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Abstract.  We obtain (two equivalent) presentations — in terms of generators and
relations — of the planar algebra associated with the subfactor corresponding to (an outer
action on a factor by) a finite-dimensional Kac algebra. One of the relations shows that
the antipode of the Kac algebra agrees with the ‘rotation on 2-boxes’.
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1. Introduction

For an arbitrary finite index inclusioN c M of 11 factors, the basic construction of
Jones [J] gives a canonical construction of a tower of factors

NCMCMiCMC....
The double sequence of finite-dimensional algebras

NNN c NNnM Cc NnM; C...
U U ,
MNNM Cc MNM, C...

known as thestandard invariantbecame an extremely important invariant in the study
of subfactors (see for example [GHJ, JS, Pol, Po2]). In fact Popa [Pol] determined that
the standard invariant completely classifies certain kinds of subfactors. In [Po2], Popa
provided an abstract algebraic characterization of the standard invariant catlattiae.
Subsequently, Jones developed an equivalence betwstices and certain structures
that he calleghlanar algebragJ1]. In the planar algebra framework, many of the seemingly
complicated algebraic conditions associated withlattice can be simply described in
terms of the geometry of the plane.

Given a Kac algebrdd and all; factor M, there is a well-known construction of a
subfactorM” ¢ M whereM" is the algebra of fixed points of an outer actionfhfon
M. In this paper, we give a presentation — in terms of generators and relations — of the
planar algebra associated witi? c M. Since the subfactoM/ ¢ M is known to
‘rememberH’ — see [Sz] — this presentation contains a pictorial represention of the Kac
algebraH which we hope might be useful to those who have occasion to do complicated
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calculations inH. The presentation given here is motivated by earlier work of one of the
authors. In [L], a class of planar algebras, termed ‘exchange relation planar algebras’ was
defined and it was shown that the planar algebra corresponding to a subfactor coming from
a finite-dimensional Kac algebra (i.e. a depth-two subfactor, see [O] or [Sz]) is an exchange
relation planar algebra. In addition, a presentation of the planar algebra was given for the
case wheri{ = CG, G a finite group.

We have attempted to render this paper ‘accessible’ and self-contained to a person who
is familiar with little more than the basics of subfactor theory and the definition of Kac
algebras. For this reason, we have chosen to include some material that appears elsewhere
in the literature. Specifically, we include a presentation of Jones’ planar algebras. We felt
that it could not hurt to repeat the description for the sake of the reader who has not yet had
the pleasure of making the acquaintance of Jones’ planar algebras. In addition, we have
always had trouble laying hands on references for basic definitions and facts concerning
finite-dimensional Kac algebras and their actiond fnfactors. So, in spite of the existing
literature (cf. [D], [O], [Sa] and [Sz]) on the connections between subfactors and Kac
algebras, we have worked out most of the details here in an effort to make the treatment
essentially self-contained.

This paper is organized as follows: We begin in 82 by setting up the notation and recalling
some basic facts (from the operadic approach, see [J2]) of Jones’ planar algebras. Section 3
is devoted to recapitulating various facts concerning presentations of planar algebras. Here
things are closer to Jones’ initial — see [J1] — approach. We also recall some facts about
‘exchange relation planar algebras.’ Section 4 is devoted to Kac algebras. After recalling
various standard facts about these objects, we give a description of the first few stages of
the tower of the basic construction that is associated to an outer action of a Kac algebra on
al I factor. A bonus of our presentation is the fact that ‘actions of finite-dimensional Kac
algebras o' I1 factors are automatically normal’. We work out a matricial description
of the crossed-product of &3 factor by such an action (analogous to the one given in
[JS] for the group-case), which is used in the subsequent discussion. In 85, we give two
presentations of the planar algebra of the subfactor coming from a finite-dimensional Kac
algebraH. The first one uses the entire algeltfas generators and has the advantage that
various relations (as well as proofs) become much more transparent while the second uses a
certain kind of basis off as generators and has the advantage of being a ‘finite presentation’
(but has the disadvantage of being ‘unnatural’). It is this second finite presentation which
specializes to the description in [L] for the case of the group algebra. Some concluding
remarks form the content of 86. We give descriptions here, for instance — which constitute
natural generalizations, to the Kac algebra case, of results (in [L]) for the group algebra
case — of an orthonormal basis fB,(”HCM as well as the partition function fap¥" <M

2. Planar algebras

This section is devoted to a survey of such facts about planar algebras as we will require.
(See [J1], where these objects first appear, and [J2] where the operadic approach is dis-
cussed and also [L] for a ‘crash-course’.)

We define a set Col, whose members we shall loosely call ‘colours’, by

Col=1{0,,0_,1,2,3,...}. 2.1)

Some of the basic objects here are the so-call&ahgles (wheré < Col), towards
whose definition we now head.
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Consider a copyDg of the closed unit discD = {z € C : |z| < 1}, together with a
collection {D; : 1 < i < b} of some numbeb (which may be zero) of pairwise disjoint
(adequately compressed) copies/bfn the interior of Dg. Suppose now that we have a

pair (T, f), where
(a) T is an oriented compact one-dimensional submanifolBi®f U?:l Int (D;), where

‘Int’ denotes interior, with the following properties:
(i) o(T) C Uf?zoa(D,-) and all intersections df with 9D are transversal,
(i) each connected component of the complemerit @f Int (Do) \ Uf:l Int (D;)
comes equipped with an orientation which is consistent with the orientatifn of
(i) |T Na(D;)| = 2k; for some integers; > 0, foreach O<i < b, and
(b) f specifies some ‘distinguished points’ thus: wheneverO< b is such thak; > 0,
we are given a ‘distinguished poinf'(i) € T N a(D;); these distinguished points
(which we will sometimes follow Jones and simply denotepgre required to satisfy
the following ‘compatibility condition’ with respect to the orientation of (a)(ii): the
component off" which containsf (i) is required to be oriented (gi(i)) away from
or towards d D; according as > 0 ori = 0.

The orientation requirement above ensures that there is a ucligaeierboard shading
of Int (Do) \ (Uf?zllnt (D;) U T) as follows: shade a component white or black according
as it is equipped with the mathematically positive or negative orientation in (a)(ii) above.
Thus, whenever one moves along any componerf of the direction specified by its
orientation, the region immediately to one’s right is shaded black. With the above notation,
there are two possibilities, for each©i < b: (i) k; > 0, in which case we shall say
that D; is of colourk;; and (ii) k; = 0, in which case we shall say th&; is of colour
0. according as the region immediately adjacend iy is shaded white or black in the
‘chequerboard shading’.

We shall consider two such pai¢g;, f;) to beequivalentf the 7; are isotopic via an
isotopy which preserves the orientation and the ‘distinguished points’. Finally, an equiva-
lence class as above is called-ganglewherek is the colour of the external didog.

An example of a 3-tangle with 3 internal discs is illustrated here, in whieh3 and
the internal disc®1, D2 and D3 have colours 33 and Q_ respectively:
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There is a natural way to ‘compose’ two tangles. For instance, sugpos®e is ak-
tangle, withb > 1 internal discs. If one of these internal dis@s has colourk;, and if
(S, g) is ak;-tangle, therl" op, S is thek-tangle obtained by ‘glueing into D;’ (taking
care to attaclg(0) to f (i) in casek; > 0).

For example, i T, f) is as above and ifS, g) is the 3-tangle given by

Dy (9

2

The collection of ‘coloured tangles’ with the ‘composition’ defined above is referred to
as the ¢oloured planar operad and by aplanar algebrais meant an ‘algebra over this
operad'. In other words, a planar algekiais a family P = {P; : k € Col} of vector
spaces with the following property: for eveky = ko(T)-tangle(T, f) with b = b(T)
internal discsD1(T), ... , Dpry(T) of coloursky(T), ... , kpr)(T), there is associated
a linear map

Zr i ®0_ Py, — Py

which is ‘compatible with respect to composition of tangles’ in the following obvious
manner.

If 1 < i < bisfixed, and if(S, g) is ak;(T)-tangle withb(S) internal discs — call
themD1(S), ..., Dp(s)(S) — with coloursk1(S), . .. , ky(s)(S) (say), then we know that
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the composite tangl& = T op,(r) S is ako-tangle with the(b(T) + b(S) — 1) internal
discs given by

D;(T) ifl<j<i
Dj(T1) = { Dj_i+1(5) ifi<j<i+b(S) -1 ;
Dj_psy+2(T) ifi+b(S) <j=<bT)+b(S)—1

it is required that the following diagram commutes:

(®<i Pry(1)) ® (® Pk (8)) ® (®)>i Pr;(1))
ZTODi(T)S N
d® Zs®id | Pko(T)
Zr
®] ") Py
(2.2)

Strictly speaking, we need to exercise a little caution when 0 is involved. For instance,
in order to make sense of the domainff, when the tanglé has no internal discs (i.e.,
b(T) = 0), we need to adopt the convention that the empty tensor product is the underlying
field, which we shall always assume@s (So eachP; has a distinguished subset, viz.,
{Z7 (1) : T ak-tangle without internal discls)

Next, our statement of the ‘compatibility requirement (2.2)’ needs to be slightly modified
if the tangleS has no internal discs. Thus,4fS) = 0, the requirement (2.2) needs to be
modified thus:

®j#i Prj(r)
= | ZTop,1)S N
(®)<i Pi;1) @ C® (®>i Pry(r)) Pro(T) - (2.3)
id® Zs®id | Zr
®"_1 Piy(r)

Further, we need to make an additional assumption in order to ‘rule out some degenera-
cies’. To see this, consider thetanglesl,fl, k € Col, with one internal disc also of colour
k; thus, in our notatior (If) = 1, ko(IX) = k1(If) = k — defined as in the figure below:

D
D, I )
0,
e ID+ _

(The understanding is thaléJ consists of the ‘empty submanifold &fp \ D41’ and that
the annular regioig \ D; is equped with the ‘mathematically positive orientation’ and
hence shaded white in the chequerboard shading. In the cat%e,dhe only difference is
that the annular region is shaded black.)

inthe sequel we shall consistently use the convention of wrfjirdo denote atangl€ with b(T) = 1, ko(T) =
m, k1(T) = n, so for instance we might hav§” o S" (T as with matrix multiplication.
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Itis easily seen that, for eveky and for every-tangleT, we havel,f op, T=T,and
hence

ZypoZr=2Zr. (2.4)

It follows thatZ,kk is an idempotent endomorphism Bf whose range contains the range
of Zy for everyk-tangleT .

Thenon-degeneracy conditiome wish to impose is thak is spanned by the ranges of
theZ7's, asT ranges over alt-tangles. In view of the above comments, this is equivalent
to the following condition, which we shall henceforth assume is satisfied by all our planar
algebras:

Zy =idp ¥k € Col (2.5)

We shall need the following tangles:

The inclusion tangled-or everyk € Col, there is an associatéd + 1)—tang|e1,£€+l
with one internal disc of colout where of course 0+ 1 = 1. Rather than giving the
formal definition, we just illustraté; , I3 and I3 below — the idea being that an ‘extra
vertical line is stuck on to the far right (in all but one exceptional case)’.

) Do DO .
* .*
N I i

| 4
o, 0 3

D

It should be clear that ;«1 : Py — Pra. Itwill turn out that these ‘inclusion’ tangles
k

indeed induce injective maps in the case of ‘good’ planar algebras (the ones with a ‘non-
zero modulus’).
The product tangled-or eachk € Col, these aré-tanglesM; with two internal discs,
both of colourk, which equipP; with a multiplication. We illustrate the casgés= 2 and
k = 0, below:

(As in the case of the ‘identity annular tangl@%, the tangleso, consist only of the

empty submanifold (oDg \ Ui2=l Int (D;)), the only distinction betweemy, being that
the regionDg \ Ui2=l Int (D;) is shaded white and black Mo, andMo_, respectively.)

It is easy to see that eadh, is an associative algebra, with respect to multiplication
being defined by

x1x2 = Zpyg (x1 ® x2).
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It must be noted that this convention — of putting the first factor in the disc on top — is
opposite to the one adopted in [BJ], for instance; and alsaAflaare even commutative.
We also wish to point out that the fact that ti’s are unital algebras is a conse-
guence of our ‘non-degeneracy condition’ and of the compatibility condition (2.3). In fact,
consider the-tangle ¥, which has no internal discs, defined analogous to the case 1
illustrated below: (The tangle®t again is the empty submanifold dio, with the inte-
rior of Do shaded white and®t is defined analogously except that ‘white’ is replaced by
‘black’.)

T

~—

Note thatM op, 1¥ = If, and if we write % = Z1 (1) (where the 1 on the right is the
1in C), then we may deduce from (2.3) that for arbitrarg Py:

x - 1= ZMk(x ® 1) = ZMk(x ® Zlk(l))

= ZMkonzlk(x) = lef(x) = x.

A similar argument, withD, replaced byD1, shows that lis also a ‘left-identity’. Hence
Py is a unital associative algebra with ds the multiplicative identity. A similar argument
also shows that the ‘inclusion tangles’ in fact induce homomorphisms of unital algebras,
so that, in ‘good cases’, any planar algebra admits the structure of an associative unital
algebra which is expressed as an increasing union of subalgebras.

The conditional expectation tangldhese are two families oftangIeE,’jH 1k € Col},
and{(E’)ﬁ : k > 1}, where (by our notational convention for ‘annular tangles’)’i(j)rl is
ak-tangle with one internal disc of coloir+ 1, which is defined by ‘capping off the last

strand’; again, rather than giving a formal definition, we iIIustrBjeEf+ andEg‘ below:

DE

[0)
1

1

and (i) (E/)f is ak-tangle with one internal disc of colokr which is defined by ‘capping
to the left’. Again, rather than giving a formal definition, we iIIustraté)g below:
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CIearIyZEk : Pry1 — Pr while Z(E/)k : P, — Py. (In fact, the range OZ(E,)/k( is
contained mZ,k 0---0 Z,z(Pl) N Py.)

The planar algebras that we will be encountering have various additional good features,
which we now outline.

Connectednesgs planar algebreP is said to beconnectedf dim Py, = 1.

SincePy, are unitalC-algebras, it follows that iP is connected, then there exist unique
algebra isomorphism®p, = C; they will necessarily identify what we called 1(recall
the I, above) with 1€ C.

For the next definition, we need to introduce two more tangles. Consider the t@gles
of colours Q., and with one internal disc, given by:

D
DO 0

Modulus:A connected planar algebrais said to havenoduluss if there exists a scaldr
such thatZr, (15) = 8 14. We will primarily be interested in the case when the modulus
is positive.

It must be noted that iP has modulus, then

ZE15+1 o Zlerl =4 idp, Yk € Col,
and in particular, i # 0, then the ‘inclusion tangles’ do induce injective maps.

Finite-dimensionalityA planar algebraP is said to be finite-dimensional if dimfi, <
oo Vk € Col.

SupposeP is a connected planar algebra and thias a 0-tangle (by which we shall
mean a Q- or a O_-tangle). If 7 has internal disc®; of colourk;, and ifx; € Py, for
1 <i < b, then ZT(®§’:1x,~) € C, where we have made the canonical identifications
Py, = C. This assignment of scalars to ‘labelled O-tangles’ is also referred to as the
partition function associated to the planar algebra

Sphericality:A planar algebra is said to tephericalif its partition function assigns the
same value to any two O-tangles which are isotopic as tangles on the 2-sphere (and not just
the plane).
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The last bit of terminology we will need is that of the ‘adjoint of a tangle’. Suppose
(T, f) is ako-tangle as defined earlier, with external disg andb internal discsD; of
coloursk;. We then define its adjoint to be thg-tangle(7*, f*) given thus:

(@) Letg be any orientation reversing smooth mapiaf onto a discDg and letT* be
defined by requiring that its external disclig, its internal discs aréD! = ¢(D;) :
1 <i < b}, and aregio (R) —in the complement of * in (D{ \ uf’le;") —has the
same colour ag in the chequerboard shading.)

(b) If k; > O, definef (i) to be the ‘first point’ of7 N 3(D;) that is encountered as one
proceeds anti-clockwise alordgD;) from f(i); and definef*(i) = ¢ (f(i)).

Finally, we shall say thaP is asubfactor planar algebré:

(i) P is connected, finite-dimensional, spherical, and has positive modulus,
(i) each Py is aC*-algebra in such a way that, (f", /) is akg-tangle as above, with
external disdg andb internal discD; of coloursk;, and ifx; € Py,, 1 <i < b, then

Zr(x1®- - ®@xp)" = Zr+(x] @ - @ xp),

and
(iii) if we define the ‘pictorial trace’ onP by

—k—1
trer1(x) 1y =6 ZE;)Jr ZE% . ZEfH(x) (2.6)

for x € Pyy1, then ty, is a faithful positive trace ow,, for all m > 1.

It should be obvious that if is a subfactor planar algebra, thg,s are consistent and
yield a ‘global trace tr orP’.

Our primary interest in planar algebras stems from a beautiful result — Theorem 2.1 — of
Jones’ (see [J1]). Before stating it, it will be convenient for us to introduce another family
{EF : k > 2}, of tangles, wher€* is ak-tangle with no internal discs; we illustrate the
casek = 3 below:

Theorem 2.1. Let
N C M(= M) CL My C -+ C% My C%+ ...

be the tower of the basic construction associated to an extremal subfactojpMithV] =
82 < oo. Then there exists a unique subfactor planar algeBra= PY<™ of modulus$
satisfying the following conditions



24 Vijay Kodiyalam, Zeph Landau drV S Sunder

0) PYM = N’ N My_1 Yk > 1 where this is regarded as an equality of *-algebras
which is consistent with the inclusions on the two sides

(1) Zgika (D) =8 ex Yk > 1,

(2) Z(gp () =8 Enro () ¥ x € N' N My, Vk = 1

3) ZE,§+1(X) =68 Ennm,_,(x) Y x € N' N My; and this is required to hold for all
k in Col, where fork = O, the equation is interpreted as

Z0.(x) = stry(x)Vx e N NM.
1

Converselyany subfactor planar algebr&® with moduluss arises from an extremal
subfactor of index? in this fashion.

Remark2.2. (a) If P is any planar algebra with non-zero modulus, we have an induced
tower

PpC---CP.C---

of unital associative algebras. We shall — taking a cue from (1) of the above theorem —
define

ex =8 1Zan(l), Vk=1
It then follows that for alk, we have

2
ekzek
erem =emer if lk—m| > 1

ererriey = 5_26k . (2.7)

Of courseifP isaC*-planar algebras, the's will be genuine & self-adjoint) projections.

(b) We want to single out one specific class of tangles which play a very important role
in the proof of the above theorems as well as in the general theory. These are the family
of tangles{ Ry : k > 2}; (since this tangle will occur frequently in the sequel, we shall, for
convenience, drop our (otherwise) standing convention for annular tangles, an@&rite
rather thanR,’f). Thisrotation tangleRy, is ak-tangle with one internal disc of colowér
and we shall just illustrat®s:
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3. Presentations of planar algebras

Jones’ initial approach, in [J1], to planar algebras was through a ‘generators and relations
approach’, which can be quickly shown to be equivalent to the ‘operadic’ approach which
was later espoused by Jones (see [J2]) and is the one presented in 82 here. This is analogous
to the two approaches one may adopt towards group theory. On the one hand, one could —
analogous to our approach here — take the axiomatic definition, then construct the example
of a ‘free group on an arbitrary sét of generators’, then consider the quotiéht: R)

of the free group on the generating $ety the smallest normal subgroup generated by a
setR of relations, and finally prove that every group arises in this fashion. Or one could —
analogous to Jones — simply define a group as something which is giver{as &.

The analogue, for planar algebras, of the free group is the so-caligdrsal planar
algebra on the label sat which is defined thus: supposke = | [, L« is the disjoint
union of an arbitrary collection’; of ‘label sets’ where somg&; may be empty. Define
a ko-tangle labelled byL to be ako-tangle (T, f) as above subject to one additional
constraint, viz., thaf" is allowed to have an internal disc of colawronly if L,, # @
and equipped with the extra structure of a label frbpnassociated to every internal disc
of colourm. (Of course, two such tangles which are isotopic are considered to be the
same.) Define’, (L) to be the vector-space with basis given by the collectiok-oahgles
labelled byL’, and let P(L) = {Px(L) : k € Col}. It is not hard to see that (L) has a
natural structure of a planar algebra.

A family J = {J; : k € Col} is said to be glanar ideal of a planar algebra
P = {P; : k € Col}if (i) Ji is a vector subspace & for eachk and (ii) if (T, f) is
anyk-tangle, withb internal discsD; of colourk; for 1 < i < b, then it is demanded that
ZT(®§’:1xi) € Jr whenever; € J;, for any onei.

Itis a simple matter to verify that if is a planar ideal of a planar algebra as above, and if
we defineP/J = {Py/Ji : k € Col}, thenP/J is naturally a planar algebra and that the
natural quotient maps define a ‘morphism of planar algebras’, where a morphism from the
planar algebraP to a planar algebr®@ is just a collection of linear maps; : P, — Oy
which satisfy the obvious compatibility requirement that

ko (ZF(®Y_1x)) = Z2(®_ym, (x7))
wheneverT is ako-tangle withb internal discsD; of colourk;, andx; € Py, forl <i < b.

Itis easy to see that these are the ‘correct’ definitions in the sense that planar ideals are
precisely the kernels of morphisms of planar algebras, and images under epimorphisms
are isomorphic to quotients by planar ideals. We are now ready for the analogue of what
we called{L : R) in the group context.

DEFINITION 3.1

Given an arbitrary ‘label setL = [ [, c o Lk, @and an arbitrary ‘subseR = {R; : k €
Col} of the ‘universal planar algebra(L) with generating set’, let J (R) be the smallest
planar ideal ‘containingr’, and defineP (L; R) to be the quotienP(L)/J(R).

An abstract planar algebxa will be said to be ‘presented on the generatinglsetith
the relationsR’ if there exists an isomorphisn® : P(L; R) — Q of planar algebras, and
we shall say thag is ‘presented’ by the magp.

The planar algebraRB(L; R) will typically not possess many of the nice features of what
we have called a subfactor planar algebra. However, a condition has been identified in [L],
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that is known to ensure some of these ‘good’ properties. We shall discuss this condition,
which we will need. We pause with a digression concerning notation which might be
slightly different from the notation of [L], in order to dispel possible confusion in the
reader. We shall indicate the ‘basis vectdr (g1, ... , g») by drawing the tanglg” and
labelling theith internal disc with &;. Also, we shall indicate the ‘distinguished points’
f (@) by simply marking a *; and rather than adopting Landau’s convention of drawing
labels which are ‘upside down’, we shall draw the labels ‘upright’ but the position of the
*will indicate the difference.

Our description of the condition will be facilitated by the introduction of the following
three 3-tangles, each having two internal discs of colour 2.

One way to remember our convention for these tangles is to remember that: (a) all the
tangles have the internal discs straddling a pair of strings that ‘go into the junction’, and
the distinguished point (*) of both internal discs ‘face the junction’, (b) if the points of
oT N Dg are labelled« =1, 2, ... , 6, the tangle called; does not have an internal disc
on the strands labelled 2- 1 and 2, and (c) for 1< j < 2 and 1< i < 3, the internal
disc D; of the tanglef; straddles the strands labelledi22j — 1 and 242 (mod 6. We
shall later use the following consequence of the circular symmetry of these definitions:

Rzo H; = Hj4p Vi, (3.1

where all indices above are mgd 3.
For a setL,, we shall writeL, = {lez(g) tg € Lo} [{Zgr,(g) : g € L2}. So, if

L> = {g} is a singleton, thett,» consists of the twd.,-labelled tangles below:

g = Q\ Rg = “

We are finally ready for the condition.

DEFINITION 3.2

Assume thal. = L, and thatL; = ¢} for k # 2. Anexchange relation algebiia a planar
algebra of the formP(L; R), where it is assumed that the setc P(L) of relations
satisfies the following conditions:



The planar algebra associated to a Kac algebra 27
(0) there exists a positive numbg&such that
Zr, () —81o, , Zr (1) — 81y, €R;
(1) for everyg e L, there exist scalara(g), B(g) such that

() Zpy(9) — Al)ls € R
(i) Z(E,)g(g) — B(g)l1 € R;

and
(2) Forallx, y,u, v, z, w € Ly, there exists scalaig;;, D, such that

Z (.0 = | Y. CiZm@.v)+ Y DiZu(z.w)| € R.

u,ve[z z,WweLly

In other words, the following ‘identities’ are assumed to holdA¢L; R) if R is an
‘exchange relation’:

D -

B(g)
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We will need the following facts from [L], which we state as a proposition for conve-
nience of reference.

PROPOSITION 3.3

SupposeP (L; R) is an exchange relation planar algebra. Then

() dimP,(L; R) < o0 Vn;
(i) P(L; R)is connected and has positive moduless); and further
(i) P2(L; R) is linearly spanned by{1, e1} U L, wherg of coursgey = Zg, (1).

We conclude this section with some remarks on how to get a *-algebra structure on
P(L; R). As a first step, let us try to impose a *-structure on the universal planar algebra
P(L) thus: assume that eadh has an involution, denotetl; > ¢ — g* € L. Note
that the typical basis-vector @, (L) may be envisaged a¥r (g1, ... , &), WhereT
is ak-tangle withd internal discsDy, ..., Dy, andg; € Li, (where of course; is
the colour ofD;); defineZr (g1, ..., g0)* = Zr+(g7.... . g;); and extend the adjoint
conjugate-linearly to all oP (L). (If we start with ak-tangleT with no internal discs, the
corresponding basis vector should be thought of a€l), whose adjoint is then given by
Zr+(1).) Itis an easy matter to see that this gives eBgti.) the structure of a *-algebra;
and further, that iflJ; Ry is a subset ofP (L) which is closed under the involution, then
eachP,(L; R) also has a natural *-algebra structure.

4. Kac algebras

We recall some standard facts concerning finite-dimensional Kac algebras. (The reader
may consult [vD], for instance, for proofs and details.) We employ standard notation. A
finite-dimensiona Hopf algebra will be a tupléH, 1, 1, A, €, S). We shall consistently
reserve the symbal thus:

dmH =n.

A complex (finite-dimensional) Hopf algebra is said to be a Kac algebra if it(i%-a
algebra in such a way that the comultiplicatianis a *~homomorphism. It is true that if
H is a Kac algebra, then

(a) S andx are commuting involutory product-reversing map$bfthe one being linear
and the other conjugate-linear), and

(b) the dual Hopf algebreH™*, A*, ¢*, u*, n*, §*) is also a Kac algebra with respect to
adjunction given byr*(a) = ¢ (Sa*) .

Defineh € H (resp.,¢ € H*) to be the unique central minimal projection satisfying
hx = e(x)h, Vx € H (resp., v¢ = v (1y)o, Y € H*) where we naturally write
1y = n(1p). Itis a fact thath (resp.,¢) defines a faithful tracial state o™ (resp.,H),
and that

o) =1/n . (4.1)

2We shall not consider any other kind. Thus we shall tacitly assume that all our Hopf algebras are finite-
dimensional, and over the field.
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Further, we shall regar#if (resp.,H*) as being equipped with the inner product derived
from the tracep (resp.,k). Thus

(@, byy = ¢ a), (Y, p)u+ = h(p™P).

Once and for all, we shall choose a ‘system of matrix units’ for the ‘multi-matrix algebra’
H*, call it {e;:l 1<kl =<d,yce H*} and denote the associated dual basisHor
by{yw :1 <kl <d,ye H*}. In terms of these bases, the ‘integralis known to
decompose as

d}/
h=1/n Y d, > vi (4.2)
k=1

ye[—i* =

Further, these bases are known to constitute orthogonal bases for the underlying Hilbert
spaces. Thus, if we define

~ n

=7 ¢ (4.3)
14

Vi = /dy v s (4.4)

then{e,fl 1<kl=<d,ye ﬁ*} is an orthonormal basis fdi*, and{j;; : 1 < k,I <
d,,y € H*}is an orthonormal basis fdt.

We shall write triv for the trivial representation é* — given by evaluation at,
sincedyiy = 1, we shall simply write triv rather than triy (which is the same asiv11).

Similarly e = ¢!V = /1. What needs to be noted is that

tiv=1y5, ™ =¢. (4.5)
We list a few simple facts as a lemma, for convenience of reference.

Lemmad.1. With the above notatignve have

D) Al =, Vim © v, and e(yi) = Su,
(i) > VemSYmi = Skl
(i) Syg; = viks
(iv) A(h) = A°P(h), whereA°? =t o A andt denotes the ‘flip’ orH ® H, and
V) A(h)(1Qa) = A(h)(Sa® 1), Ya € H.

The assertions (i), (iii) and (iv) are immediate consequences of the definitions, while
(i) follows from (i) and the defining property of, and the proof of (v) may be found in
[vD]. ]

We should mention that we will, when necessary, use Sweedler’s notation — according
to which, for exampleA(h) = Y h1 ® k2, while assertion (iv) of the above lemma says
that this is also equal 9" A, ® h1.

For the sake of completeness, and for establishing notation, we shall go through the
construction of ‘the crossed product of/d; factor M by an outer action of a Kac
algebraH’.
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DEFINITION 4.2

By an action of a Kac algebr#l on alI; factor M will be meant a linear map : H —
Endc (M) (where we shall write,, rather thame (a) fora € H and End (M) denotes the set
of linear self-maps oM) satisfying the following conditions, foradl, b € H, x, y € M:

() o1 =idpy,

(i) agp = aq o ap,
(iii) aq(1py) = e(a)ly,

(IV) ag(xy) = Zaal(x)aaz(y): and

(V) aq(x)* = agar (x).

We shall be working in the Hilbert spade (M) ® H which we shall also want to think
of as the direct sum of copies ofL2(M) —where of coursé2(M) = L2(M, try) —these
copies being indexed bypkl) : 1 <k,l <d,, p € H*}. More precisely, we identify the
element ® a with the vector which hag (5;;a)& in the ‘(pkl)th coordinate’.

The above identification shows that we have a natural bijection betweer EA@/) ®
H) (the space of linear self-maps bf(M) ® H) andM,, (Endz(L2(M))) given by

T < (125) & TE®m) =Y 12K 6 ® pu. (4.6)
pkl

It should be clear that in eq. (4.6), the m&ps a bounded operator if and only if each

t{,’,’jfn is. Note that an elemente M can be, and is, identified with the (bounded) operator

of ‘left-multiplication by x’ on L2(M). It follows then thatM,, (M) is al I;-subfactor of
L(L2(M) ® H).
Consider the maps : M — M, (M) and A : H — M, (M) defined by

() n = 8(0.0).(.m) Sy (X) 4.7)
and
@)K = ¢ (pladm) 1y - (4.8)

Itfollows from the preceding paragraph thatin fack), A(a) can be thought of as bounded
operators orL.?(M) ® H, these being the maps given by

T()E®D) = Y asey(NE @b (4.9)
and

rMa)E®Db) = EQab. (4.10)
PROPOSITICN 4.3

With the above notatignve have

(a) = andx are morphisms of *-algebras
(b) trM“(M) ol = ¢,and
(©) Ma)w(x) = (g (x)A(a2).

3We restrict tol I; factors rather than general von Neumann algebras, and we shall soon see that various maps
are automatically normal.
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Proof. (a) The assertion regardingis obvious, since. is just an ampliation of the left-
regular representation @ . As for rr, it is clear that it is a linear map, whileif, y € M,

T(xy)(E ®b) = sy (xy)E @ ba
=Y sy (s oy (¥)E ® b3
=m(x) (Z a5y (V)§ ® bz)
=) (y)E D),
and also,

O = 800, 0. %Spic F*) = 8(p.1),(0m @, ()

= 8(p.1). (0. ASp (X)* = (X))

(b) trar, (@) = 1/n Y oy (h(@)og) = 1/n Y d(Blapu)

pkl pkl
=1/n) ¢ (a > ﬁkzsﬁlk)
pk 1

=1/n)_ ¢(d,a) by Lemma 4.1(ii)
pk

=1/n) dyp(a) = ().
0

(©) Y m(ea ())Ma2)(E @b) = Y 7(ctay (X)) (E ® azb)
=) astySapar (X)E ® azby
= Zas(al)S(bl) (X)§ ® azb?
=Y a5y (0)E @ ear)azby
= Z asp) (x)§ ® aby
= Ma)m(x)(§ D) .
0

Lemmad.4. (a) thy o oy, = tryy.

(b) There exists a unique morphism@®@f-algebras H > a — L, € L(L?(M)) such that
La(x9) = aq(x)Q Vx € M (where of cours& denotes the ‘vacuum vector’ iE?(M)).

Proof. (a) By the uniqueness of the trace on a finite factor, it suffices to verify thatdy,
is a normalized trace oM. For this, note that for arbitrary, y € M,

try o (xy) = Y trag (cny (¥t (1))
= try (Z ozhz(x)othl(y)) by Lemma 4.1(iv)
= trar (D2 hy (et () = tras 0 @ (v),
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and tn, o o, is normalized since;, (1) = 1y. (Reasonthe definition ofz shows that
e(h) = 1, and Definition 4.2(iii) now does the trick.)
(b) Begin by observing that (a) implies that fore M,

tr(xx) = tren(e°60) = tr (D oy ()i () )

d 1
=1r (Z fo{pkl (x*)(xplk (x)) = ;tl’ (Z Ay ('X*)aﬁlk (x))

pkl pkl
— 1t *
= ~tr ;aﬁlk(x) ag () ),

and conclude that the operata2 — o, (x)2 extends uniquely to a bounded operator
on L2(M). Since this is true for every, I, we only need, in order to complete the proof of
the lemma, to verify thak,« = L} Va € H, and this is because

(La(x82), yQ) 12041y = tr(y* aa (%))
=tr (Z Uy (V) Una (x)) by Lemma 4.4(a)

=tr (Z Oy Sa (y*)ozhz(x)> by Lemma 4.1(v)
= tr(as, (y*)x) by Lemma 4.4(a)
= tr(aa+ (3)"x) = (xQ, La*(YQ)) 2001
O

Before proceeding further, we digress with a lemma and its corollary, which we will
need (more than once). (This lemma is actually only about co-semisimple Hopf alge-
bras, meaning the *-structure is irrelevant.) We omit the elementary proof which relies on
Lemma 4.1(ii) to check that the asserted inverse is a left-inverse, and then appeals to the
underlying finite dimensionality.

Lemma4.5. The elemen€ € M, (H) defined by
Cht = 8o (us)SPrk

is invertible and

—1\MUrs
(€ )pkl = 8(p.1)(u,s) Pkr-

COROLLARY 4.6

Consider the matricestc and L¢ defined by

ki
(@) s = ookt

urs

and

(Lo)PK = okl

Wrs s

Thenac andL¢ define invertible elements 8f, (End M) and £(L2(M) ® H), and their
inverses are given by the obvious matriags-1 and L -1 respectively.



The planar algebra associated to a Kac algebra 33

We shall also need the right regular representatioff ofThus, we defingp : H —
M, (C) by

p(@PX = ¢ (5}1GmnSa). (4.11)

As before, we may regard as theC*-morphism fromH to L(H) given by
p(a)(b) = bSa . (4.12)
With the foregoing notation, consider the following sets:

A1 = (m(M) U A(H))"
A> = the algebra generated ly (M) U A(H))
Az = (L ® p)(AP(H)) N M, (M) .

We shall prove in Proposition 4.8 that all tHg’s are the same. We begin with alemma.

Lemmad.7. (a) Every element ofl, is uniquely expressible in the form

Z n(yurs))‘«(,ars)s Yurs € M.
urs

(b) Every element aofiz is uniquely determined by itériv’-column.

Proof. (a) Begin by observing that siné¢;;} forms a basis for the algeb#, the com-
mutation relation in Proposition 4.3(c) guarantees that the set

!Z T (Yprs)M(frs) © Yurs € M } (4.13)

urs

is an algebra and is consequently equal4g.
Observe now that

pkl
(Z n(yurs))”(,&rs)> = Z n(yMrS)gf/l')‘(ﬂ”)g’il\lj

nrs triv  Bij.urs

= Z 800161 tSpix Vurs )P (B irs)
pijars

= Y 8008 Vurs)S(Bij).(urs)
Bij.prs

= Z 3o,y (e.5)XSprx Ypurs)
urs

= @) urs) -

urs

In view of Corollary 4.6, it follows that each,; is determined b[:,m T Yurs)M(firs),
and (a) is proved.



34 Vijay Kodiyalam, Zeph Landau and V S Sunder

(b) We need to show that il € A3 has its triv-column identically 0, theA must be
identically 0; for which, it will suffice to show that L = 0.
For this, we shall first show that

(Lor = (L@ PAP(S[rs))yy, - (4.14)
Indeed, note that, foranye H,

(L ®Pp)AP (@) (E @ triv) = ) Lay(§) ® S(an)
= Z Z(S(al)v &/nn>H Laz(g’_) ® Omn

omn

and hence

omn

(L& P)AP @) = D (S@1). Emn)tr Lay -

but note that fora = Sji,,

Aa = (S® )A? (firs) = Y Shius @ Stiru,
u

and hence

(L& P)AP(Sfr)) g =D Afus: Gmn) 1 Ly,

u
= 8(u9),(0;m) LSyt

= (Lo

so that eq. (4.14) indeed holds.
Finally, conclude that for arbitrary, k, [, u, r, s,

(ALC)ﬁI;{v = Z(A)gllir{n ((L ® p)Aop(S'a”))g’i’\r/m

omn

~ kl
= 3" (L ® AT (Siiry))om, AT

omn

=0,
and the proof is complete. ]
PROPOSITION 4.8
A1 = Ay = As.

Proof. We only need to establish thad, > A3 O Aj, since clearlyd; D> Aj.

For the second inclusion, sindé, (M) is a von Neumann algebra containiGrg(M) U
A(H)), it suffices to show that(L ® p)(A°P(H)) C (w(M) U A(H)) . Notice that as
the left- and right-regular representations have commuting ranges, it is cleafthat
p)(A°P(H)) C A(H)'. Soitsuffices to verify that

aceH xeM = Z(Laz ® p(a1)) commutes withr (x) .
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Compute as follows:

Y T@) (L, ® p@1) (Y2 @ b) = Y () (@, ()R ® bS(a1))
=D Qays(by) ()t ()Q ® b2S(az)
=) (s (1)Y)R ® baS(az)
=Y (La, ® pa)T(x) (Y2 D) .

For the first inclusion, suppose now that= ((Aé"f,{,, ) € As. Define

ki
yure = 2 (e ) (Agw) -

pkl

(in the notation of Corollary 4.6).

Deduce then from Lemma 4.7(a) that the matidy = A — (ZWS T Yurs)A(fLrs))
has triv column identically 0, and belongsta sinceAd; C As. SinceA; € Az, we may
conclude from Lemma 4.7(b) thal; = 0, and the proof is complete.

DEFINITION 4.9

(&) Thecrossed produodf M by H with respect to the actios — denoted byM x, H
—is defined to be the set given by any of thgs of the previous proposition.
(b) Thefixed-point subalgebra denotedv? —is defined by

MY ={x e M:a,(x)=¢()x, Ya e H}. (4.15)

(c) The actionx is calledouterif (M7) N M = Cly.

PROPOSITION 4.10

(a) M x4 H is avon Neumann algebra.
(b) Every element oif x, H is uniquely expressible in the form

Z ﬂ(Yurx))\(llrs)~ (4-16)

urs

(c) For x € M, the following conditions are equivalent

(i) x e MY,
(i) op(x) =x,
(iil) x € L(H).

(In particular, M = M N L(H)' is a von Neumann algebia.

(d) (M) = (M x4 H) N {e2) , Where(e2)omn = 8,.triv3,uiv 1. (I particular, (M)
is a von Neumann subalgebra &f x, H.)

(e) = and hence each,, a € H is a normal map or.

(f) If a is an outer actionthen alsar (M) N (M x H) = C.
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Proof. (a) The setd; of Proposition 4.8 is a von Neumann algebra.
(b) This follows from Proposition 4.8 and Lemma 4.7.
(c)lfxe M¥ aec H, and y € M, then

Lax(yQ) = 0u(x)Q = ) oty (1)t (1)
Y e(an)xe, ()R = xaa (N2 = xLa(yQ) ,

and hence (i)= (iii).
For (i) = (i),

xLp = Lpx = xLp(RQ) = Lpx(RQ) = xap (D)2 = ap (x)Q
= x =ox).

For (i) = (i), notice that foranyi € H, a = ah + a(1 — h) = ¢(a)h + a(1 — h). So
if aj(x) = x, we see that, (x) = ¢(a)x + ayu(@1_p(x)) = e(a)x.
(d) Note first that ify € M, then

kl
(T(Ve)bhr, =D @O (), = (T ()i, Suiiv.o
Urs
= Sp.tivduiv.ey = - = (2T (M)omn
thereby showing that (M) C (M x4 H) N {e2}. .
Conversely ifA € (M x4, H) N{ez}, and if we defing = Ag:x itis seen thatt andx (y)
have the same triv-column, and Lemma 4.7(b) clinches matters.
(e) The mapr is injective sinceM is a factor, and it defines an isomorphism of one
von Neumann algebra onto another, and is consequently necessarily normal. The assertion
regarding thex,’s is a consequence of the identity
kl
asp () = @Oy
and the fact thatSp; : pkk'} spansH.
(f) This is a simple (matrix-) computation. ]
We assume henceforth that we have a fixed outer aatiohH on thel I; factor M.
Our objective is to establish the following facts concerning the initial stages of the tower
of the basic construction associated to the subfasdtoe M ¢ M.

Theorem 4.11. The‘tower
a(M?y c (M) ct M x H C? M, (M) (4.17)

is isomorphic to the towelN € M C M1 C M>, with the‘Jones projectiorise; ande;
being given bye; = A (k) and ez being as in Propositiod.10(d)

We pave the way with a few intermediate propositions.

PROPOSITICN 4.12
(@) The restriction — call itr —to M x H, oftry, () satisfies

r((a)m(y)) = ¢(a) tru(y) .
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(b) {A(pr1) : pkl}isanorthonormal Pimsner—Popa bafsis M x H oversr (M), meaning
that

En(M)()\(lakl)*)\(&mn)) = 5(pkl),(crmn) 7 (1y). (418)

In particular, foranyA € M x H, we have

A =" Aitrs) ExqanyM(firs)* A).
urs

(c)[M x H :n(M)] =n.
Assertion (a) is an easy computation and implies (b), which implies (c).

PROPOSITION 4.13

(a) There exist normal representations: M — M x, Handx : H - M x, H
satisfying the commutation relation in Propositidr8(c)

(b) If Pisavon Neumann algebra and if there exist normal representationg/ — P
and)’' : H — P satisfying the commutation relation in Propositiér8(c) Guitably
primed, then there exists a unique normal representation M x, H — P such
that 7’ = yomrand M = y o A.

Proof. (a) has already been noted and requires no proof. For (b), simply define

XA =3 N (firo)n (0 Enan) (i) A))),
urs

and verify that thisy works. ]

Proof of Theorem¥.11. LetN = M" c M c¢¥ M be the basic construction. Define

7 i M - Myand) : H — M; by n'/(x) = x andA'(a) = L,. Note, by
Proposition 4.10(c), thaMy = Jy (MTY)Jy = JyM' U L(H)"Y'Jy = (M U
JyuL(H)Jy) = (MUL(H))" (SinceJy Lo Jpyrx 2 = aq(x*)*Q = 054 (x)Q = Lga=x$2

so thatJy L,Jy = Ls.+). Hence the representations, A’ do indeed land in\f;. The

fact that these representations satisfy the commutation relation in Proposition 4.3(c), is a
consequence of the definition of an action.

Hence there exists a unique morphigm M x H — M1 (of von Neumann algebras)
such thaty (w(x)) = x and x(A(a)) = L,. This x is 1-1 sinceM = H is a factor
(which follows from Proposition 4.10(f)), and it is onto since — see the last paragraph —
M1 = (MUL(H))". Thusy is an isomorphism. But (A (%)) = L, whereas Proposition
4.10(c)(ii) says thaty = L;,. This completes the verification thatM ) c = (M) c*™
(M x H) is a basic construction.

To prove thatt (M) C (M x H) Cc® M, (M) is a basic construction, we need to verify
three facts:

(i) e2Ae2 = Exy(A)e2, YA € M x H; both sides describe the matrix whose only
possible non-zero entry is in the (triv,triv) spot, with that entry be&rm;
(i) tras, ) (e2) = 1/n; and
(i) M, (M) = Alg((M x H) U {e2}).
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For (i), if A = stﬂ(yms)/\(ﬂrs), then notice from Proposition 4.12(b) that

Exm)(A) = 7 (yiv) = m(AIV). Now calculate to get

kl
= (Exm)(A)fiy, Striv.o 1m
= Striv,pstriv,a Ytriv

= (e2Aep)PM

omn °

pkl
omn

(Examy(A)ez)

The statement (ii) is obvious and requires no proof. As for (iii), observemhad/) is
generated, as an algebra, by the following three kinds of matrices (all of which belong to
Alg((M x H) U {e2])): () eanr(y)e2, y € M, which has a unique non-zero entry at the
(triv,triv)-spot, (which entry can be any elementMf); (b) eoA(f1},), which has a unique
non-zero entry at thériv, urs)-spot, that entry being,l; and (C)A (i, )e2, which has a
unique non-zero entry at th@rs, triv)-spot, that entry being,t. ]

Lemma4.14. The equations

F(effr gl;{n = 8.p0ucOnrOmidsi (4.19)
and
®(T)glr<r€n = (Tomn, Pri)H (4.20)

define faithful representatiorief C*-algebrad I' : H* — M,,(M) and® : Endc(H) —
M,(C) C M, (M). Further, try;, (py o T = h.

We omit the proof, which is a routine verification. We conclude this section by explicitly
identifying some relative commutants in the tower 4.17.

PROPOSITION 4.15

(@) 7M7Y N (M x H) = A(H),
(b) (M) " M,(M) =T(H*), and
(€) (M"Y N M,(M) = ©ENndc(H)) = M,(C).

Proof. (a) In the equatior(a)m(x) = > 7w(ag, (x))A(a2) valid for alla € H,x €
M, if we specialize to the case when € M*, then we find that\(a)7(x) =
Y e(ar)m(x)r(az) = m(x)A(a);i.e., (M) N (M x H) D A(H). Conversely, it follows
from Proposition 4.10(b) that

> wGur)Mirs) € T(MH)Y & 7(yur) € TMPY . Vp.rs
Urs

but the outerness of the action ensures #ar )’ N 7 (M) = C, and the proof of (a) is
complete.

(b) A simple matrix-computation and the definitions show thé¥) N M,(M) D
['(H*). However, the ‘Fourier transform for subfactors of finite index’ (together with
Theorem 4.11) shows that <) dim (= (M)’ N M,,(M)) = dim (x (MY N (M x H)) = n,
and the proof is complete.

(c) Note thatr (M ) consists precisely of those diagonal matrice®ji(M) all of whose
entries are equal and belongid” . It follows thatr (M 7)Y NM,, (M) = M, (M"Y NM) =
M, (C) = ©(Endc(H)). O
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5. The main result

The purpose of this section is to obtain a presentation of the planar algEPﬁ’rHaCM,
whereM  is the fixed-point algebra for an outer action of a Kac algébien al I; factor
as in 84. Our goal is to prove the following theorém:

Theorem 5.1. Let H be ann-dimensional Kac algebra acting outerly on the hyperfinite

[ 11 factor M as in84. Then there is a presentatiah : P(L; R) — PM"<M _ which is
a x-isomorphism — where

(@) L = Lo = H acquires the involution from the Kac algebra structureifand

(b) R is given by the following set of relatior(svhere (i) we write the relations as
identities — so the statement= b is interpreted ag —b € R; and(ii) ¢ € C, a,b €
H):

I

(id)

¢

1)

3 ﬁgé
'ﬁ

Remarks.2. There are two advantages with stating the result in the above form:

() The adjoint appears nowhere in the relations; so although the above presentation is
an isomorphism of *-algebras (with the * on the label Bebeing defined as in the
Kac algebra), this theorem leads us to a natural planar algebra associated with any
n-dimensional complex semisimple Hopf algebra.

“We adopt the convention, throughout this section, thigbelledk-tangles will be drawn without their external
disc, and the distinguished * on the external disc (in dage0..) will be taken as the ‘top-left point’.
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(i) The description is basis-free and naturally highlights the role of each of the Hopf

algebra ingredients; for instance, relation (4) might be thought of yet another vindi-
cation of the use of the word ‘antipode’ in Hopf algebras.

There is one obvious drawback with stating the resultin the above form; namely, it would
be naturally desirable to have a ‘finite presentation’, where o#imd R are finite. We
shall also describe such a finite — albeit basis-dependent — presentation, in the next result.
We shall employ the orthogonal basis férthat was denotefd; : ykl} in the last section.

Theorem 5.3. Let H, M be as above. Then there is a presentatigh: P(L*; R) —
PM"CM _\yhich is ax-isomorphism — where

a) L*=Lt={yu:yeH1<kl<d)|[ly:y e H, 1<kl <d,)is
2 ¥ ki ¥
equipped with the obvious involution and
(b) R*is given by the following set of relations

Q V2
(mod) =n"=

i
(©0)

A '
© - =z sy
T * Urs

where Zp,rs S)’f,r,furs = Sy, with yy, urs asin84;and

H
(1) = Y %) - nl/z%.
 triv
f

g &

3) o yil H /
< = 33IC ()4 syl ©

'ﬁ mn‘\

t urs
ykt
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I
wherey_ . o, (Ur$) thrs = Yithmn; and

-1/2 v

@ n'°y d | =

kaT /\

The proof of these theorems will be a consequence of several intermediate results.
We shall adopt the foregoing notation in the rest of this section — with one exception.
We shall use the symbols andz* for the quotient mapsr : P(L) — P(L; R) and
7" . P(L¥) — P(L*; R%). (We will soon, after eq. (5.2) to be precise, be identifying
x € M with what we were callingr (x) in earlier sections.)

O]

Lemmab.4. There exists a unigueisomorphism
®1: P(L*; R") > P(L: R) , (5.1)
such that

O1(*(Z2(a) = n(Z (@), Va € L.

Proof. Define maps¥; : P(L¥) — P(L; R)and ¥, : P(L) — P(L*; R*), as follows:

Wi(Zp2(@) = (Z (@) , Va € L}

W, <Z122 (Z Dykzm>> => Dykm’#(lez(yk])) , V{Dyu : ykl} C C.

ykl ykl
We shall now verify that

(i) R* c kerw;andR c kerW,, and hence conclude thé&t descend to planar algebra
morphismsd; : P(L*; R*) - P(L; R) and®, : P(L; R) — P(L*; R"); and
(iiy @, and®; are inverse to one another.

(i) The ‘kernel inclusions’ hold basically because of standard Hopf algebra facts (as
described in Lemma 4.1) and the fact that the relations (m64), (0), (1), (2), (3)
and(4) of Theorem 5.3 are more or less equivalent to relat{o0y (id), (4), (1), (2),

(3) and(h) of Theorem 5.1.

(i) The identity @3 o ®2(x) = x is obvious forx = 7 (Z;2(yx)), while for general
X € n(lez(H)), this follows from the first (linearity) relation i(D0) of Theorem 5.1,
and the identity @, o ®1(x) = x is obvious forx = n#(lez()/kl)), while the case
x = n#(ZIZz(y,jl)) is a consequence of (the linearity relation(@®) of Theorem 5.1
and) the equality of the two extreme terms of relation (3) of Theorem 5.3.
Finally it is clear that theb; arex-preserving. ]
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We shall consider the subfactar = M7 < M, and write
NCcMcMyCcM;C---CM,C---
for the tower of the basic construction. We shall freely use the identifications
Mi=MxH, My=M,(M).

(Thus we identifyx € M with = (x) € M,(M).)
It is seen from Theorem 2.1 and Proposition 4.15(a)) that we have identifications

PMIEM — N'AMy = (MY N(M x H) = A(H);
and we shall define
(n(Z2(a)) = AMa), acH. (5.2)

The proofs of Theorems 5.3 and 5.1 will be completed (in view of Lemma 5.4) once we
have been able to establish that eq. (5.2) extends uniquely to a planar algebra isomorphism
®: P(L,R) > PNM,

Proof of extendability o>

In order to conclude thab does so extend to a morphism of planar algebras, we only
need to verify that the («)’s satisfy all the relations (i?V <) expressed by; and this
is what we shall do now.

The first relation of (00) is satisfied by théa)’s because of the linearity of while the
validity of the second relation is a consequence of Jones’ Theorem 2.1 and the fact that
[M1: M] = n — see Proposition 4.12, for instance.

The relation (id) holds becausgly) = 1; while the truth of relation(h) is a
consequence of Theorem 4.11.

For relation(1), we see that for any € H, we have

ah = e¢(a)h = Aa)er1 = ¢e(a)er

and hence,

L i V

= nl/z)‘{/a) - )‘{3/)61 _ s(a)n-l/zo :s(a)\/
V

As for relation(2), notice that ifa € H, then
Zpy(M@) = nY? Eniom (Ma)) (by Theorem 2.1(3)

= n'2tr (M(a)) (sinceN' N M = C)
= n'/? ¢ (a) (by Proposition 4.3(b).
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The proofs of the fact that relationi8) and(4) are satisfied by th&(a)’s will require
some preliminary lemmas.

We will use the following notation: i € H*, a € H, we shall write ¢ (a-) to denote
the element o * defined by (¢ (a-) ) (b) = ¢ (ab).

Lemmas.5. With the above notatignve have

A G(Ships) ) = el (5.3)
and
" o dy
tr(I'(es, ) (ey)) = Vo, S(pki), (urs)- (5.4)

Proof. The firstassertion is verified by applying both sidegta and appealing to Lemma
4.1(iii), the orthonormality of thefi,'s, and the fact that (by definition), thé;’s and the
Wrs'S constitute a pair of dual bases.

The second assertion is a consequence of the facttlimta homomorphism and is
‘trace-preserving’ — see Lemma 4.14 — and of eq. (4.2). ]

Consider the mapsy; : (N’ N\ M1) — (M’ N\ M>), i = 1, 2 defined by
Y1) = n®¥2 Ey, (xeze) (5.5)
and
Y2() = n®¥2 Ey, (ereox) . (5.6)
It is known — see [BJ] — that these maps are described, pictorially, by

*

W@W 3

and that both the;’s are linear isomorphisms which are ‘isometric’ in the sense that they
satisfy

and

g, (Vi (0 Y (%) = Mg, (x*x) .

Ssometimes also referred to as Fourier transforms.
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Further, it is easily verified that
Y10Zg, = Y2 soalsoyao0Zg, = Y1. (5.7)

PROPOSITION 5.6
For arbitrary a,b € H, we have

Y10:@) = VaT($((Sa)-)) (5.8)

Y20:@) = VaT(g(a>)) (5.9)

(@—1(,\(a)))(b) = ab (5.10)
and

(7MW@ ) B) = Vi Y ¢((Sarbz) by (5.1)

Proof. To prove eq. (5.8), we may assume that fi,, in which case we need to check
—in view of equation (5.3) — that

V1A (iir)) = Tl . (5.12)

Since {F(:,@) . pkl} linearly spansVt’ N M, (by Proposition 4.15(b)), we need to show
(by the definition ofyr1) that

¥ ((iirs)eeal (€f)) = tr (T(el)T(ef) - (5.13)

Now the left side (LHS) of eq. (5.13) is seen to be given by

1 ~ ' .
n3/2; 37 Al (Y (T (ef))Gm"

Bij,omn

= \/E Z (llrSa Bij>H(h&mna triV)HspﬂSpGSjl(Sim(Skn

Bij,omn

= \/E Z(amn’ h)Hg,o/l,BpUSslSrm(Skn

omn

1
= \/z\/(szark(Spussl by €q. (42)

dy
= 75(urs>,<pk1> )

which is equal to the RHS of eq.( 5.13) by eq. (5.4).
As for eq. (5.9), we may assume that= Sji,,, and as before we find that it is enough
to verify that

- d
n¥2 tr (exe2n(Sirs)T (ef)) = ﬁf(smm),(pkz); (5.14)
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and we calculate thus:

1 iy .
LHS = n%2= 3" ()i m(Sirs) o, (T (ef)) G

triv omn
Bij,omn

=1 (0 Bij) 1 (ShrsGmn V) 18 pp8 08 j18imSkn

Bij,omn

d
= \/EZ 8” QgpﬁapuajZSisakr
pij "
= RHS.
As for eqg. (5.10),

(©720@) ) Gun) = Y (@)1,
pkl
= Z(a6mn’ Pkl)H Pkl = Ay -
pkl
Finally, for eq. (5.11), we shall verify thaf (A (a)) = ©(A), whereA € Endc(H) is
given byA(b) = /nY_ ¢ ((Sa)bz) b1; and we may assume that= ji,;. Observe that —
see eq. (5.12) —

. ~ pkl 7
WGty = (T@)) = |2 Suobupbindistus .
i

mn

whereas
oy~ 1
O =n Z O (L5, G1n) == {Gmr. Pra)
n
= ‘/ d_ 8;}.05//.,08km81s8nr s
i
and the proof is complete. ]

Verification of relation(3)
Let us writen; for the left-regular representation &f. We need to show that

Ma)y10.b)) =Y Y1((azb))M(az) .
Since® is an isomorphism, it suffices (by eq. (5.10)) to check that

m(@) O~ (Y1) = Y O (WY1 (azb)))m (a1)
in Endc(H). If c € H, we have
(X o twatr@bnmian) @ = (3. 0~ Witazb))) (@)
= )¢ ((Sb)(Saz)azcy) arct
=1 Y ¢ ((Sh)e(az)cz) arcy
=1 Y ¢((Sb)ca) acy
=m(@) (Vi Y #((Sh)e2) 1)

= (m@O L W16.6))) ©
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where we have used eqg. (5.11) at the second and fourth equalities.
Verification of relation(4)

We need to verify thatZg,(A(a)) = A(Sa) , Ya € H. In view of the first relation of
(00), and the linearity ok ands, it suffices to verify the relation fax = S(j,5), and by

virtue of eq. (5.7), we need to check that (A (fi,5)) =v2 (A(Sfi,s)), Which is guaranteed
by egs (5.8) and (5.9). O

Proof that® is an isomorphism

We need to prove tha& —which has been now shown to define a planar algebramorphism
—is an isomorphism. We prepare for this with a couple of lemmas, the first of which is
about abstract planar algebras (where, of coursegthare as in Remark 2.2(a)).

Lemmab.7. In any planar algebraP = {P; : k € Col}, we have

(@) ex P = ex Pry1, and Prey = Pyi1ei foranyk > 1;
(b) Prex Py is anideal inPy 1 for anyk > 1; and
(c) if P has non-zero modulusaysé, and if Pre; Py = P11 for somek > 1,then

() PP = Pyqforalll > k;and
(i) Prexex+1---ePr= Py1VI>k.

Proof. (a) Putting exactly one cap on &'+ 1)-box’ results in &-box. (We illustrate the
casek = 2 below.)

\

%

(b) follows from (a).

(c) Both assertions are proved by induction/on k. Both assertions are clearly valid
for k = . Suppose they have been proved for sémek. Then, by induction hypothesis,
we can findg;, b; € P, suchthat = 1p_,) = > _; a;e;b;. Hence,

lp ,(=1p,) = Zaielbi
;

2 )
=4 Zaiezel+1ezbi € Pryie+1Prya;

1

and we may deduce from (b) thBt, 1¢;+1 Pi+1 = P;42, thereby establishing the inductive
step in (i). As for (ii), the induction hypothesis is th#exer+1---¢; P, = P41 and we
find that

Pii2 = Pry1ei+1P1 by ()(i) above
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= Prepery1---ePrej1Pry1
= Preyery1---ee 1P Py
= Prerery1---eej 1Py,

and the proof is complete. L]
Lemmab.8. (a)
dimg Po(L*, R*) = dimg PYM (5.15)
and
(b)
P3(L*, R*) = Po(L¥, R*)eaPo(L*, RY) . (5.16)

Proof. We shall writed* = & o &1 with ® as in eq. (5.2) ane; as in Lemma 5.4 and
so we now know tha®”* and® are morphisms of planar algebras.
For (a), note that

dime P)'M = dimci(H) = dimcH = n.

On the other hand, begin by observing tR4i.”#; R¥) is an exchange relation planar alge-
bra. ReasonCondition (0) of Definition 3.2 is met because of relation (mod). Condition
(1) of Definition 3.2 amounts to the requirement that any way of ‘putting one cap’ on a
labelled 2-box results in a scalar. In view of relation (0), we may restrict ourselves to boxes
with labels from{yy; : yki}; and relations (1) and (2) give us the desired condition (1)
of Definition 3.2. Thanks to eq. (3.1), we see that condition (2) of Definition 3.2 amounts
to verifying that for any one k i < 3, the range oZ; is contained in the sum of the
ranges oZy;, for j # i. However, we see from relations (0) and (3) that the randé&:qf
is contained in that oE , .)

Hence, Proposition 3.3 applies; and according to Proposition 3.3(iii), we know that
Po(L*, R%) is linearly spanned by the image under the quotient m&mf the set

(ZigOm) vk ULZ,2 ()t vk U (L e}

while it is seen from relation), (00) and(4) that the above set is contained in the linear
span of 7 ({lez(]/kl) : ykl}); and hence, dim Po(L*, R*) < n.Finally the mapb}isa

linear surjection sincé.(yu) = ®*(7*(Za,(yu))) : ykl} is a basis forPy <M = A(H),
so that

n > dime Po(L*, R*) > dimc PYM =n |

and eq. (5.15) is proved.
As for (b), it suffices, by Lemma 5.4, to prove that

P3(L :R) = Py(L:R)eoP>(L:R).

For this, it suffices, in view of Lemma 5.7(b), to verify thatelP>(L; R)e2 P2(L; R).
In terms of the tanglesi; defined earlier (cf. eq. (3.1)), this is shown to translate into
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the requirement that(x 1p,1.r)) € ran(Zy,). For this, note, from Theorem 5.1(3),
that

T(Zuy(h, 1)) = Y 7 (Zpgy (ha, h2)) ; (5.17)

apply eq. (3.1) twice (and use the fact thas a morphism of planar algebras), to find that

T(Zuy(h, 1n)) = Y 7(Ziy(h1, h2)) ; (5.18)

Notice however, thanks to the relations (id) and (h) of Theorem 5.1, that the left side of
eq. (5.18) is nothing but:=/? 1p,(;.. r), and conclude that

1pyr:r) = /1 ZT[(ZHz(hl’ h2))
=V ) Zu,(n(Zp(h) @ m(Z3(h2))) - 0
We are now ready to prove thdt?, and hence als@, is an isomorphism of planar
algebras. Sinc®& ¢ M has depth 2 (by Proposition 4.15), itis true tR&t~" is generated,
as a planar algebra, b’ <™; since the image ob? linearly spansPy’ <™, we find that

o# is surjective. To complete the proof, we shall prove rhﬁis injective, for each > 2,
or equivalently (in view of the already established surjectivity of eraﬁhthat

dimg P (L%, R") < dimg PNM | vi>2. (5.19)
In other words, we ne€do show that
dime P(L*, R%) < n'™t, wvi>2. (5.20)

We prove this last inequality by induction. Fbe= 2 this follows from eq. (5.15). Also,
eq. (5.16) says that the hypotheses for Lemma 5.7(c) are satisfiedwithP (L#, R¥)
andk = 2, and Lemma 5.7(c)(ii) then says that

dimg P41 < (dimg Po) x (dimg P) VI > 2,

and the inductive step is seen to follow. ]

6. Concluding remarks
We wish to conclude with a few remarks.

(a) If « is any outer action of the finite-dimensional Kac algelsfaon M (which
will always denote the hyperfinitél; factor), it is seen from Theorem 5.1 that the
isomorphism-type of the planar algebPd!” <™ is independent of, and since a
finite-depth subfactor is uniquely determined by its planar algebra, we recover the
fact that the isomorphism-type of the subfactéf” c M) is independent of the
outer actionu.

8The factthatdire V<™ = n'~'is a standard fact from ‘subfactor theory’ and can be deduced from Proposition
4.15 and facts about ‘the basic construction’.
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(b) It might be worth observing that an equivalent form of Theorem 5.1 is obtained if we
replace conditiorg3) by the following two conditions:
(3.1) which is just condition (3) with replaced by %; and
(3.2) Zy,(a, b) = lez(ab).
(The advantage with this formulation is that it seems to split the cond{8pn
neatly into two components, one corresponding to comultiplication and one

corresponding to multiplication.)
(ReasonOnwritingb = 1y b, itis easy to see that the new version —wBhreplaced

by (3.1) and(3.2) — implies the old version (witti3)). Conversely, it is clear that
(3.1) is a consequence @8) and relation (id). Observe next that if the bottoms of
the two left-most strands are ‘capped’, the LHS®f reduces to the LHS af3.2),
while the RHS 0of(3) reduces to the RHS @B.2), thanks to relationgl), (00) and
the factthad_e(a1)ap =aVa € H.)

(c) We wish to observe here that the dual of the subfa@¥ c M) is isomorphic to
(MH"" < M). One way of seeing this is to verify that the equation

&p(r)r(@) =Y flaz)m(x)r(a1)

extends uniquely to an outer action/#f on M x H suchthatM x H)"" = M. We

omit the straightforward verifications. (This is just ‘the dual action’, and it follows
from Theorem 4.11 and standard facts about ‘duality for subfactors’ (see [PP] or [JS],
for instance) thatM x, H) x3g H* = M ® Endc(H).)

(d) Supposethatf = CG, with G afinite group. Then, the minimal (central) projections
of H* are given by the ‘point-evaluationgév, : ¢ € G} and the associated dual
basis is{g : g € G}. So the presentation given by Theorem 5.3 is equivalent to the
one given in [L].

(e) As in [L], we find that for eaclt > 2, an orthonormal basis fdeMHCM is given
by {Zp, (g1.....8-1) : & € {yu : vki},1 <i <k — 1}, where theB,’s are the
k-tangles given as follows:

Ea R L

* * *
TD‘T—TD% A
if k is odd, and
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if k is even. The proof is very similar to the group case.

() Again, as in [L], the partition function — of what we have call®dL; R) — can
seen to be obtained according to the following prescription, which we illustrate in an
example, rather than give the abstract prescription (which is the same for tangles of
colour Q; and Q).

Suppose we want to compute the partition function of the following#hgle:

(1) Replace each labelled 2-box — with lalbdkay) — by a pair of parallel strands and
insert a symbal; close to the strand through the distinguished paihaad a symbol
Sl> (= S(l2)) close to the other strand. Thus, in our example, we would arrive at the

following:

O

Sd
2

(2) Then arbitrarily pick a base point on each component of the resulting figure, read the
labels on that component in the order opposite to that prescribed by the orientation of
the loop, evaluate/n¢ on each resulting product, multiply the answers, and form the
summations indicated. Thus, in our example, we would obtain
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DD D nd(aw(Sda)er) Vng((Se2)(Sha)(Saz)) /ng (bady) ,

(@ B (© @

and this is the value of the partition function of the labelled 0-tangle that we started
with. (The answer is independent of the choices of base-points giizca trace.)
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