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ON THE GUIONNET-JONES-SHLYAKHTENKO
CONSTRUCTION FOR GRAPHS

VIJAY KODIYALAM AND V. S. SUNDER

ABSTRACT. Using an analogue of the Guionnet-Jones-Shlaykhtenko construc-
tion for graphs we show that their construction applied to any subfactor planar
algebra of finite depth yields an inclusion of interpolated free group factors with
finite parameter, thereby giving another proof of their universality for finite
depth planar algebras.

The main theorem of [GnnJnsShI2008] constructs an extremal finite index 113
subfactor N = My C My = M from a subfactor planar algebra P with the property
that the planar algebra of N C M is isomorphic to P. We show in this paper that
if P is a subfactor planar algebra of modulus § > 1 and of finite depth, then, for the
associated subfactor N C M, there are isomorphisms N = LF(r) and M = LF(s)
for some 1 < 7,5 < oo, where LF(t) for 1 < t < oo is the interpolated free group
factor of and [RAI1994]. This can be regarded as yet another proof of
the fact - see [RAI1994] and - that interpolated free group factors with
finite parameter are universal for finite depth subfactor planar algebras. The word
‘universal’ above is used in the sense of where they essentially prove
that LF(0o) is universal for all subfactor planar algebras.

We shall now outline the structure of this paper. In §1 we construct - see Propo-
sition[Il- a graded, tracial, faithful -probability space Gr(T") associated to a finite,
weighted, bipartite graph I' and establish - see Proposition [Bl - an isomorphism
between Gr(T") and a filtered, tracial, faithful x-probability space F(I") - see Propo-
sition @l Our main interest will be in an associated finite von Neumann algebra
M (T") and some of its corners determined by sets of vertices of I" - specifically the
corner M(T',0) (respectively M (T, 1)) determined by the set of even (respectively
odd) vertices of I'. The main result in §2 asserts - see Theorem 1] - that if ' is a
connected graph with more than one edge, then, M(T") is the direct sum of a Il
factor and a finite-dimensional abelian algebra. The goal of §3 is to express Gr(T', 0)
and M (T, 0) - see Proposition 26 and equation (23] - as amalgamated free products
of the corresponding algebras associated to subgraphs with a single odd vertex. In
84 we determine the structure of M(A,0) - see Corollary[33] - for a graph A with a
single odd vertex. The penultimate §5 proves - see Theorem [37] - one of our main

1


http://arxiv.org/abs/0911.2047v3

2 VIJAY KODIYALAM AND V. S. SUNDER

results : for a connected graph I' with more than one edge and equipped with its
Perron-Frobenius weighting, the algebra M (I") is an interpolated free group factor
with finite parameter. The final §6 applies this - see Theorems 1] and 2] - to show
that the Guionnet-Jones-Shlyakhtenko (henceforth GJS) construction applied to a
finite depth subfactor planar algebra yields an inclusion of interpolated free group

factors with finite parameters.

1. THE GLOBAL GRADED PROBABILITY SPACE ASSOCIATED TO A GRAPH

The goal of this section is to associate a graded, tracial, faithful x-probability
space Gr(T") and a von Neumann algebra M (T") to a graph I' . Recall that a tracial
x-probability space consists of a unital, complex x-algebra A equipped with a trace
7 : A — C that satisfies 7(1) = 1 and 7(a*a) > 0, for all a« € A. It is said to be
graded if the algebra A is graded and to be faithful if 7(a*a) =0 = a =0.

Throughout this paper, by a graph, we will mean a finite, weighted, bipartite
graph which consists of the following data: (i) a finite set V' of ‘vertices’ partitioned
as Vo [ Vi - the sets Vp and V4 will be referred to as sets of even and odd vertices
respectively, (ii) a finite set E of ‘edges’ equipped with ‘start’ and ‘finish’ maps
s,f:E— V and a ‘reversal’ involution £ — £ of E intertwining s and f such that
s(€) € Vo & f(€) € Vi, and (iii) a ‘weighting’ which is a function p : V. — R
normalised such that Y o, p?(v) = 1.

For us, the main examples of such graphs are the principal graphs of non-trivial
11 -subfactors of finite depth (where p is given by the square root of an appro-
priately normalised Perron-Frobenius eigenvector) and their subgraphs (with the
restricted p appropriately normalised).

The construction of Gr(I') involves paths in I', notations and definitions for

which we discuss briefly. A path £ in I' is denoted

(vggvfgvgg---gvg),

n

where vf €V and (vf_l E> vf

) € E, with the notation being self-explanatory. The
start and finish vertex functions on paths in T' will also be denoted by s(-) and
f () respectively and the length function by £(-), so that s(§) = vg, f(¢) =v§ and
() = n. For 0 < i < j < n, we will use notation such as & ; for the path
(’Uf i vf 1 S Uf TOREE & Uf—), where the interval refers to the vertex indices. The
symbol o will denote composition of paths and ~ will stand for path reversal. For
n > 0, the path space P, (T") associated to the graph T is the complex vector space

with basis {[¢] : € is a path of length n in T'}.
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We will now define Gr(T') and its structure maps. As a graded vector space,
Gr(I') = @®p>0P,(T). The multiplication in Gr(I'), denoted by e, is given by
concatenation on the path basis and extended by linearity:

_J0 if £(£) # s(n)
o= o) 16 2ot
The involution * on Gr(T') is defined by conjugate linear extension of the reversal

map ~ on the path basis, i.e., []* = [¢]. We define a linear functional 7 on Gr(T")
motivated by the GJS trace. Suppose that [{] € P,(T") for n > 1. Define

(&) = > ()

where the sum is over all Temperley-Lieb equivalence relationsH Ton{l,2,--- ,n}
(so that it is an empty sum, hence vanishes, for n odd) and 7p is defined by
= I dee II w0
{{i,j}YeTi<j} CeK(T)
where (i) K(T) is the Kreweras complement of T - see [NcaSpc2006] - which is also
a non-crossing partition of {1,2,--- ,n} and (i) v$, = v§ for any ¢ € C (all of which

must be equal if the first product is non-zero). When n = 0, we set 7([(v)]) = p?(v).

Proposition 1. Gr(T') is a graded, unital, associative, x-algebra and T is a nor-

malised trace on Gr(T).

Proof. The only not completely obvious assertion is the traciality of 7, which too
follows, after a little thought, from the rotational invariance of the set of all TL-

equivalence relations and from the definition of the product in Gr(T). O

Note that the multiplicative identity of Gr(T') is the element } y/[(v)] € Po(T').
In view of the fact that the different [(v)], for v € V, are orthogonal idempotents
(adding to 1), we will denote [(v)] also by e,. It is useful to observe that an
element, say z, of P,(I') may be regarded as the square matrix, with rows and
columns indexed by V', with (v, w) entry given by e,xe,, (the part of z which is a
linear combination of paths beginning at v and ending at w).

The proof of positivity and faithfulness of the trace 7 involves some work with
a different avatar of Gr(I') which we will find very useful. We begin by recalling,
from [JnsShIWIk2008§], the category epi-TL which we will denote by £. The objects
of £ are denoted [n] for n > 0 and thought of as n-points (labelled 1,2,3,---,n)
arranged on a horizontal line. A morphism in Hom([n], [m]) consists of a rectangle

with m-points on the top horizontal line, n-points on the bottom horizontal line

1These are the non-crossing relations with every class having two elements.
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and a Temperley-Lieb like tangle in between, subject to the restriction that each of
the points above is joined to a point below. It must be observed that Hom([n], [m])
is non-empty precisely when n — m is a non-negative even integer. Morphisms are
composed by vertical stacking.

The morphisms in £ are generated by those which have a single cap on the
bottom line. Let SP* : [n] — [n — 2] (for 1 < ¢ < n) denote the generator with
the i*" and (i + 1)** points on the bottom line capped. Some work shows that all

relations among the morphisms are consequences of the relations
—2gn _ gn—2
0 5705 = 5775

forn—2 > p > q > 1. In fact any element of Hom([m + 2k|,[m]) is uniquely
expressible in the form ST 287 S with 1 <y <y < -+ < i < m+2k.
(The left end points of the k caps of the morphism are precisely at the places
11,42, ,ig.) Such a morphism will be called non-nested if the caps are ‘not nested’,
or equivalently, if 4,11 > i; + 2 for each j < k in its ‘canonical decomposition’ as
above.

It follows that the category £ ‘acts’ on the collection of vector spaces P, (T') in
the sense that any element of Hom([n],[m]) yields a vector space homomorphism
P,(I") — P, (") with this assignment being compatible with compositions on both
sides. Such an action can be deﬁnecﬂ with ST acting by

13

2) sn(le]) = 5&,@%[&[0,i_1] &t
Vit1

for [£] € P,(T"). More generally, given an arbitrary S € Hom([n], [m]), it specifies a
partition of [n] as T'U E, where T is the subset of points in [n] that are joined to a
point in [m] and F is its complement. It also specifies a Temperley-Lieb equivalence

relation ~ on E. The action of S is then explicitly given by

vs
(3) sieh= I (a&,gj Li) forcrél],

(i€ ~ii<j M(’UE
where the concatenation is done in increasing order of elements of T and is inter-
preted as [(f(€))] if T = 0. (As in the equations displayed above, we shall often
identify elements of Hom([n],[m]) with the associated operators from P,(T) to
P (T).)
The following lemma is a special case (of Proposition B]) which both motivates

and is used in the proof of a different expression for S([¢]) when S € Hom([2n], [0]).

2Thus we are saying that the operators defined by equation (2)) satisfy the relations ().
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Note that in this case, E = {1,2,---,2n} and ~ = S regarded as an equivalence

relation.

Lemma 2. Let [£] € P2, (') and S € Hom([2n],[0]) be given by {{1,2n},{2,2n —
1}, .-+, {n,n+1}}. Then,

S((€]) =

n(vl) T ¢
2 o, % [(v3,)]-
u(vén) E Eibony1—i

Proof. We may assume that & is a path consistent with S in the sense that & = é;

whenever {i,j} € S, since otherwise, both sides of the desired equality vanish.

Thus, & = &,41—¢ and in particular, Uf = Ugnﬂ-

for each i =10,1,---,2n.
Using equation (@), it now suffices to check that

n

11 plog)  p(of)

i=1 :u(vgn-‘rl—i) /L(vgn)
§

But substituting Uf =v3,,_,;, we see that the product on the left telescopes to the

expression on the right. O

We next treat the case of a general S.

Proposition 3. For [£] € P, (T) and S € Hom([2n], [0]),

s v
sy =2l (s, o) [I o)

N(Ugn) {i,j}€S1i<j<n M(U) {i,j}€S:i<n<j
¢
,U(vi)
W || A S R
{ij}eSm<i<j n(v;)

Sketch of Proof. As in the proof of Lemma [2 we may assume that £ is a path
consistent with S. In this case, comparison with equation [B) now shows that it

suffices to see the following:

) m@>:m¢>

{i,j}€Sri<n<j (“(Uf) “(Ugn)'
We illustrate by way of an example why this holds. Consider the S in Figure [
which corresponds to the equivalence relation {{1,10},{2,7},{3,6},{4,5},{8,9}}
The numbers 1,2,---,10 below the line index the edges of £ while the numbers
0,1,---,10 above index the vertices of £&. The LHS of equation () in this example

1S

p(v]) p(vs) p(vs)
Y

1(v5o) p(vs) p(vg)
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FIGURE 1. The element S € Hom([10],[0])

¢

2

in a single ‘region’ are equal. Thus in this example, vg = vfo, vf = v§ = vg, vg = vg

and v§ = vg. Hence, after cancellation, the LHS does simplify to the RHS.

The point now is that when the Kronecker delta terms are all non-zero, all the v

Even in general, it should be clear that this happens. For the LHS of equation
() does not depend on those classes {7, 5} of S for which both 4, j are either (i) at
most n or (i) at least n + 1. Observing that the numbers of classes satisfying (i)
and (ii) are equal, we delete these classes and then we are in a situation where

Lemma [2] applies. O

We will next define the algebra F'(T") and its structure maps. As a vector space,
F(T') = ®p>0P,(T"). The multiplication, denoted #, is defined as follows on the
path basis and extended linearly. Given [£] € P,,,(I") and [n] € P,(T), the product
[€]#[n] has a component in Pp,4p_2k(T") for 0 < k < min{m,n}, this component
being given by

([5]#[77])m+n72k =

{[ﬂlm%kn s if k=0
S i S o o gAnRgmin (e [n]) if k>0

The * on F(T) is exactly the same as that on Gr(T') - namely [¢]* = [¢] extended
conjugate linearly. Finally, define a linear functional ¢ on F(T') by setting its re-
striction to P,(T') for n > 1 to be 0 and by linearly extending the map [(v)] — u?(v)
on Py(T).

Proposition 4. F(T') is a unital, associative, x-algebra and t is a faithful, positive
trace on F(T).

Proof. A proof very similar to that in [KdySnd2008], and which we consequently
omit, shows that F'(I") is a unital, associative x-algebra. To show that ¢ is a faithful,
positive trace it suffices to check that (x,y) = t(y*z) defines an inner-product on
F(T) satisfying (z,y) = (y*,2z*). Consider the path basis [¢] of F(T'). It follows
from the definitions and Lemma 2 that ([&], [7]) = d¢ nu(s(€))p(f(€)), finishing the
proof. O
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We next define maps ¢ : Gr(I') — F(T') and ¢ : F(I') — Gr(T") as follows. Each
of these restricts to maps from P, (I') to &I _oP(I'). Consequently, the maps
¢,% may be represented by upper-triangular matrices ((¢72')) and ((¢)]7")) where

oYt Py () — Pp(T) are zero if m > n. We define ¢! to be the (action by
the) sum of all elements of Hom([n], [m]) and 7" to be (—1)"~™ times the (action
by the) sum of all the non-nested elements of Hom([n], [m]).
We now have the following proposition that identifies Gr(T") and F(T").

Proposition 5. The maps ¢ and ¢ define mutually inverse x-isomorphisms be-

tween Gr(T") and F(T') that intertwine the functionals 7 and t.

The proof uses the following lemma about the Kreweras complement of Temperley-

Lieb equivalence relations.

Lemma 6. Let S be a Temperley-Lieb equivalence relation on {1,2,---,2n} and
K(S) be its Kreweras complement. Then, for any class C = {a1,--- ,ar} of K(S)
with a1 < -+ < ag, all the a; have the same parity and {a; + 1,a;41} € S for each

t=1,---k (where a; + 1 is computed modulo 2n and i+ 1 is computed modulo k).

Proof. Induce on n, with the basis case n = 1 following by a direct check. For
n > 1 take i < 2n — 1 largest so that {7, + 1} € S. Let T = S|{1,2.... 2n}\{i,i+1}-
The Kreweras complement of S is obtained from that of T by adding i + 1 to the
class of ¢ — 1 and adding the singleton class {i}. Observe that i + 1 is the largest
element in its K (S) class by choice of i. Now by induction, the parity assertion
holds and further, the new {a; + 1, a;41} that are needed to be shown to belong to
S are both {i,i+ 1} which is, indeed, in S. )

Proof of Proposition[3. The proof that the maps ¢ and v define mutually inverse
k-isomorphisms between Gr(I') and F(I") is nearly identical to that of Lemma 5.1
in [JnsShIWIk2008] and depends essentially only on properties of the category &.
We omit it here.

The intertwining assertion that needs to be checked is that 7 =t o ¢ on Gr(T").
Note that both sides vanish on paths of odd length and that if [¢] is a path of
length 2n, then, 7([¢]) = >_, 7r([£]) where the sum is over all Temperley-Lieb re-
lations 7" on {1,2,---,2n} while t o ¢([£]) = t(D>_g S([¢])) where the sum is over
all S € Hom([2n],]0]), since ¢ vanishes on paths of positive length. The natural
identification between Temperley-Lieb equivalence relations on {1,2,---,2n} and
Hom([2n], [0]) shows that it suffices to see that 75([§]) = toS([€]) for any Temperley-
Lieb relation S on {1,2,---,2n}. Now both these vanish unless s(§) = f(§); so we
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assume this. Unravelling the definitions, we need to see that under these assump-

tions,

08
0 oo IT wer-sr 11 (i),

{{i,j}GS:i<J} " CER (s {{i,j}€S:i<j} (v
with K(S) being the Kreweras complement of S and vg = v§ for any c € C. We
may further assume that £ is a path consistent with S in the sense that & = é;

whenever {i,j} € S and show the following

i T st T ()

CEK(S {{i,j}eS:i<j} p(vj

The product on the right may be rewritten as Hfil p(v2)es ) where eg(i) is 1
or —1 according as ¢ is the smaller or larger element in its S-class. Next, we may
regroup this product in terms of classes of K'(S) as [[cc e (s) [cec w(v)€s(©). Now,
as we have observed before, if ¢ is consistent with S then all v$ for ¢ € C are equal (to
a vertex denoted vé) and so this product now becomes J[cc e (g) ,u(vg)zcec es(e),
Comparing with the product on the left, what needs to be seen is that if C' is any
class of K(.S) then
(6) C;ES(C) :{ 2—|c||C| e

To prove equation (@), it suffices to see that for any non-external (i.e., not con-
taining 2n) class C of K(5), es(c) is 1 or —1 according as c is the smallest element
in C or not, while for the external class, eg(c) = —1 for all its elements. But this
is an easy consequence of Lemmal8l If C' = {ay, - - ,ar} is a K(5) class for which
ay, # 2n, the definition of eg (together with Lemma[G]) shows that es(a;) = 1 while
es(a;) = —1 for i > 2. On the other hand, if ax = 2n, then it similarly follows
that all eg(a;) = —1, completing the proof of equation (B]) and consequently of the

proposition. O
An immediate consequence of Proposition [Alis the following corollary.

Corollary 7. For any graph T, (Gr(T),T) is a graded, tracial, faithful x-probability

space. a

We recall that if (A,7) is a tracial probability space and e € A is a non-zero
projection, then the corner eAe is naturally a tracial probability space where the
trace is scaled so as to be 1 on e. We will find some corners of Gr(I") to be useful.
For a vertex v € V, we denote by Gr(T', v) the probability space e, Gr(I")e,,. Letting

ep = Zvevo e, - the sum of the projections corresponding to the even vertices - we
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will denote egGr(I')eg by Gr(T',0). Similarly, with e; = >
denote e;Gr(T")ey by Gr(T, 1).
The bipartite nature of the graph I' implies that the odd graded pieces of these

wev, Gw = 1 —eg, we

graded algebras reduce to zero. In particular, Gr(T', v) has as basis {[¢] : £ is a path
beginning and ending at v} and is a connected graded algebra, while Gr(T',0) (resp.
Gr(T, 1)) has as basis {[{] : £ is a path beginning and ending at an even (resp. odd)
vertex}. There are also corresponding notions in the F(T'") picture such as F(T',v),
F(T,0) or F(I',1) and we will use self-explanatory notation such as P,(T",0) or
P,(T,v). Thus, for instance, F(I',v) = ®p>0P2n (T, v). We will also tacitly use the
fact that the isomorphism of Gr(I') onto F(I") of Proposition [ takes Gr(I',v) to
F(T',v) for each v € V. In particular, it takes Gr(T',0) to F(I',0) and Gr(T',1) to
F(T,1).

Consider the Hilbert space H(I') obtained by completing F(I") for its inner-

product, which has orthonormal basis given by all

1
™ = oo

where £ is a path in I'. Equivalently, it is the Hilbert space direct sum @®y,>0P,(T")
where each P, (T") has orthonormal basis {{} with £ a path in T' of length n. We

denote its norm by || - ||.

We also need the local Hilbert spaces H (I, v) which we define to be the comple-
tions of F(T', v) for their trace norms. Note that F(T',v) is a (non-unital) subalgebra
of F(T') and that the norm on F(T',v) is a scaled version of the norm on F(T"). The
paths [£] that begin and end at v are an orthonormal basis of F(T',v) (while they
have norm pu(v) regarded as elements of F(T')).

We wish to show that the left regular representation of F'(I') on itself extends to
a bounded representation on H(T'). It clearly suffices to see that for a € P, (') and
b € F(T') there exists a constant C' (depending only on a) such that ||a#b|| < C||b|].
The proof of Proposition 4.3 in [KdySnd2008] goes over to show that even the
following is sufficient (and that we may take C' = (2m + 1)K).

Proposition 8. Fora € P,,,(T') andb € P, (T) there exists a constant K (depending
only on a) such that ||(a#b):|| < K|[b|| for any t with |m —n| <t < m +n.

Proof. We will work with the orthonormal basis {£} rather than the orthogonal
basis [£]. Observe that

(0 if f(€) # s(n)
@t ={ Lo feon it 1O )
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We may assume that a = {{}. Suppose that b =3, ¢,{n}, where the sum is over
all paths 7 in T of length n. Since (a#b); is obtained by an application of at most
m S'’s to E{n:f(f):s(n)} %{5 on}, it suffices to bound the operator norm of
the 57" and the Hilbert space norm of } ¢, «c)_s(m)} u(f—&)){g on}.
It is easily checked that the adjoint of S}* is given explicitly by
w(w ~
FOD=Y X e ee sl

Yol Bw)eE /L(vi_l)
1

and consequently that

SE(SE) ([n)) = (D{p we ) (- (55")))){77},

1—1

for all {n} € P,_2(T"). Thus, for a vertex v, if we define
<w>>2
o e 2
- B (4

and § = maz,ev {6(v)}, then the operator norm of SP* is bounded above by V/4.
Finally, note that |[b||? = pP |cn|? while

IIZ {5 ontll* < 2Zlcnl2 Wllbll2

Thus we may take K = % for a = {&} € P,,,(T") (the reason for the ‘max’

being to allow for the cases 6 <1 and § > 1). O

We thus have a bounded left regular representation A : F(I') — L(H(I')) and we
set M (T") = A(F(T'))”. Similarly, for i = 0, 1, we have the left regular representation
A: F(T,i) = L(H(T,1)) and we may define M(T',i) = A(F(T',4))". Tt is easy to see
that - see Lemma 4.4 of [KdySnd2008] - each of M (T'), M(T',0) and M (T, 1) is a
finite von Neumann algebra. The goal of the next section is to show that M (T") is

‘almost a II;-factor’.

2. ALMOST II;-FACTORIALITY OF M(T)

Throughout this section, our standing assumption will be that the graph T" is
connected and has at least one edge. For such a graph, it is clear that Gr(T") is
infinite-dimensional. The main results of this section apply only to graphs with at
least two edges and show that the von Neumann algebra M (T") is a direct sum of a
IT-factor and a finite-dimensional abelian algebra (possibly {0}) by analysing the
local graded probability spaces Gr(T',v) for each vertex v € V.
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In the analysis of Gr(I',v), an action by a certain category that we denote by
C(9) (where § € C is some fixed non-zero parameter) will be extremely important,
so we begin by describing this category.

Its objects are [0], [1],[2],- - -, where we think of [n] as a set of 2n points on a
horizontal line labelled 1,2, ---,2n. Note that the objects of C(d) are denoted by
exactly the same notation as objects of £ but mean different things.

The set Hom([n],[m]) is stipulated to have basis given by all T(P, Q)" where
P C [m] and @ C [n] are intervals of equal cardinality, where T'([4,5],[3,4])8 €
Hom([5], [8]) is illustrated in Figure@below. The general prescription for T'(P, Q)™

1 23 45 6 7 8 9 1011 1213 1415 16

MM M

1 5 6 7

FIGURE 2. The morphism T'([4,5], [3,4])5 € Hom([5],[8])

is the following. Points below labelled by elements of the sets 2Q) and 2Q) — 1 are
joined to points above labelled by 2P and 2P — 1 in order preserving fashion, and
the rest are capped or cupped off without nesting.

Composition in C(d) for the basis elements is as in Temperley-Lieb categories -
by stacking the pictures and replacing each closed loop that appears with a multi-

plicative §, thus yielding a multiple of another basis element. In order to explicitly

m
n

write down the composition rule in terms of the T'(P,Q)", note that there is a
unique order preserving bijection fpg : P — @ and that for p € P, the marked
points above that are labelled by 2p—1 and 2p are joined, respectively, to the points
below that are labelled by 2fpg(p) — 1 and 2fpg(p). In the example above, for

instance, fpg(p) =p — 1. Then the composition rule is seen to be
T(P,Q); o T(R,S); = 6" @HT(Y, 2);,

where Y = fpo(@NR) and Z = frs(Q N R).

For n > 1 let A” € Hom([n],[n — 1]) be the morphism with a single cap
in the bottom left corner (i.e., A" = T({1,2,---,n —1},{2,3,---,n})""!) and
A% € Hom([n],[n — 1]) be the morphism with a single cap in the bottom right
corner (ie., A7 =T({1,2,---,n—1},{1,2,--- ,n — 1})"~!). Similarly, for n >0
let C™ € Hom([n],[n + 1]) be the morphism with a single cup in the top left
corner and C} € Hom([n],[n + 1]) be the morphism with a single cup in the
top right corner. Thus, C" = T({2,3,---,n+ 1},{1,2,--- ,n})"*" and C} =
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T({1,2,---,n},{1,2,--- ,n})"T. (The letters A and C are meant to suggest sim-

ilarity to ‘annihilation’ and creation’.)

Proposition 9. If § # 0, the category C(9) is generated by the set
{A%} :n>1}U{C%} :n >0}

of morphisms, and presented by the following relations, valid for all n > 0:

(8) AL = AL

(9) ct =

(10) AMTIATTE = gt gn?
(11) AMHICr = b idy,
(12) Art2ontlt = cmgntt
(13) A’}r”CfH _ OﬁAi-i—l
(14) AYTICY = §idpy,
(15) crtier = crtten

More explicitly, suppose a category D has the property that Hom(D,D') is a
complex vector space for every pair (D, D') of objects. Then, in order to specify a
functor from C(8) to D, it (is necessary and it) suffices to find objects D,, € D for
n > 0 and morphisms /Nl’jt Dy, — Dyp—1 forn>1 and 6’2 : D, — Dy, forn >0
satisfying the relations (8)-({I3) above. O

Proof. It is easy to check that the relations (8])-(I3) are satisfied.
To see that these are the only relations, we need to first observe that the following

identities, for k,l > 0, are consequences of them:

k k-l el
(16) AL AEAL AR gL g
(17) O_lic_ﬂfl .. Oﬂ’icﬁfl . Og _ O_lic_+l71 o OSL

These two identities are seen inductively to follow from the equations numbered
@®) and ([@0), and from (@) and (I3 respectively, from among the above relations.
We next describe a ‘canonical form’ for every morphism in C(d) as a word in
the generators, in such a way that if we assign the ‘rank’ 1, 2, 3, and 4 to any
Cy,C_, Ay and A_ respectively, then if the word contains generators of ranks 4

and j, with ¢ < j, then the generator of rank ¢ will appear to the left of the one
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with rank j. For example, the morphism illustrated in Figure [2]) is expressed as
T([4,5],[3,4]))8 = CT.CCCTCt O3 C% A3 AL AD

(The algorithm for arriving at this word is to ‘first list all the caps from left to right,
and then all the cups also from left to right’.) Notice that it is only when there
are no through strings that there is an ambiguity (about whether to choose a + or
a - for the A’s and C’s, but this is resolved using equations ([I8) and (7)) above,
using which we can demand in the case of no through strings, that all C’s and A’s
come with the subscript ‘4+’. On the other hand, if there are through strings, the
number of through strings can be read off from this word, at the point of transition
from C’s to A’s (the number of through strings is exactly twice the superscript of
the rightmost C). (By the way, it is in order to lay hands on id,) that we need the
condition § # 0.)

Finally, if the ‘rank ordering’ specified above is violated in any word in the gen-
erators, such instances may be rectified uniquely by using (I0)-(IT). (For example,
any instance where an A_ (of rank 4) precedes any generator of rank 3, 2, or 1, is
set right by equations numbered (I0)-(12).) O

We use Proposition[lto get a functor from C(4(v)) to the category D of C-vector

2
spaces and C-linear maps. Recall that §(v) = 3, [{p: (v & w) € E}| (Z(&'D . Let

D,, be P»,(T',v) and define the action of the generating morphisms as follows on
[f] S Pzn(l—‘,’u).

~ ,UE ~n w ~

An(€]) =0, & Mgy o C([) = Cu 2w tryers oo ok
An (vgnfl) ~n w ~
AL = b, g it G2 CHIED) = Zu X tuer i £ 0 P07

A little calculation now proves the following.

Proposition 10. The action by the generators given by the equations above extends
to give a well defined functor from C(6(v)) to D. O

Note that regarding Pa,(T',v) as subspaces of H(T',v), the maps A" and C™
are adjoints of each other, as are ;11+1 and 6’2

We now try to determine the structure of the center of Gr(I',v). In particular,
we show that it is at most two dimensional. We will find the following notation
useful. For a € F(T',v) let [a] = {¢ € H(T,v) : Ma)(§) = p(a)(§)} ] which is
a closed subspace of H(I',v). Denote by € the vector e, € F(I',v) C H(T,v),
note that this is (cyclic and) separating for M (T', v) and thus the operator equation

ax = za is equivalent to the vector inclusion zQ € [a] for z € M (T, v).

3As usual, we wreite p(a) = JA(a)*J, with J being the modular conjugation operator.
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Our strategy is similar to that in [KdySnd2008], with some differences. We first
define two elements ¢ € P»(I',v) and d € Py(T',v). (For notational convenience we
do not use the possibly more correct notation ¢, and d,.) We then show that [¢]N[d]
is 1-dimensional if §(v) > 1 and 2-dimensional if §(v) < 1 (assuming that the graph
I' in question has at least two edges). Finally we show that in case 6(v) < 1, the
centre of Gr(T',v) is actually 2-dimensional and that the cut-down by one of the
central projections is just C. Now some simple computations give the desired result
that M(T') is either a II;-factor or a direct sum of one with a finite-dimensional
abelian algebra.

In the sequel, we dispense with ‘tilde’s and continue to use the same symbol for
morphisms in C(d) and the associated linear maps between the Pa, (T, v).

Let ¢ € P»(T,v) be the element C°(1). Explicitly,

=Y ¥ Ewes
p:(vow)eEE

Let ¢o = 1 and by ¢, for n > 1, we will denote the element C*1C" 2. .. C°(1).
Thus co,, € P2, (', v) and ¢ = ¢. Note that by induction on n, ca, is seen to be
the highest degree term of ¢” in F(T',v) and to be a polynomial in ¢ of degree n.
Let C C H(T,v) be the closed subspace spanned by all the ¢3,§ for n > 0. We
then have the following crucial result which is the analogue of Proposition 5.4 of
[KdySnd2008].

Proposition 11. [¢] =C.

Before sketching a proof, we state a key lemma used which is the analogue of
Lemma 5.6 of [KdySnd2008]. By C2, we denote the (1-dimensional) subspace of
Py, (', v) spanned by ca,, and by O3 its orthogonal complement in P, (', v). Thus
if C* is the orthogonal complement of C' in H(T,v), then C* = @,,50C5,.

Lemma 12. Forn >0, the map C3, 3 v — z = (c#x — 14C)2nt2 € Pania(T,0)

is injective with inverse given by
n
T = 25(’0)71571([17” + 1- t]a [t + 15 n+ 1])2—}-1(’2)
t=1
We omit the proof except to remark that (c#x)ant2 and (z#c)2,12 are just

C™(x) and C%(x). We also omit the proof of the next corollary which is the
analogue of Corollary 5.7 of [KdySnd2008] with identical proof.

Corollary 13. Suppose that & = (29,71, ++) € @5 ,Cs,, = C* and satisfies
Me)(&) = ple)(€). i.e., £ € CLNc]. Then, for m >n > 0 with m —n = 2r, we
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have:

n

r, = Z(S(U)’(t”’l){T([l,n+1—t],[t+7",n+7"])%(33m)
t=1
—T(Ln+1—t],[t+r+Ln+r+1)"(zm)}

One more result needed in proving Proposition [Ilis the following norm estimate
which is the analogue of Lemma 5.8 of [KdySnd200§].

Lemma 14. Suppose that © = x,, € Py, (T',v) C F(T,v) and lety = T'(P, Q) (x) €
Py, C F(T,0) for some morphism T(P,Q)™. Then |ly|| < 6(v)ztm)=IPl||z|.

Proof. Consider the linear extension of the map defined by Hom/([n], [m]) > T(P, Q)" —
5(1})%("*‘”)_“3' € C for each n,m > 0. The observation is that it is multiplica-
tive on composition. For consider T'(P,Q);' € Hom([n],[m]) and T(R,S); €
Hom([n],[p]). Their composition is given by §(v)*~IQUEIT (Y, Z)yt where Y =
f;é (QNR) and Z = frs(Q N R). The multiplicativity assertion amounts to veri-
fying that

1 1 1
SOu+m) =[P+ 5(n+p) — Rl =n = |QUR|+ 5 (m+p) — Y],

which is easily verified to hold.

Hence it suffices to verify the norm estimate when T'(P, Q)" is one of the gener-
ators C or A"} of the category C(d(v)). Note that the norm estimate for all these
generators is just ||y|| < 6(v)2||z||. For C7, we have (C7)*Ct = ATHC = §(v)I™
while for A, we have AL (A%)* = ALC™! = §(v)I"~!. This proves the norm es-

timate for generators and completes the proof of the lemma. O

Proof of Proposition[I1l Each ¢y, being a polynomial in ¢, clearly commutes with
¢ and it follows that C' C [¢]. To prove the other inclusion, it is enough to see that
C* N |[c] = {0}. Suppose that & = (x¢,x1,---) € C* N [c]. Note that 2y = 0 since
zg € Cg- while Cp = Py(I',0) = C. By Corollary [3| we have for m > n > 0 with
m—n =2r,

n

o= D0 T4 1= 4], [+ 7 n 1)) ()
t=1
~T(n+1—t,t+r+1L,n+r+ 1) (x,)}

Now, applying the norm estimate from Lemma[I4 and using the triangle inequality
gives ||z,|| < 2n||xm|]. Now & € H(T,v) = limm—co||Zm|| = 0 and so z,, = 0 for
all n > 0. Hence £ = 0, completing the proof. O
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We now consider the element d € Py(T",v) defined explicitly by

(
=Y ¥ Y ¥ =
Yop(vBw)eE g:(wim)eE

[v&nggw—ﬁ)v].

~

~—

Loosely, d can be thought of as pictorially represented as in Figure Bl
N
FIGURE 3. Pictorial representation of d

It must be noted that the action of the category C(d) on F(I', v) may be extended
to an action of the entire Temperley-Lieb category on F(I',v) if u? is a Perron-
Frobenius eigenvector for the incidence matrix of I', however, this may no longer
be possible if the ‘Perron-Frobenius assumption’ is dropped. Since we shall have
to address that situation, we do not assume this. Nevertheless, we will see that in
situations of interest for us, this pictorial representation will be of heuristic value.

We wish to consider a special element of M (T, v) defined when d(v) < 1. Since
the proof of existence of this element requires a careful norm estimate, we digress

with the necessary lemma.

Lemma 15. Suppose the weighting on T is such that 6(v) < 1. The sequence of
elements T, = Y0 o(—=1)"can, € F(I,v) C HM(F,’U) C L(H(T,v)) converge in

the strong operator topology. Hence the series ZZOZO(—l)"C% defines an element
zy € M(T,v).

Proof. 1t suffices to see that the x,, are uniformly bounded in norm and that for £
in a dense subspace of H(I',v), the sequence z,,§ converges in H(I',v). Note that
if € =Q( =|[(v)] ) - the vacuum vector of H (T, v) - then, z,,& = > ((—1)"c2, .
Since ||c2,Q|[? = §(v)", when §(v) < 1, the z,,& converge in H(T',v). It follows
that on the dense subspace M (T, v)'Q too, we obtain convergence. It remains to
prove the norm estimate.

Consider the block matrix representing left-multiplication by ¢z, on the Hilbert
space H (T", v) with respect to the orthogonal decomposition H (T', v) = &2 o Pan (T, v).
The definition of multiplication in F(I',v) shows that for any path £ of length 27,

min{2j,2n}

cn#tlel = Y. crlElallg
k=0
where, to avoid heavy notation, for [£] € P;(T",v) we write CP A[¢] to mean

(O AL R A Ay LAY’ U AR’ sy VR T3}

4This inclusion is, naturally, via .
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Thus the (7, j)-block (note that ¢, 5 > 0) of the matrix for A(cay,) is 0 unless |i — j| <

n < i+ 7, in which case it is given by

oLl AL

It now follows that the (4, j)-block of the matrix for ., is given by

S oot

li—jl<n<min{m,i+j}

Every odd term of this sum (starting with the first which corresponds to n = |i—
jl) is equal, except for sign, with the succeeding even term and so the sum vanishes
when there are an even number of terms and equals its last term when there are an
odd number of terms. Note that the number of terms is min{m,i+j} —|i — j| + 1.

We consider two cases depending on whether m <i+j or m > i+ j.

Case I: If m > i + j, the number of terms is certainly odd and so

(@) = (~1HC A

J

Case II: If i + 7 > m the number of terms is odd or even according as m and ¢ + j

have the same parity or not and so, in this case,

(xm); =

0 N - ifm<fi—j|or (i+j) —mis odd
(_UmCLm}J“JAUHzFZJ otherwise

For instance, the matrix for zs is given by

I —-A A2 0 0
-C CA 0 A? 0
C? 0 CA 0 A2

0 C? 0 CA 0

0 0 C? 0 CA

Observe that the (7, j) entry of a,, is non-zero only if |i — j| < m in which case it
is of the form £CPA? with p+q > |i—j|. Since each of A and C has norm bounded

above by (5(1})%, the diagonal of x,,, with ¢ —j =t has norm at most (5(1})% and so

[£] t

Ty, itself has norm bounded by >}" d(v) T <1+2) 72 6(v)2. Thus the zy,

are uniformly bounded in norm, finishing the proof. O

For reasons that will become clear in Proposition [[7, we define (in the notation

introduced in Lemma [T]),

I { 0 if 6(v) >1
vl (1=6(w)zy i) <1

e

1

II _
and e,’ = e, — €.
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The next proposition is the analogue of Proposition 5.5 of [KdySnd2008§]; the
reader is urged to compare the proof of that proposition with this one. For the rest

of this section, I will always denote a connected graph with at least two edges.

Proposition 16. Suppose that T' is a connected graph with at least two edges.
Then, [c] N [d] has basis {1} if §(v) > 1 and basis {1, z,} if §(v) < 1.

Proof. Suppose that £ = (z¢, 22,24, ) € [¢] N [d]. Since £ € [¢] = C by Propo-
sition [II] there exist scalars y(2n) € C such that z2, = y(2n)ce, and since
¢ € H(T',v), we have that ||¢]]* = > 07 [y(2n)[?6(v)"™ < occ.

Some computation now shows that for ¢ > 2, the Py, (T", v) component of A(d)([¢])—
p(d)([€]) is given by (y(2t — 2) 4+ y(2t — 4))(d#car—a4 — cor—a#d)2:. Writing out
(d#tcat—gq — cor—a#td)or for t > 2 in terms of the path basis, inspection shows that
it cannot vanish since I" has at least two edges. Thus each y(2¢t — 2) + y(2t — 4)
vanishes for ¢ > 2.

Hence if y(2) = y, then all y(4n — 2) = y and all y(4n) = —y (for n > 1). Now
the norm condition shows that if 6(v) > 1, then y = 0 so that £ is a multiple of
(1,0,0,---), while if §(v) < 1, then ¢ is a linear combination of 1 and z,. O

We now justify the choice of notation for e/ and el!.

Proposition 17. Suppose that T' is a connected graph with at least two edges.
Then,

(1) If 5(v) < 1, then Z(M(T,v)) is 2-dimensional and has basis {el el!}. The
element el € M(T,v) is a minimal (and central) projection.
(2) el is a minimal central projection in M(T',v) and el! M (T, v)el! is a II;-

factor; in particular, M(T,v) is a factor if 6(v) > 1.
Proof. (1) Since Z(M(T,v))Q2 C [¢] N [d] and Z(M (T, v)) = Z(M(T,v))S is injec-
tive, Proposition [I6] implies that Z(M (I",v)) is at most 2-dimensional.
If 6(v) < 1, it follows from Proposition [0 that Z(M(T",v)) is at most two
dimensional and contained in the span of e, (the identity for M(T,v)) and el.
We shall regard cz,, as an element of e, F(I')e, C F(I") (so that ¢y = e,) and
consider a length one path & of F(T"). Calculation shows that

ConF[E] = can @ [£] + can—2 @ [{]
and therefore that

z#[€] =0
Similarly, (or by simply taking adjoints) we find that also

[{]#ZU =0
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Associativity of multiplication implies that these equations hold even when [¢] is a
path of length greater than 1 from w to z.
Finally, if € is a path of length 0, then ¢ = e,, for some w, and

_ 0 ifw#v
sl =l ={ 0 HuZ
It follows easily that z, € Z(M(T')) and that
(18) 2, M(T") = Cz,
Taking adjoints yields
(19) M(T)z, = Cz,
Deduce that there is some constant v > 0 such that 22 = vz,.
By comparing their inner products (in H(T',v)) with e,, we find that
Do) =~y
n=0
and hence that v = (1 — 6(v))~!. Thus we find that indeed el is a projection in

M (T") which is central and minimal, since

(20) el M(T)e

(2) It is seen from Proposition that in both cases, el! is a minimal central
projection. The assumed non-triviality of I' ensures that M (I',v) is an infinite-
dimensional but finite von Neumann algebra, it is seen (from the minimality of e/

in case 0(v) < 1) that the localisation e!Z M (T, v)e!! is a II; factor. O

Corollary 18. For distinct vertices v and w, we have

e’ M(T)e, = {0} = e, M(I')e!

v

Proof. We only need to prove the nontrivial case when §(v) < 1. First deduce
from equation (I8) (when 6(v) < 1) and the definition of e/ (when §(v) > 1) that
el M(T) = Cel. Hence, elM(T')e, = Cele, = 0. The second assertion of the
corollary is obtained by taking adjoints in the first. O

Before proceeding to the next corollary to Proposition 7 we digress with an

elementary fact about local and global behaviour of von Neumann algebras.

Lemma 19. Suppose {p; : © € I} is a partition of the identity element into a family
of pairwise orthogonal projections of a von Neumann algebra M.

Then the following conditions are equivalent:

(1) M is a factor;

(2) piMp; is a factor for alli € I, and p;Mp; # {0} Vi,j5 .
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Proof. We only indicate the proof of the non-trivial implication (2) = (1). For
this, suppose © € Z(M). Let us write z;; = p;xp;. The assumption (2) clearly
implies that (i) z;; = 0 for ¢ # j (since  commutes with each p;); and (ii) for each
i €I, zy; = \p; for some \; € C. Fix an arbitrary pair (¢, j) of distinct indices
from I. By assumption, there exists a non-zero y € M satistying y = p;yp;. The
requirement xy = yx is seen to now imply that A\;y = A\;y and hence that A\; = A;,

and this is true for all 4, j. Hence, z =), \ip; € CI. o

Corollary 20. Assume that ' is a connected graph with at least two edges. Then,
(1) eXIM(T)ell #0 for all vertices v, w
(2) If welet el =% oy el, then ! M(T)e! = P, Cel.
(3) If we let !t =3\, ell, then e M(D)e!! is a I1y factor.

Proof. (1) Since I' is connected, we can find a finite path ¢ with s(§) = v and
f(&) = w. Then, deduce from Corollary [I8 that
0 # [
ev#[E]#ew
= e #lEl#el

(2) First observe that as el <e,, for all w € V, it follows that

vAw = el M(D)el,

by Corollary [I§
On the other hand

e!M(T)el = Ce!
The desired assertion follows from the orthogonality of the el’s.
(3) As has already been observed, e,M(T')e, = M(T,v) since M(T") (resp.,
M (T, v)) is generated (as a von Neumann algebra) by the set of all finite paths [¢]
(resp., those paths which start and finish at v, i.e., which satisfy [{] = e, #[]#eo)-

Given this observation, the assertion to be proved is seen to follow from Proposition
[[7 Lemma [[9 and the already established part (1) of this Corollary. O

We have finally arrived at the main result of this section, whose statement uses

the foregoing notation and which is an immediate consequence of Corollary 20l
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Theorem 21. Assume I' is a connected graph with at least two edges. Then, we
have the following isomorphism of non-commutative probability spaces:
MOy=Me P Ce!
{veV:6(v)<1} (1=8(v))u?(v)
where M is some II; factor (and we have omitted mention of the obvious value of

the trace-vector on the M-summand for typographical reasons).

Proof. Tt follows from Proposition[I7(1), Corollary[I8and the fact that 1 = 3" e, =
>, el + e!l that each ef € Z(M(T)) and that consequently both e/ and e’/ are

central. The asserted conclusion follows now from Corollary O

Corollary 22. If T is as in Theorem[Z1], and is equipped with the ‘Perron-Frobenius
weighting’, then M(T) is a I1; factor.

Proof. The hypotheses ensure that for all v, §(v) = J is the Perron-Frobenius
eigenvalue of the adjacency matrix of I', which in turn is greater than one, so the

second summand of Theorem [21] is absent. O

3. STRUCTURE OF THE EVEN GRADED PROBABILITY SPACE

In this section we let I" be any finite, weighted, bipartite graph and regard
Gr(T,0) as an operator valued probability space over its subalgebra Py(T",0) - the
abelian algebra with minimal central projections given by all e, where v € 1} is
an even vertex. Our goal is to express this as a(n algebraic) free product with
amalgamation over Py(T',0) of simpler subalgebras.

We briefly summarise from [Spc1998] the theory of operator valued probability
spaces and operator valued free cumulants. An operator valued probability space
is a unital inclusion of unital algebras B C A equipped with a B — B-bimodule
map ¢ : A — B with ¢(1) = 1. A typical example is N C M where M is a von
Neumann algebra with a faithful, normal, tracial state 7 and ¢ is the 7-preserving
conditional expectation.

The lattice of non-crossing partitions plays a fundamental role in the definition
of free cumulants. Recall that for a totally ordered finite set X, a partition 7 of X
is said to be non-crossing if whenever ¢ < j belong to a class of m and k < [ belong
to a different class of 7, then it is not the case that k <i<l<jori<k <j<lI.
The collection of non-crossing partitions of X, denoted NC(X), forms a lattice for
the partial order defined by m > p if 7 is coarser than p or equivalently, if p refines

7. The largest element of the lattice NC(X) is denoted 1x. Explicitly, 1y, = {X}.
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If $ = [n] € {1,2,---,n} for some n € N, we will write NC(n) and 1,, for NC(X)
and 1y, respectively.

Before defining operator valued free cumulants, we state a basic combinatorial
result that we will refer to as Mdobius inversion. Suppose that A is an operator
valued probability space over B. Let X C A be a B — B-submodule and suppose
given B — B-bimodule maps ¢, : ®%X — B. By the multiplicative extension of
this collection, we will mean the collection of B — B-bimodule maps {¢- : X —

B}hen renc(n) defined recursively by

¢7r($1 ®$2®...®x") —
¢n($l ®x2®...®$")

{ Pt @ ®F @Y p(2FT @ @)@ @ @),
according as ™ = 1, or 7 = pU1lpyq ) for p € NC([1,n]\ [k+1,1]). A little thought
shows that the multiplicative extension is well-defined. Let p(-,-) be the Mobius
function of the lattice NC'(n) - see Lecture 10 of [NcaSpc2006].

Proposition 23. Given two collections of B — B-bimodule maps {¢,, : QX —
B}ren and {ky : @ X — Blpen extended multiplicatively, the following conditions

are all equivalent:

(1) ¢ = ZﬂeNc(n) Krn for each n € N.

(2) Kn =2 nenc(n) M 1n)¢r for each n € N.

(3) ér = X nenC(n)n<r fin for eachn € N, 7 € NC(n).

(4) Kr =3 rencm)ner M, T)dx for each n € N, 7 € NC(n).

Sketch of Proof. Clearly (3) = (1) and (4) = (2) by taking 7 = 1,,. Next, suppose
(2) is given. We will prove (4) by induction on the number of classes of 7. The
basis case when 7 = 1,, is clearly true. If, on the other hand, T = p U 141 for
p € NC([1,n]\ [k + 1,1]), we compute
kel @22 ® - ®@2")
= k(' ® @ T@rfr (@ ® @) @ @)
= > 1, p) (v, Li—g) X

AENC([1,n]\[k+1,1]),X<p
vENC([k+1,1])

Qb)\(xl ®.”®$k—1 ®$k¢y(xk+l ®---®Il)®xl+l ®®xn)
= Z wm, T)or(zt @22 @ -+ @ ™).
TeENC(n),n<t
Here, the first equality is by the multiplicativity of ; the second follows by (two

applications of) the inductive assumption; and the third equality follows from (i)
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the identification [0y, 7] = [0 )\ (k41,5 £ X [Ofkt-1.> Ljg+1,57] of posets, (ii) the fact
that p is ‘multiplicative’ with respect to such decompositions of ‘intervals’; and from
(iii) the multiplicativity of ¢. This finishes the inductive step and hence proves (4).
An even easier proof shows that (1) < (3). Finally, (3) < (4) by usual Mobius
inversion in the poset NC'(n). O

Definition 24. The free cumulants of a B-valued probability space (A, ¢) are the
B — B-bimodule maps &, : ®3A — B associated as in Proposition to the
collection of B — B-bimodule maps {¢,, : ®3A — B},en defined by ¢, (a! @ --- @

a) = ¢(ata?---a™).

The importance of the operator valued free cumulants lies in the following the-
orem of Speicher linking their vanishing to freeness with amalgamation over the

base.

Theorem 25. Let (A,¢) be a B-valued probability space and {A; : i € I} be
a family of B-subspaces of A such that A; is generated as an algebra over B by
G; C A;. This family is freely independent with amalgamation over B iff for each
positive integer k, indices i1,- - - i € I that are not all equal and elements a; € G,

fort=1,2,---  k, the equality k(a1 ® aa ® --- ® ag) = 0 holds. O

We will regard Py(T",0) C Gr(T,0) as an operator valued probability space with
the map ¢ being defined on P, (I",0) by the sum of the action of all Hom([n], [0])
morphisms. Equivalently, it is the transport to the Gr(T',0) picture of the map
given in the F(T",0) picture by the ‘orthogonal projection to Py(T',0)’. This is easily
checked to be an identity preserving Py(T",0) — Py(T", 0)-bimodule map. Further, it
preserves the faithful, positive trace 7, as is checked by definiton of ¢ in the F(T,0)
picture, and transporting to Gr(T,0).

In order to state the main result of this section, we need to introduce some
notation. Observe first that Gr(T',0) is generated as an algebra by Py(I",0) and all
[¢] where £ is a path length 2 in T'. For any odd vertex w € V; (resp. even vertex
v € Vo), let T, (resp. T',) denote the subgraph of I' induced on the vertex set
Vo U {w} (resp., {v} UVi). The u function of Ty, (resp. I',) is the (appropriately
normalised) restricted p function of I'. Then, Gr(I'y,,0) is naturally isomorphic -
as a #-probability space - to the subalgebra of Gr(T',0) generated by Py(T",0) and
all [¢] such that I(£) = 2 and v$ = w, i.e., paths of length 2 with middle vertex w.
We will refer to this subalgebra as Gr(I'y,,0).

Our main result in this section is then the following proposition.
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Proposition 26. For an arbitrary finite, weighted, bipartite graph I', we have
GT(F, 0) = *po(p)o){GT(Fw, O) W E Vl}

The crucial step in the proof of this proposition is the identification of the
Py(T,0)-valued free cumulants on the generators [¢] of Gr(T',0), which is done
in the next proposition. In this, we will use a natural bijection © — S(7) be-
tween the sets NC(X) and TL(X x {1,2}) (for a totally ordered finite set X
and where we consider the dictionary order on ¥ X {1,2}) defined as follows.
Suppose that 7 € NC(X). Let C be a class of 7 and enumerate the elements
of C in increasing order as, say, C = {c1,c2, -+ ,ct}. Decree {(c1,2),(ce,1)},
{(c2,2), (e, 1)}, -+, {(c1=1,2), (er, 1)}, {(e,2), (c1,1)} to be classes of S(m). Do
this for each class of 7 to define S(7). Observe that S(m) is a union of equiva-
lence relations on C' x {0,1} as C varies over classes of S. If ¥ = {1,2,--- ,n},
we will regard S(m) as an element of TL({1,2,---,2n}) or equivalently as an
an element of Hom([2n],[0]), via the obvious order isomorphisms. We illustrate
with an example. Suppose that 7 = {{1,6},{2,3,4,5}}. Then, S(x) is shown

CN N N

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4, 1) (4,2) (5,1) (5,2) (6,1) (6,2)

FIGURE 4. The Temperley-Lieb equivalence relation S(m)

in Figure @l Regarded as a Temperley-Lieb relation on {1,2,--- 12}, S(7) =
{{1,12},{2,11},{3,10},{4,5},{6, 7}, {8,9}}.

We will also use the notion of a starry path in I' by which we mean an even

length path & = (05 & s & 5 S ... v5,), where £ = 5/2::1 (indices modulo
2n) for ¢ = 1,2,--- ,n. In such a path, we have ’Ug = ’Ugn and all the odd vf are
equal (to the centre of the ‘star’). Note that a path £ of length 2n is starry exactly
when S(1,)([§]) # 0 (in which case, it is a scalar multiple of e, where v is the start

and finish point of &.)

Proposition 27. Let 1,£2,--. &" be paths in T of length 2. The Py(T',0)-valued

free cumulant on Gr(T,0) is given thus: r,([€'],[€2],---,[¢"]) is non-zero only
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when & = ELo&20---0&™ is a starry path in T (in particular this composition should

make sense), in which case, all the odd vf are equal to some w € Vi and Ué = ’Ugn

is some v € Vp, and

rn([E' 17, €)= S(1a)([€])
_ ps)p(vf) - plv5, o)
pu(w)" =2 p(v) b

Proof. Consider the Py(T",0)— Py(T', 0)-bimodule P5(T",0) and define for each n > 1,
Fn 2 Pa(T,0) x Po(T,0) X -+ - x Po(T', 0) = Py(T, 0) by the C-multilinear extension of
the prescription given on basis elements by the statement of the proposition. It is
easily checked that &, induces a bimodule map also denoted &, : ®7150(F,0)P2(F7 0) —
Py(T,0).

We will check that %, agrees on @ r o P (T, 0) with the operator valued cumu-
lant x,,. In view of Proposition 23] it suffices to check that if kK, is the multiplicative
extension of k, then,

o€l e[ e o) = D E(iE@ @)
TENC(n)
for all paths &%, --- €™ of length 2 in T.

Observe first that both sides of the equation above vanish unless £' 0 &20--- 0™
makes sense and defines a path ¢ with equal end-points, so we suppose this to be
the case. By definition then, the left hand side ¢([¢!] @ [¢%] e - - - [¢7]) of the desired
equality is given by > s gom((2n), o)) S([€t 0 &2 0---0&"]). In view of the natural
bijection between NC'(n) and Hom([2n], [0]) alluded to above, it clearly suffices to
see that

(21) (€@ @ [6"]) = S(n)([§ 0% 00 €"]).

Observe that for 7 € NC(n) and paths £, &2, -+ £ of length 2 for which the

composite £ o -+ 0™ is defined,
S(m)([E' 0?0 - 0€") =
_ pETh) -1 s
(22) (HC—{C1,'” 7Ct}67'r {6£;t 1551 ,LL('UECt) Hp:l <5E;p1£;p+l #(U§CP+1) evgl

(where ¢1 < ¢2 < -+ < ¢;). For instance, for the S shown in Figure [ we have

¢ ¢
n /L(Ul ) H(Uz )
S(m)([¢ oo - 08"]) = {567 50 g ( ¥
S pf) = (o)
Cpf) o ps) o p(s) o plos
g 0aa @ laa—alas— @ (€
271#(“2) 271/’*(”1) 21/’*”1) 211MU
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We prove equation (ZI)) by induction on the number of classes of w. In case
7 = 1p, it holds by definitions of K, and S. Suppose next that m = p U 1344 for
p € NC([1,n]\ [k + 1,1]). Since &k multiplicatively extends {ky }nen we have,

Ra((', - €D = Rp([€1], - € [ER—a (€71, -+, 1D, €D, - L €7D
By definition,
. s ) T s
"ﬂ—k([gk-‘rl]v ) [51]) = {6£27£k+1 ;;1;[1 £p+k gp+xc+1 M( §P+k+1) evgkﬂ'

Since f(¢F) = s(¢k 1) = vgkﬂ, we conclude that

Fr(€Y],
pei )T ( ps™) )}
= 90, O i FTRT1 g TRTIL
{5275 ) 1;[ ERRNS (vt )
k 1] k], [§l+1],“. ,[é-n])
k
) )

l—k—1
p=1
X KJP 7 [5 B 7[5
N N otk
- s (vf 11 s )
5275’”1 ) e gptk grthtt M(U§p+k+l)
561 t—1 ger
pvs )
x Opc ——Fepri o e
H 52’5, ( 52 , 1p+1 ( §p+l) Ugl

C={ci,,ct}€p le

CRE

T (5"
= (S 60 +1 P+1 e’ul
C_{cln,ct}ew{ 271 :u pl:[l< Pgl’ /J'( & ))} S
= S(m)([¢to€?o---0€")

where the second equality follows from the inductive assumption and equation (22))

applied to p, and the last equality follows from equation (22)) applied to . O
The proof of Proposition 26 is now immediate.

Proof of Proposition[26l Since Gr (T, 0) is clearly generated by all the Gr(T',,0),w €
V1, it needs only to be seen that the family {Gr(T'y,,0) : w € V1} is free with amal-
gamation over Py(T",0). This follows from Theorem 25 and Proposition [21] a

Let A : Gr(T',0) — L(H(T,0)) also denote the composite of the isomorphism of
Gr(I') with F(T') and X : F(I',0) — L(H(T,0)). Thus, M(T',0) = A(Gr(T,0))".
It now follows fairly easily - see Proposition 4.6 of [KdySnd2008§], for instance -
that M (T'y,0) = A(Gr(Ty,0))”, the content in this statement being that Gr (T, 0)
is interpreted as a subalgebra of Gr(T',0). We will thus identify M(T,,,0) with
MGr(Tyw,0))" € M(T,0).
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Now, by general principles, Proposition 28] extends to its von Neumann comple-

tions - meaning that
(23) M(P,O) :*po(pﬁo){M(Fw,O) Tw e ‘/1},
and similarly, by interchanging the roles of 0 and 1, we have

(24) M(T,1) = sp, ) {M (T, 1) s v € Vp}.
4. GRAPHS WITH A SINGLE ODD VERTEX

In this section we fix the following notation. Let A be a graph with at least one
edge and a single odd vertex w and even vertices vy, --- ,v;. We assume that for
i=1,---,k, the vertex v; is joined to w by g; > 0 edges, while the vertices v; for
i=k+1, -+, are isolated. Thus k > 1. We also set u?(v;) = a; and p?(w) = f3,
so that g + Zé:l a; = 1. Our goal in this section is the explicit determination of
the finite von Neumann algebra M (A, 0).

We begin with a simple observation. The assignments of Gr(I') or M(T") to
a graph T' clearly take disjoint unions to (appropriately weighted) direct sums.
Thus, if A denotes the connected component of w in the graph A (with normalised

restricted p), then

(25) M) =M®B)o C o C o---aC

o Q1 Q42

where vy =1 — Zi:kﬂ ;. Note that M(A,1) = M(A,1). We begin by analysing
M(A,1) when k = 1.

Remark 28. We shall adopt the convention that LF(1) = LZ whereas LF(r), for
1 < r < oo, will be referred to as an interpolated free group factor with finite

parameter.

Proposition 29. Let Q be a graph with a single even vertex v and single odd vertex

w joined by ¢ > 0 edges. Let u*(v) = a and p?(w) = B =1— . Then,

LF(q%) if§>q

~ ) LP(3 - ) ifl<2<yg
M@, 1= LLF(-21) bl
122 "y 7 B g

Proof. Consider Gr(£2,1) generated by ¢ paths of length 2 based at w. Denoting
the path (w AN w) by e;;, the operator-valued (in this case, scalar valued) free
cumulant calculation of Proposition 27 implies that the ¢ x ¢-matrix X = (([ei;]))
is a uniformly R-cyclic matrix - in the sense of Definition 10 of [KdySnd2009] -

t—2
with determining sequence oy = (’:L %’;) . Theorem 11 of [KdySnd2009] now
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implies that X is free Poisson with rate %. Now, the proof of Proposition 24 of

[KdySnd2009] may be imitated to yield the desired result. O

As a consequence, we single out a crisp determination of precisely when M ()

is a factor.

Corollary 30. Let Q be as in Proposition[29. Then, M(Q) is a factor if and only

ifg>1 and % < § < ¢, in which case M(S) > LF(1+2qaB — o — B?).

Proof. Tt M(Q) is a factor, then, so is M(£2,1) and it follows from Proposition
that é < % Similarly the factoriality of M (2,0) and Proposition 29 will imply
that % < g Thus, % < % < q. To see that g > 1, it suffices to observe that if ¢ = 1,
the already proved inequality shows that o = 8 and then again by Proposition 29
both M(Q,0) and M(Q,1) are LF(1) = LZ so M(f2) cannot be a factor.

For the converse, if ¢ > 1 and % < % < g, then q # % and so at least one of the
inequalities among % > % and g > % must be strict. Hence

2qa  o?

«
B8 B
> L

and so M (T, 1) is an interpolated free group factor with finite parameter. Similarly,
so is M(T',0). By Lemma [[9 M(T) is a factor. Now the corner formula for
interpolated free group factors - see [Dyk1994] or [Rd11994] - implies that M () =
LF(1+ 2gaf —o® — 2).

O

We now wish to analyse M (A,1) = M(A,1). For this, recall that the weighting,
say fi, on Ais given by the normalised restriction of . Thus ji%(v;) = a; for 1 <i <
k and i?(w) = b, where Zleai—kb: land (o :--:tag:fB)=(ar:---:ap:b).

Proposition 31. With the foregoing notation,

2 i Qi a; 2 - k
LF (Z{i:qib<ai} q12 + E{i:qinai} qb - (T) ) Zfb < Zi:l q:a;

MAD= ¢ eLR@- =) ifb> 3, gii
1*245 qlbl Z qif‘lil o
i b

In particular, M(A,1) is an LE(r) for some r > 1 iff b < Zle qia;.

Proof. By equation (24)), we have

MA 1) 2 sp g AM Ay, 1) i = 1,2, k} =% {M(A,,, 1) 10 =1,2,- -k},
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where the second isomorphism holds since Py(A,1) = C. Each M(A,,,1) is deter-
mined using Proposition Now computations from [Dyk1993] - see Proposition
1.7 - and a little calculation finish the proof. O

Proposition 32. If A has a single odd vertex and at least two edges, then M(A) =
LF(s)® A, for some finite s > 1 and a finite-dimensional abelian A.

Proof. Notice that A satisfies the hypotheses of this proposition and in addition, is
connected. In view of equation (25), it suffices to prove the proposition for A; in
other words, we may assume without loss of generality that A is connected.

Hence Theorem 211 is applicable and M (A) has the form M @& A for some I,
factor M and a finite-dimensional abelian A.

Now Proposition Bl tells us that some corner of M (A, 1) and hence of M(A) is
an LF(r) for some finite r. On the other hand, the hypothesis that A has at least
two edges ensures that M (A, 1) is not commutative and hence r > 1. This corner

is necessarily a corner of M = LF(s) for some finite s > 1. O

Corollary 33. Let A be any graph with a single odd vertex and non-empty edge

set E. Then,
~J LF(s)®A if|E|>1
M(A’O)_{LZGBA if |E| = 1.

for some s > 1 and finite-dimensional abelian A.

Proof. In case |E| > 1, M (A, 0) is necessarily non-abelian and the desired assertion
is a direct consequence of Proposition B2l When |E| = 1, observe, as in equation
(@3), that M(A,0) = M(A,0) ® A for some finite-dimensional abelian A. Now the
desired result follows from Proposition29 applied with Q being A with vertex parity
reversed. (This is because the ¢ of Proposition29is 1 and the parameter occurring
in the LF(-) factor is 1 in all the three cases considered there.) O

5. THE STRUCTURE OF M (T)

In this section, we determine the structure of M (I") for any finite, connected,
bipartite graph I' with Perron-Frobenius weighting. The main technical result used

in the proof is Theorem [B4] which is a consequence of the results in [Dyk2009).

Theorem 34. Let M (w),w € Vi be a finite family of tracial von Neumann algebraic
probability spaces over a finite-dimensional abelian probability space D. Suppose
that each M (w) = LF(ry) ® A(w) with 1 < ry, < oo and finite-dimensional abelian
A(w) and that M = sxp{M(w) : w € Vi} is a factor. Then, M is either an
interpolated free group factor with finite parameter or the hyperfinite (I11) factor.
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The following theorem is one of the main results of this paper.

Theorem 35. Let a connected graph T' with at least two edges be equipped with the
Perron-Frobenius weighting. Then M (') = LF(s) for some 1 < s < 0.

Proof. By Corollary 22l M(T') is a II;-factor and so, to see that it an interpolated
free group factor with finite parameter, it suffices to see that the corner M(T',0) is
also one.

The hypotheses on I" ensure that Corollary [33] is applicable to I, for each odd
vertex w. Then it follows from equation (23] that the hypotheses of Theorem [34]
are satisfied with D = Py(T",0), M(w) = M (T, 0) for w € V3 and M = M(T,0)
and so M(T,0) is either an interpolated free group factor with finite parameter or
the hyperfinite factor.

To conclude the proof, we only need to ensure that M (T',0) is not hyperfinite.

For this we consider two cases.

Case 1. Suppose some odd vertex w of I' has degree greater than 1. In this case
Corollary B3] shows that LF(r,) for some 7, > 1 is a corner of M (T, 0).
A corner of a subalgebra of the hyperfinite factor cannot be LF(r,,) (which
is not injective). Hence M (T",0) is not hyperfinite.

Case 2. Every odd vertex of I" has degree 1. Thus I' is the complete bipartite graph
K(1,n) for n > 2. The Perron-Frobenius weighting on this graph assigns
% to the odd vertex and \/% to each even vertex. Now, for any odd
vertex w, Proposition applied with € being I',, with reversed vertex
parity implies that M (T',,0) = 1?(;71 & Ij;%’ where § = y/n. Clearly,
Py(T',0) = C. Therefore, from equation (23,

M(T,0) = ( 19;4 ) %@1)*” = LF(2v/n — 1),

where the second isomorphism is proved in Corollary 16 of [KdySnd2009].
Since n > 2, M(T',0) is an interpolated free group factor with finite param-
eter in this case too.

d

The only connected graph to which Theorem B5] does not apply is the graph A,
which has two vertices joined by a single edge. For completeness, we determine, in

the following proposition, the structure of M (T") in this case.

Proposition 36. Let I' be the As graph with a single even vertexr v and a single
odd vertexr w joined by a single edge. Equip T' with its Perron-Frobenius weighting
given by p?(v) = 3 = p*(w). Then M(T) = My (LZ).
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Proof. Recall from §1 that with T being the As graph, elements of Gr(I') may be
regarded as matrices with rows and columns indexed by the set {v,w} and (p,q)
entry (with p, g € {v,w}) being a linear combination of paths from p to ¢q. We shall
write M;; for e;M(T')e; for 0 < 4,j < 1, where of course ey = e, (resp. €1 = ey)
denotes the projection onto the subspace Hg (resp. Hi) of H generated by the set
of all paths starting at v (resp. w). Let &, (resp. 7n,) be the unique path of length
n which starts at v (resp. w). Then, H = Ho @ H,, and also (see equation (7))
{{&} : n > 0} (resp. {{mn} : n > 0}) is an orthonormal basis for Ho (resp. H1).

Let z = A&1) € Moi. The definition of multiplication in F(I') shows that
2{&} = 0 and z{n,} = {Mny1} + {Wn—1} for all n > 1 (with {n_1} = 0). So,
if w: Ho — H; is the (obviously unitary) operator defined by w({&,}) = {n},
we see that © = ws where s € L(Ho) is the (standard semi-circular) operator
given by s{&,} = {&nt+1} + {&n—1}. Tt follows that x is injective (since the Wigner
distribution has no atoms).

It follows that if x = w|z| denotes the polar decomposition of x, then u*u = ey,
and similarly one sees that uu* = eg.

Now if y € Moy is arbitrary, then y = egye; and we see that yu* = (epyer)(eouer)*
= epye1u*eg € Moo, and hence y = ye1 = yu*u € Moou. Arguing similarly, we see

that the maps

a au,a— u'a, and a — u*au

define linear isomorphisms of Mgy onto Moy, M1 and My respectively. Finally, it
is easy to see that the assignment

o Go1 |, | @00 a1
ayp 011 u*ajp urapiu

defines an isomorphism of Ma(Mqg) onto M (T'). Since Moo = LZ by Proposition[29]

the proof is complete. O

6. APPLICATION TO THE GJS CONSTRUCTION

In this section we relate our Gr(I') to the sequence of algebras Gri(P) of
[GnnJnsShI2008]. Let P be a subfactor planar algebra with finite principal graph
I = (V,E), distinguished vertex * and modulus 6 > 1. Thus ¢ is the Perron-
Frobenius eigenvalue of I' and we let u?(-) be the Perron-Frobenius eigenvector
normalised so that Y i, p*(v) = 1. Let tr be the normalised picture trace on P,.

Most of the following facts about the tower of algebras

(Po, =)PhC P, C P C---
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can all be found in [JnsSnd1997]. For vertices v, w of I, we write P, (v, w) for the
set of paths of length n in I' beginning at v and ending at w. Similarly we use
notation such as P, (v, -) for the set of paths of length n in I beginning at v.

P, has a basis given by pairs of paths (§(+),&(—)) in I" such that £(£) € P, (*,v)
for some vertex v € V. The set Pp,in(Z(Py)) of minimal central projections of P,
is in natural bijection with {v € V : v = f(£) for some £ € P, (*,-)}. For such
a v, denote the corresponding minimal central projection in P, by e(v,n) and
any minimal projection under e(v,n) by p(v,n). Then, {(£(+),&(-)) : &(zx) €
Pax,0)} are matrix units (meaning (€(+), £(=))(n(+),7(=)) = G (E(+).n(-))
and (&(+),&(—))" = (&(—),&(+))) for the matrix algebra e(v,n)P,. Further, with
tr(-) denoting the normalised picture trace on the planar algebra P, we have

_ —nH2(U)
tT(p(’U, TL)) - 6 w2 (%) "

The inclusion of P,, into P, is given by

CO)EHEE) = D D G e () ()
veV p(£)EPn1(*,v)
= )N ICOEPRICOEPY
The 7-preserving conditional expectation P,y; — P, is given by
ﬁ(i))

(27) (€(4). (=) s o - W)

E(—Yns1 6u2(v§(i)) (E(H)o,n),E()0,m))-

The Jones projection e, € P, for n > 2 is given by
( ) (—)
v

&(- ) e <
’UGV,E( GP (* ’U) [0 2] f("t‘)n ﬁ( )n 6/1’ (Ug( ))

In these formulae we have written 5;- for the Kronecker delta.

Our main observation is that the construction in [GnnJnsShI2008] of Gry(P)
(after conjugating by suitable powers of the rotation tangle) depends only on the
actions of the inclusion, multiplication and right conditional expectation tangles -
and not on that of the the left conditional expectation tangles. Hence, in principle,
‘Gry(P) depends only on the graphs and not on the connection’.

We first need to note that the action of the category epi-TL or £ of §1 on Gr(T, )
is ‘essentially the same’ as that of certain annular tangles on Gro(P). Consider the
full subcategory of € consisting only of the objects [0], [2], [4],---. We will denote
this category by Eep. Any morphism in &, say an element of Hom([2n],[2m]),
naturally yields an annular tangle with an internal n-box and an external m-box as

in the example in Figure[Blfor n = 4,m = 1. This identification of Hom([2n], [2m]),
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FIGURE 5. Correspondence between &, and good Temperley-Lieb tangles

composed with the action of annular tangles on planar algebras is seen to yield an
Eev action on {P,},>0. (The tangles in the image of &, are what were called
0-good annular tangles in [KdySnd2008].)

We will find it convenient to identify a basis element (£(+),&(—)) of Gro(P) with
the loop £ = &(—) o a\—i—/) based at the x vertex. Equivalently, the loop & based at *
is identified with (£, 2], &f0.n))-

Proposition 37. The maps {0y, : Pon (T, %) = Py }n>0 defined by

ou 1) = 2,

for [n] € Po, (T, %), are Eep-equivariant.

Proof. 1t clearly suffices to verify the intertwining assertion on generators S2".

Hence we need to check that for [£] € Py, (T, *) and 1 < ¢ < 2n the equality

On—1(S7" ([n))) = Zs2» (0 ([n]))

holds. There are three cases according as i < n, i = n or ¢ > n. We will do the
first case. The third is similar and the second is easier.

When i < n the annular tangle S?" is shown in Figure Bl The dotted lines are
meant to indicate a decomposition as the (right) conditional expectation tangle
applied to the result of post-multiplication with a Temperley-Lieb tangle. The
Temperley-Lieb tangle in question here is seen to be the product E; 1 F;y1--- Ep,
where E; = de;. It now follows by induction on n — ¢ using equations (28)) and (28]
and the multiplication in P,, that E;11F;y; --- E, is given by

£(— ¢
5&( 10,17 5&()ti=1,n-21 5§(=)n—1 5E(+); (s (o
S S gttt o U

E(H)0,i-1) E(H)[i+1,n ~ . —
B I
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FIGURE 6. The annular tangle S?"

It follows that Zg2n(n) is given by § times the conditional expectation onto P,_1

of the product

(n(+),n(=))x
£(— [O,i—l]ég(_)[ifl,n—ﬂ 5(_)71—165(“1’)71 w0 ™)

)
2ovev 22()ePn () Sy e irim G et s meiC i) () €(5))

s1)i s @)
n(=)

- i— vk n A X
e )#(Uﬁ;))(ﬁ(ﬂﬂ?( )i0,i=1] © N(=)jit1,m © A0 A)

= Z,\epl(v:z“),-)

Now use equation (27)) to conclude that Zgzn(n) is

e ) 5 E2en )
Z 6:77(7)141ﬂ(vz(—))u(vn(—))éﬁ(ﬂn 2(fV) x

AePi(on 7)) 1

() 0,n=11 1) [0,i-1] © M=) [i+1,m) © A)
- ()Y (1)
= 01 e e (1) 0,011,110 (i1 © 1(+)n)

_ ST m(vp) (v
- 577/1'\4:1 #(U:Il+1)l"(vin+1) 77[0,1'—1] ° n[i+1’2n] )

—_~

Hence,

p(vg) 0 Hvg)p(y)
Zgan (O, = Zgan(n) =01 ————L2 _ pnrg i1 2n]-
S2 (0n([n])) (o) S2 (n) "i*lu(vzﬂ)u(vﬁﬂ) 1[0,i—1] © M[i+1,2n)
On the other hand, we have by definition,

n

2n i /J,(’Ul)
S () = 57,7;1 M(U?H) [77[0,i—1] © W[i+1,2n]],

and thus

2n i M(UO)M(U;]) ) ) _ 2
en—l(Sz ([77])) - 577’[;1 U(UZ+1)/L(U?+1) No,i—1] © Mi4+1,2n] = ZSi" (6‘71([77]))7

as was to be seen. O

Next, we generalise the path-basis expression for the Jones projections to arbi-

trary Temperley-Lieb tangles. Let T be a Temperley-Lieb equivalence relation on
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{1,2,---,2n} also identified with a Temperley-Lieb tangle as in the following ex-
ample. Say T = {{1,2},{3,8},{4,7},{5,6}}. The corresponding tangle is shown in

Figure[ll Given such a Temperley-Lieb equivalence relation T we let T} be the sub-

N

8 7 6 5

FIGURE 7. The Temperley-Lieb tangle T' = {{1, 2}, {3,8},{4,7},{5,6}}

set of ‘through classes’, T;, be the subset of ‘up classes’ and T, be the set of ‘down
classes’ of T, so that T = T; [[ T [[74- In this example, T; = {{3,8},{4,7}},
T, = {{1,2}} and Ty = {{5,6}}.

Proposition 38. For any Temperley-Lieb equivalence relation T on {1,2,---,2n},
the element Zr(1) € P, is given by
&(-)
&(— E(—)s M(Uz' )
Sy o[ o ) mosesi).
VEV E(4)EPn (+,0) \{ij}ETiii<] (i} eT0 i< w(v;

E(+H)ont1—i /1’( gf:k)l z)
[T o0 2ol ) (g (4), ¢(-)),

{i,j}€Tq:i>] §H)znt1— /J’(’UQnJrl g)

For instance, for the Temperley-Lieb relation T of Figure [1

5(—) &(+)
Zr(1) = IR (65 M) <5£<L>M> (E(+),6(-))
' 5&)627;4(*,.)( oo £(+)) €Oz p(os' ) )\ ED (i)
Proof of Proposition[38. Suppose that Zr(1) = 25 )EP (+,0) €6 (&(+),£(-)).

Since the (£(+),&(—)) are orthogonal (for the inner product on P, given by (z,y) =
£())

tr(y*a)) with [|((+), &(-)|? = 5= 2GETD.

2(y n(i))

T~ n#uT*) = ((n(+),n(=)), Zr(1))
= tr(Zr(1)"(n(+),n(=)))
= & " x picture trace of Zr(1)*(n(+),n(-))
= § ™ x picture trace of Zp-(1)(n(+),n(=)).
Hence
12 ()

(29) T, = 7) x picture trace of Zp«(1)(n(+),n(-)).
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We next compute the picture trace of Zr-(1)(n(4),7(—)). The equivalence rela-
tion T™ is the one obtained from 7" be replacing each i by 2n+1—1i. Regarding T as
an element of Hom([2n],[0]), there is an associated 0-annular tangle, which also
we will denote by T'. The context and the nature of its arguments should make it
clear whether we are referring to the morphism 7T or the associated Temperley-Lieb

tangle T or the associated annular tangle 7. Some doodling now shows that

(30)  picture trace of Z7-(1)(n(+),n(=)) = Zr((n(+),n(=))) = Zr(n),

where, clearly, T* is regarded as a Temperley-Lieb tangle and T as an annular
tangle.
Finally, notice that Proposition 37 says that

T € Hom([2n],[2m]) = 00T =T 06,
When m = 0, since 6y = idc, we see that T =T o8, i.e.,

7 p(vy)
T = T
(31) _ B g,

w(vn)

However, by Proposition [3, we have

n ;5
’U J
(v {i,jreTHi<j<n ”( ) {i,j €T i<n<j

~—

~—

=

H 5771 (Uzn)
75 n
{i,j}eT:n<i<y ’ M(UJ)
Putting this together with equations (29)),(30) and B1) yields
_  1(v7) : p(v)
¢y = B oL ol oL
n H M5 ‘U(U;]) H M5 H nj ,UJ(’U;I)

{i,j}€Ti<j<n {i,j}€T:i<n<y {i,j}eT:n<i<y

Observing that ¢, is real and comparing with the statement of the proposition
finishes the proof. (Note that when {3, j} € T with n <1 < j,

&(+)
6771 (U?) _ m'u(v;]—l) _ E(H)anti—i /L( Von+1— J)

W p(v?) (o) P ,u(v%(;)l Z),
which is to be compared with the third product term in the statement.) O

We will now write the structure maps of the algebra Gro(P) of [GnnJnsSh12008]
in terms of the path bases for the P,. Recall that the algebra Gro(P) = &52,P,
is a graded algebra with the multiplication map e : P, ® P,, = P4+, given by the
tangle in Figure [ below.
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FIGURE 8. Multiplication in Gry(P)

Proposition 39. For paths £ € P, C Gro(P) and n € P, C Gro(P),
3 n

MU, ) (U,

o= % o

M(Um-l-n)u(UO)

Proof. We will deal with the case m > n. The other case is similar. The tangle

of Figure [{ can be expressed in terms of the inclusion, Temperley-Lieb and mul-

tiplication tangles as in Figure @l Recall that in a tangle picture, a non-negative

FIGURE 9. Standard tangle expression of tangle in Figure [§

integer ¢ written beside a string indicates a t-cable of the string. We see from this
figure that the product of £ and 7 in Gr(P) is a product of three terms in Py, qy,
namely, ¢ included into P4, a Temperley-Lieb tangle and 7 included into Py, p,.

It now follows from Proposition B8 and equation (26]) that

Lo = Yo ) epn(=)op) | x

PEPm (f(n(£)),)
C( )[0 m—mn]
(5 C(H)2n, m+n1) x
UGV c(i)erM(* v)

o ¢(+)
¢(— )[m n,m] ) ¢(H)io,n) M _
<5 [E—— <+21)> <5c<ﬁ2n]u(v§§l+>)> (€, <( ))} x

(E(+) oA &(=) 0 )

AEP(f (i)) -)
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Since the path basis elements multiply as matrix units, given A, {(%) and p, the
product of the terms corresponding to these in the above expression is non-zero

only if the following equations hold.

¢(=) = &(H)oA
(+) = n(=)op
C(Hom—n = C(+)[2nm+n]
C(HDm-nm = (= )[mm+n
(ol = (Pinan
A little thought now shows that the following equations are consequences.
C(Hom = &)
(B = n(=)
Cmamsn = St = EE
(Hpan = CHom =1
C(H)znman) = C(H)o,m—n] = E(H)0,m—n]
A= (= )mm+n]—§(+)[m n,m]
p = C(+)nm+n]—77( ) 0 &(+)0,m—n)

e~

Thus, exactly one term is non-zero, which corresponds to A = &£(+)m—n,m], P =

() 0E(+H) mn]s (=) = E(+)OE(H) pmnm and C(+) = 0(=)07(—) O&(+)[0.m—n]

Hence

_ i) pei ) - Y
5 e = M(’Ufrgizl) M(’Ug(i)) (77(+) © 77(_) © §(+)[O,mfn]7§(_) © §(+)[mfn,m])
Noting now that £ = £(—)o&(+), 1 = n(—)on(+) and €on = £(=)o€(+)on(—)on(+),
the proof is finished. O

Proposition 40. The map 6 : Gr(T, x) — Gro(P) defined for [] € Payn (T, %) by

o) = " e e p,
1u(vs)

and extended linearly is an isomorphism of graded, x-probability spaces.

Proof. That 6 is a graded, linear isomorphism is clear. Multiplicativity of 6 fol-
lows from Proposition B9 while x-preservation is straightforward. To verify that 6

preserves trace, note that by definition of the trace 7 in Gr (T, x), for [£] € Py, (T, %),

D= ()
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where the sum is over all Temperley-Lieb equivalence relations T on {1,2,--- ,2n}
and 77([£]) is (from the proof of Proposition [ #2#(*)1% oT([¢]) where t: Py(T') = C
is the linear extension of the map taking [(v)] to u?(v). Identifying Py(T', x) with C,
r([£]) = T([€]). Equations (30) and (3I) now imply that 7r([¢]) is @ times the

w(v)
picture trace of Zp«(1)€. Summing over all Temperley-Lieb equivalence relations
£
gives by definition the trace of 5 8035 in Gro(P), as desired. O

We apply this proposition and Theorem [B5] to the GJS construction.

Theorem 41. Let P be a subfactor planar algebra of finite depth and modulus § >
1, and My be the factor constructed from P by the construction in [GunJnsShl2008].
Then, My = LF(r) for some 1 < r < cc.

Proof. Let T be the (finite) principal graph of P equipped with the Perron-Frobenius
weighting, so that by Theorem B3] M (T") is LF'(t) for some 1 < t < co. Now Propo-
sition M0 implies that M (T, *) is isomorphic to My and so My = LF(r) for some
1<r<oo. O

Our final result is an analogue of Theorem []] for the factor M; constructed from
P.

Theorem 42. Let P be a subfactor planar algebra of finite depth and modulus
0 > 1, and My C Mj be the subfactor constructed from P by the construction in
[GnnJnsSh12008]. Then My = LF(s) for some 1 < s < 00.

Since the proof is very similar to that of Theorem I we will only sketch the
proof giving details where it differs from the previous proof. We first recall some
preliminaries from [KdySnd2004].

There is an ‘operation on tangles’ denoted T' — T~ which moves the x-region
of each of its boxes anti-clockwise by 1 and reverses the shading. There is an
associated ‘operation on planar algebras’ denoted P — ~ P where ~ P is the planar

algebra with spaces

Py, = Py,

_Pk = Pk, k>0,

and tangle action defined by Z, 7 = Z;,. If P is a subfactor planar algebra, then
so is Q@ = ~ P and further ~—(@Q is isomorphic to P.

Now, given a subfactor planar algebra P, we define a graded, non-commutative
probability space ~Gry(P) associated to P as follows. As a vector space ~Gry(P) =
@®n>1F,. The multiplication map e : P, ® P, = Pp,,—1 is defined by the tangle
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2m — 2 2n — 2

FIGURE 10. Multiplication in ~Gry(P)

in Figure [[0 below. The adjunction map in ~Gry(P) restricts to the adjunction
maps in P, for each n > 1. A trace is defined in ~Gri(P) by letting 7(§) for
& € P, C ~Gr1(P) be the sum over all Temperley-Lieb tangles T' of the scalar
defined by Figure 11

FIGURE 11. T-component of the trace in ~Gry(P)

The structure maps of ~Gri(P) are all derived from those of Gri(P) (see
[GnnJnsShI2008]) using the operation ~. Observe that the vector space under-
lying both ~Gry(P) and Gri(~ P) is the same, namely, ®,>1P,. A little thought

now yields the following.

Lemma 43. For any subfactor planar algebra P, the tracial x-probability spaces
~Gr1(P) and Gri(~ P) are isomorphic by the identity map of the underlying vector

spaces. t

Applying Lemma H3] with Q = ~P in place of P and using that ~Q = P
shows that ~Gri(Q) = Gri(P) as probability spaces. We now proceed towards
an analogue of Proposition A0 for ~Gr(Q). Let T’ denote the principal graph of
Q. Since P is of finite depth, so is @, and thus I is a finite graph. Equip T
with its Perron-Frobenius weighting. A basis of @Q),, is then given by pairs of paths
(€(+),&(=)) in T such that £(+£) are paths of length n in T' beginning at its * and
having the same end-point. Again, we identify the basis element (£(+),£(—)) with
the loop &(—) o f/(\—i_—/) based at *.

Observe that the 0'"-graded piece of ~Gr1(Q) can be identified as an algebra
with Q7. In particular, each vertex v in T at distance 1 from its * vertex gives a

minimal central projection f(v,1) in [TGr1(Q)]1 = Q¥ and we denote by ¢(v,1)
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any minimal projection of Q{ lying under f(v,1). A choice of g(v, 1) is the matrix
unit (v,v) € Q¥ where v is any path of length 1 in T from * to v. We fix this
choice.

The following proposition expresses the multiplication of ~Gr1(Q) in terms of

its path basis.

Proposition 44. For paths £ € Q. C ~Gri(Q) and n € P, C ~Gri(Q),

€ on = gizm EVACHIICHIN
LT G

Sketch of proof. Suppose that m > n. The key fact is that the tangle of Figure [I0l

5[0,2m—1] O 7[1,2n)

is expressible in terms of the inclusion, Temperley-Lieb and multiplication tangles

as in Figure We omit the rest of the proof which is very similar to that of

FIGURE 12. Multiplication of “Gr1(Q) in terms of standard tangles

Proposition O

It follows from Proposition[d4] that a basis of ¢(v, 1)(~Gr1(Q))q(v, 1) is given by
all paths of the form v o £ o where & ranges over all paths in I from v to v. This is
suggestive of the following key isomorphism which is the analogue of Proposition 40l

and whose proof is similar (and omitted).

Proposition 45. The map 0 : Gr(T,v) — q(v,1)("Gri(Q))q(v,1) defined for
[5] € P2n(fav) by

13

(% ~

o) = 0 o g o € Qi
pu(vn)

and extended linearly is an isomorphism of graded, x-probability spaces. O

We conclude with the proof of Theorem

Proof of Theorem[{Z3 From Proposition @5l and the isomorphism of ~Grq(Q) with
Gry(P), it follows by completing that some corner of M; is isomorphic to M (T, v)
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- a corner of M(T"). Since M(T) is an interpolated free group factor with finite
parameter by Theorem [35] the proof is complete. O
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