−1)

l+1,(α(l),b)
× {b})(13)

where al is 1 or 3 according as l ( and hence k ) is odd or even, with the under-
standing that if l = 0 then the first term on the right side does not feature and

the second term is interpreted as
⋃
b∈Ω3

(E
(k−1)
1,(b) ×{b}), and if l = k, only the first

term survives.
We prove the lemma by considering several cases (to account for the ‘boundary’

terms).
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Case (i) : k = l. Note, by definition, that π
(k)
k is the trivial ( 1- dimensional )

representation of Hk ( since E
(k)
k is a singleton, by Lemma 33). The conclusion of

the lemma is trivially valid, since the restriction of the trivial representation is the
trivial representation.

Case (ii) : 0 < l < k. Notice first that if α, α′ ∈ Ωk3, and a, b, x ∈ Ω3, if α ∼k
α′ and L

(k+1)
x (α, a) = (L

(k)
x (α), b), then L

(k+1)
x (α′, a) = (L

(k)
x (α′), b) and

L
(k)
x (α) ∼k L(k)

x (α′); hence if σ ∈ G is arbitrary and πk+1(σ)(α, a) = (πk(σ)(α), b),
then πk+1(σ)(α′, a) = (πk(σ)α′, b) and πk(σ)(α) ∼k πk(σ)(α′). In particular, if
πk+1(σ)(α, a) = (α, a), then πk+1(σ) maps [α]k × {a} into itself.

With al as in equation (13), note that Ω3 \ {al} = {al+1, 2}. By definition, the

representation π
(k)
l of Hl acts on a vector space V (l) with basis indexed by E

(k)
l .

Let V
(l)

1 (resp., W
(l)
1 , resp.,W

(l)
2 ) be the subspace of V spanned by basis vectors

indexed by E
(k−1)
l−1 × {al} (resp., E

(k−1)

l+1,(α(l),al+1)
× {al+1}, resp., E

(k−1)

l+1,(α(l),2)
× {2}).

The preceding paragraph shows that V
(l)

1 is an invariant subspace for π
(k)
l (and

consequently, so is W
(l)
1 ⊕W (l)

2 ). In fact, we can even deduce from the previous

paragraph that the subrepresentation of π
(k)
l given by V

(l)
1 can be identified with

ResHl−1↓Hl(π
(k−1)
l−1 ).

Notice next that [Hl : Hl+1] = 2; in fact, it follows from Lemma 32 (b) that

(L1L3)2l ∈ Hl \Hl+1 and that necessarily (L
(l+1)
1 L

(l+1)
3 )2l(α(l), 2) = (α(l), al+1).

Hence π
(k)
l ((L1L3)2l)(W

(l)
1 ) = W

(l)
2 . On the other hand, it is clear that π

(k)
l (Hl+1)

leaves W
(l)
1 invariant and that the associated representation of Hl+1 is identifiable

with πk−1
l+1 . Since, clearly, π

(k)
l ((L1L3)2lHl+1)(W

(l)
1 ) = W

(l)
2 , it follows easily that

the subrepresentation of π
(k)
l afforded by the invariant subspace W

(l)
1 ⊕ W

(l)
2 is

identifiable with IndHl+1↑Hl(π
(k−1)
l+1 ).

Case (iii) : l = 0 (and k is even). In this case, as has already been noticed,

E
(k)
0,· = (E

(k−1)
1,(1) ×{1})q (E

(k−1)
1,(2) ×{2})q (E

(k−1)
1,(3) ×{3}). The representation π

(k)
0

of H0( = G) acts on a vector space V
(k)

0 with basis indexed by
∐3
i = 1(E

(k−1)
1,(i) ×{i}).

Let W
(k−1)
i be the subspace spanned by basis vectors indexed by (E

(k−1)
1,(i) × {i}),

for i = 1, 2, 3. The definitions show that H0 =
∐3
i = 1LiH1 is the decomposition

of H0 into H1-cosets (since π1(L1) = idΩ3 , π1(L2) = (12) and π1(L3) = (13)).

For i = 1, 2, 3, note that π
(k)
0 (Li)(1

(k)) = i(k), from which it follows thhat

π
(k)
0 (Li)(W

(k−1)
1 ) = W

(k−1)
i . Also it is clear that W

(k−1)
1 is invariant under

π
(k)
0 (H1) ( since πk(H1)(1(k)) = 1(k) ), and that the subrepresentation of H1

afforded by W
(k−1)
1 is seen to be identifiable with π

(k−1)
1 . It follows that we may

identify π
(k)
0 with IndH1↑H0(π

(k−1)
1 ).

All the pieces are now in place for our final result.

Theorem 37. Let H0 ⊇ H1 ⊇ H2 ⊇ · · · be the tunnel of subgroups described in
Definition 35. The principal graph for the subfactor given by this case (Case 15)
has the following description:
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Consider the (infinite) bipartite graph G̃ with the sets G̃(0) (resp., G̃(1)) of even

(resp., odd) vertices being indexed by
∐∞
k = 0 Ĥk (where Ĥ denotes the ‘unitary

dual’ of the (discrete) group H), and with the even vertex (σ, l)0 ( i.e., σ ∈ Ĥl)
connected only to odd vertices of the form (π, l ± 1)1, the number of bonds joining
(σ, l)0 to (π, l− 1)1 (resp., (π̃, l+ 1)1) being given by the multiplicity with which the
irreducible representation σ of Hl (resp., π̃ of Hl+1) features in the restriction to
Hl (resp., Hl+1) of the representation π of Hl−1 (resp., σ of Hl).

Let G be the connected component in G̃ of (1, 0)0, where (1, 0)0 denotes the trivial

representation of H0 (viewed as an even vertex of G̃). Then G is the desired principal
graph.

Proof. The proof of the theorem follows from the foregoing analysis of this case,
coupled with the general Proposition 10, and the verification that the identifications
we have made are compatible with the various natural inclusions.

Without going through the details of the analysis, we just draw the subgraph
of the principal graph induced by the set of vertices at distance at most 5 from ∗
(which is (1, 0)0 in the notation of Theorem 37).

In this case, also, we believe the principal graph is actually a tree, but do not as
yet have a proof of that. We do, however, make the obvious remark that the graph
is certainly infinite. This is clear from Theorem 37, and can also be deduced from
Lemma 32 and Lemma 33 in exactly the same manner in which infinite depth was
proved in Case (11).

9. Concluding remarks

(a) It is true, in general, that if u = ((uαaβb )) is a biunitary Nk × Nk matrix,

then the transposed matrix ut is also biunitary and in fact there is an isomor-
phism of pairs (R,Rut) ∼= (R1, R), where Ru ⊆ R ⊆ R1 is the basic construction;
thus ut should be thought of as the biunitary matrix that is ‘dual’ to u. In the spe-
cial case when u is the biunitary permutation matrix corresponding to π ↔ (ρ, λ),
it follows that ut corresponds to (φ−1, ψ−1). It is seen from the list in §6, and the
manner in which we obtained the reduction to the 18 special cases in §6, that each
of the biunitary matrices coming from the list is equivalent to its dual; thus, if u is
any biunitary permutation matrix in U(9), then the subfactor Ru ⊆ R is self-dual
- meaning that (R,Ru) ∼= (R1, R), where Ru ⊆ R ⊆ R1 is the basic construction.
The following question is natural: Is it true that for any biunitary permutation
matrix u ∈ U(Nk), the associated subfactor Ru ⊆ R is always self-dual? (More
generally, the authors do not know of a subfactor arising from a vertex model - as in
§2 - which is not self-dual, and would like to see an example of this phenomenon.)

(b) This remark concerns what we might call the Cayley graph of a group or a
group-dual corresponding to a subset Γ. ( See [P1].) Suppose G (resp., K ) is a
discrete (resp., compact) group, and suppose Γ is a (finite, in all cases of interest

to us) subset of G (resp., K̂, the ‘unitary dual’ of K), possibly with repetitions.

The Cayley graph of G (resp., K̂) with respect to Γ is the bipartite graph G, which

we shall denote by C(G,Γ) (resp., C(K̂,Γ)), described as follows: let G̃ be the

bipartite graph whose sets of even and odd vertices, denoted by G̃(0) and G̃(1),
are given by G̃(i) = G × {i} ( resp., K̂ × {i} ), for i = 1, 2. Adjacency in

G̃ is defined by the prescription that if (gi, i) ∈ G̃(i) (resp., (πi, i) ∈ G̃(i)), then
the number of bonds joining (g0, 0) to (g1, 1) (resp., (π0, 0) to (π1, 1)) is given by
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Figure 15

#{γ ∈ Γ : g1 = g0γ} (resp.,
∑
ρ∈Γ〈π0 ⊗ ρ, π1〉). The Cayley graph C(G,Γ) (resp.,

C(K̂,Γ)) is the connected component in G̃ of (1, 0), where 1 denotes the identity
element of G (resp., the trivial representation of K).

These were precisely the sort of graphs encountered in §5, Cases (1) and (2). By
a somewhat peculiar coincidence, each of the 15 finite principal graphs encountered,
when N = 3, is of the above sort. We list below the group/group-dual and the
set Γ for each of the 15 cases in the following tabular form, for reasons that will
become transparent when we make the next remark.

We do not, as yet, know of an example of a finite principal graph for a subfactor
arising from a permutation biunitary matrix ( vertex model) which is not the Cayley
graph of a group or a group-dual. The reason for our including Case (3) in §5 was
to indicate that surely such examples must exist.

In the process of our finding the group for which a certain graph was a Cayley
graph, we made a fairly simple observation which might be of interest to specialists:
in order that a finite principal graph be a Cayley graph of a group, it is necessary
and sufficient that the principal graph be regular - meaning that all its vertices
have the same degree.
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(c) This remark concerns the possible relation between the subfactors constructed
out of a pair of biunitary matrices which are adjoints of one another. For biunitary
permutation matrices, this means the subfactors arising from (ρ, λ) and (ψ−1, φ−1).
For the purposes of this remark, it will be convenient to call the biunitary permu-
tation (ψ−1, φ−1) the transpose of the biunitary permutation (ρ, λ).

The reason for Table C is the following: two permutation biunitary matrices
which are equivalent to transposes of one another (and occur in our list) and which
yield finite principal graphs are listed in the same line of the table. A line in the
table consists of a single case only when that (ρ, λ) is such that (ρ, λ) ∼ (ψ−1, φ−1)
in the sense of §6. Note that, whenever a line in the table has two cases listed in
it, the principal graphs in those two cases are of the form C(G,Γ1) and C(Ĝ,Γ2)
for some finite group G and some sets Γ1, Γ2.

It is also worth noting that the two infinite principal graphs discussed in §8 arise
from a pair of biunitary permutation matrices which are transposes of one another.
These observations prompt the following question.
Question: Suppose u ∈MN (C)⊗Mk(C) is a biunitary matrix. Let N (resp., N∗)
be the subfactor of the hyperfinite factor constructed from u (resp., u∗).

Does N have finite depth precisely when N∗ does ?
Note that N∗ does not inherit irreducibility from N. (This is clear from the two

infinite depth examples, as also from the Cayley graph examples.)
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