

Wiener's association with control engineering began when he undertook a project on control of anti-aircraft fire from the National Defense Research Council of USA in 1940, with the second world war in full swing. The problem was to estimate the position of an aircraft at a fixed time in future given noisy measurements of its past trajectory. An important innovation of Wiener here was to cast the problem as a statistical problem, bringing over the machinery of 'time series analysis' of statistics to bear upon control and communication engineering.

In the abstract, the problem can be stated as : Given a stationary random process consisting of a (desired) signal plus (undesired) noise, 'filter out' the noise in an appropriate sense and recover a process of estimates of the signal. That is, one seeks to design a box that takes the former as input and yields the latter as output, subject to natural constraints such as causality: The box is not allowed to anticipate future inputs. Wiener worked in a linear framework, i.e., looked for a linear transformation of the input. Such transformations are completely characterized by their output for a unit impulse input, as the output for other inputs can then be deduced by superposition. Equivalently, one looks for the Fourier transform of this 'impulse response', the so called transfer function. Wiener sought to minimize the mean square error between the signal and its estimate subject to causality and characterized the optimal transfer function in terms of the associated spectral quantities. Interestingly, this led him to an integral equation he had already encountered, the Wiener–Hopf equation.

In all fairness, it must be mentioned that this work was preceded by a closely related work by Kolmogorov in the USSR. But it was Wiener's book, *Extrapolation, interpolation and smoothing of stationary time series, with engineering applications* which caught the engineers' fancy, despite its abstruseness (which, along with its yellow jacket, earned it the title of 'yellow peril').

Wiener later tried to handle nonlinear problems as well, using the 'Volterra series' approach, a kind of 'power series' for nonlinear operators. Though this was not as successful and later got eclipsed by other approaches, it led to significant mathematical developments and remains a landmark in the subject.

But the kind of status Wiener enjoys in the control and communication engineering community is not because of a clever solution of a single hard problem. It is because of the two mental leaps implicit in the solution that revolutionized the field. The first is the systematic use of abstract statistical paradigms in engineering. The second, even more important, is the notion of casting an engineering design problem as an abstract optimization problem that seeks to optimize a performance measure subject to static or dynamic descriptions of the underlying system as a constraint. This way of thinking has now become second nature to control and communication engineers, to an extent that it may be hard for them to believe that it could ever have been otherwise.

Wiener went on to work in what he called 'control and communication in the animal and the machine',

a field he dubbed 'cybernetics'. Looking at his influential book on the subject, one finds several topics currently in vogue discussed there, such as learning and self-organization. Although Wiener was by no means the first or the only person to have thought about such things, he is one of the early ones to have held a panoramic view of this circle of ideas, shaping them into a well-defined field of scholarly enquiry.

Vivek S Borkar

Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India