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The paper presents an efficient finite difference based 2D-inversion algorithm, EM2INV, for
geoelectromagnetic data. The special features of the algorithm are

e optimal grid generation based on grid design thumb rules,

e finite domain boundary conditions,

e interpolation matrix that permits generation of response at observation points different from grid
points,

o Gaussian elimination forward matrix solver, that enables reuse of already decomposed coefficient
matrix,

e super-block notion that reduces the number of blocks with unknown resistivities and, in turn, the size
of Jacobian matrix and

e bi-conjugate gradient matrix solver for inverse problem which circumvents the need of explicit
Jacobian matrix computation.

The algorithm is tested rigorously by setting up exercises of diverse nature and of practical significance.
The stability of the algorithm is established by inverting the synthetic response corrupted with Gaussian
noise. The inversion experiments are aimed at studying

relative performance of response functions,

inversion quality of E- and B-polarization data,

efficacy of single and multi-frequency data inversion,

minimum number of frequencies and observation points needed for successful data inversion.

It has been observed that the Magneto-telluric data deciphers better the vertical position of the target
and Geomagnetic Depth Sounding data deciphers the horizontal variations in a better way. The
conductive and resistive bodies are better resolved by inversion of E- and B-polarization data
respectively. The results of multi-frequency inversion imply that the increase in the number of frequencies
does not necessarily enhance the inversion quality especially when the spread of observation points is
sufficiently large to sense the target. The study of a minimum number-of observation points highlights the
importance of single point inversion that furnishes useful information about the inhomogeneity.

1. Introduction

Electromagnetic methods are useful in estimating the
spatial variation of subsurface electrical resistivity. A
wide range of these methods have been successfully
employed in the fields of aeronomy, archaeology,
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oceanography, environmental and engineering stu-
dies, solid earth geophysics and exploration geophy-
sics. The EMSLAB (Electro-Magnetic Sounding of
Lithosphere And Beyond) experiment, the largest EM
study to date, has played a significant role in
popularizing the applicability of these methods
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(EMSLAB, 1988, 1989). Natural source electromag-
netic methods, Magneto-Telluric (MT) and Geomag-
netic Depth Sounding (GDS), are deep probing
methods that facilitate studies of the earth’s internal
constitution.

Parameterization of the earth in terms of electrical
resistivity has special significance due to its depen-
dence both on chemical composition as well as
its thermal state. Resistivity is a good indicator
of the distinctive character of materials present, and
a knowledge of its spatial distribution provides a
clue to the way different kinds of materials are
distributed in the deeper regions. The simplest
parameterization is the one-dimensional (1D) model
wherein resistivity is assumed to vary only with
depth. More realistic models of the earth are, however,
two-dimensional (2D), where resistivity also varies
in one horizontal direction. 2D forward modeling
can be performed analytically only for a few idealized
models. In general, 2D/3D modeling is performed
numerically using the Integral Equation Method
(IEM), Differential Equation Method (DEM) and
Hybrid Method (HM). Of these, the IEM is the
most widely used (Hohmann 1971; Raiche 1974;
Reddy et al 1977; Ting and Hohmann 1981; Wanna-
maker et al 1984, 1991; Xiong 1992; Zhdanov and
Fang 1996). In this method the discretised anomalous
region results in a small but full coefficient matrix,
and its use is limited to confined targets buried in a
layered earth. The DEMs (FDM - Finite Difference
Method and FEM - Finite Element Method) are
popular for modelling complex geometries. They
generate large but grossly sparse coefficient matrices.
Advances in iterative solution techniques have made
these methods more popular (Sarkar 1991). Easy
implementation of FDM makes it more suitable
for geophysical problems (Jones and Pascoe 1971;
Brewitt-Taylor and Weaver 1976; Mackie et al 1993;
Smith 1996b; Weaver et al 1996). The HM, an
amalgamation of IEM and DEM, is suitable only
for confined targets (Lee et ol 1981; Gupta et al
1987). Weaver (1994) has described the chronological
development of 2D modelling through FDM. Signifi-
cant progress has also been made in 3D forward
modelling, using FDM (Madden and Mackie 1989;
Xinghua et al 1991; Mackie et al 1993; Weaver 1994;
Smith 1996a, 1996b).

Solution of the forward problem covers only a part
of the quantitative interpretation of EM data. The
solution of the inverse problem completes the process.
However, the inverse EM problem, being non-linear, is
much more difficult to solve in comparison to the
linear forward problem. The solution of the non-linear
inverse problem can be handled in three different
ways:

e transformation of the non-linear problem to a linear
one and using a linear inversion technique,
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e quasi-linearization of the non-linear problem and
using a linear inversion technique in an iterative
manner and

e using a non-linear inversion technique.

Several efficient 1D inversion algorithms (Patrick
and Bostick 1969; Weidelt 1972; Parker 1977; Old-
enburg 1979; Parker and Whaler 1981; Whittall and
Oldenburg 1992; Weaver and Agrawal 1993; Gupta et
al 1996) are available for providing specific 1D models
that are consistent with data. However, the existing
2D inversion algorithms (Weidelt 1975; Jupp and
Vozoff 1977; Rodi et al 1984; Pek 1985; Sasaki 1989;
de Groot-Hedlin and Constable 1990; Oldenburg
1990; Smith and Booker 1991; Oldenburg and Ellis
1993; Yamne et al 1996) are yet to be rigorously tested
on real earth data, whilst 3D inversion algorithms are
yet to be fully developed and perfected. This scarcity
motivated us to develop a versatile and economically
viable inversion algorithm of our own that can provide
meaningful information about resistivity variations in
the earth from surface measurements. Due to obvious
reasons we have restricted our work to 2D inversion
only. However, after gaining confidence with this, its
extension to 3D problem would not be difficult. The
present work has resulted in the development of an
efficient finite difference based 2D inversion algorithm
christened as EM2INV.

2. The Algorithm — EM2INV

The basis of this finite difference algorithm is the
formulation of the forward EM problem given by
Brewitt-Taylor and Weaver (1976). Here the domain
of study is discretised into a rectangular grid with
blocks of constant resistivity. The Helmholtz equation
is translated into a difference equation for each node.
Special finite domain-integral and asymptotic-bound-
ary conditions are designed to restrict the large extent
of the study domain (Weaver 1994). The asymptotic
boundary conditions account for the asymptotic
behavior of the field and restrict the horizontal extent
of the grid. The integral boundary conditions restrict
the vertical extent of the grid by transferring the
integrated effect of overlying/underlying half-space to
the respective horizontal boundary. These boundary
conditions result in grid economy but perturb the
sparse structure of typical pentadiagonal 2D FDM
coefficient matrix which gets transformed to a block
tridiagonal one. The boundary conditions are used to
set up the algebraic equations for internal nodes. The
resulting matrix equation has been solved for
unknown field values using the Gaussian elimination
type matrix solver that exploits the special structure
of the coefficient matrix.

The ill posed inverse problem is solved using Bi-
Conjugate Gradient Method (BCGM), a semi iterative
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Figure 1. Schematic earth models (a) 1D and (b) 2D and Cartesian co-ordinate system.
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Figure 2(a). A typical finite difference grid. (b) The parameters of the four blocks surrounding the node (m,n) in 2D finite

difference grid.
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matrix solver (Jacobs 1986; Sarkar 1991). It dispenses
with the necessity of explicit computation of the
Jacobian matrix. For each BCGM iteration, the
forward matrix equation is solved twice with new
right hand sides, it would score over direct matrix
solver as long as the number of iterations needed for
the convergence of BOCGM is less than half the number
of blocks in the inversion domain. In order to fix the
number of unknown block resistivities for all frequen-
cies and throughout the inversion process, a super-
block notion has been developed. To ensure a positive
resistivity value, the logarithm of resistivity has been
used. Being an iterative scheme EM2INV needs an
educated guess of the model parameters to start the
inversion process. The closer this initial guess is to the
true model, faster is the convergence.

2.1 EM Forward problem

A knowledge of EM theory based on Maxwell’s
equations (Nabighian 1988) is essential for solving
the forward problem. EM fields of an induction
problem can be partitioned, depending upon the direc-
tion of the electric and magnetic fields, into two modes
of polarization-Transverse Electric (TE) or E-polari-
zation and Transverse Magnetic or B-polarization.
The EM wave being a transverse wave, the vertically
propagating wave fields have no vertical component
in either of the above modes. For 2D modelling, the
model parameters, the field vectors and the source
characteristics are chosen independent of the hori-
zontal co-ordinate x-corresponding to the strike direc-
tion. The non-vanishing magnetic field component in
B-polarization and the electric field component in the
E-polarization, are parallel to the strike of the 2D
structure (figure 1). The set of field components of the
E- and B-polarizations are distinct and independent.

The z-component of the magnetic and electric fields
in the two polarizations, respectively satisfy the
following partial differential equations:

2 2
[Ll(k)]Bm=['a%§ +-§;§ - —};g—‘; - %%:—% +k2}Bz=0
(1)
and A
9?9
[La(K)E. = [% T k} E,=0 @

where k is the wave number given by

Lai
k= +/—iwpo = —? with skin depth

| 2
—, i=V-1
Wo

for frequency w, magnetic permeability 1 and conduc-
tivity o.
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In numerical methods, apart from the interface
boundary conditions, certain domain boundary con-
ditions — Dirichlet, Neumann or Mixed one — are also
applied. The boundary conditions are imposed on all
the four sides of the domain. For B-polarization, the
magnetic field is already known at the air-earth inter-
face. In E-polarization, to account for slow attenua-
tion of anomalous field in the air, a thick sub-region
must be introduced above the earth’s surface. We
have applied the integral boundary condition (Weaver
1994) for horizontal boundaries and the asymptotic
boundary condition (Weaver and Brewitt-Taylor
1978) for vertical boundaries (Rastogi 1997). The
partial differential equation (1) or (2) together with
the integral and asymptotic boundary conditions
define the complete EM boundary value problem.

In FDM, the domain of study is discretised in ye-
plane by laying a grid with the help of horizontal lines,
z=12z, (n=1,2,...,N), and the vertical lines y = y,,
(m=1,2,..., M) intersecting at nodes (m,n). Here
M and N are the number of vertical and horizontal
grid lines respectively (figure 2(a)). Proper care
should be taken while discretizing in the neighbour-
hood of discontinuities. Whereas, the step size can be
coarse within a homogeneous region, it should be fine
near the discontinuity. The cell’s resistivity (or
conductivity) is defined at the centre of the cell as
Pm+1/2,m+1/2- A typical node of 2D grid with its four
neighboring cells is shown in figure 2(b). The top

‘boundary of the grid is chosen as the air-earth

interface at z = z; = 0 while the bottom boundary is
at z = zy, a minimal vertical level in the underlying
half space. The side boundaries of the grid are defined
by the lines ¥y = 11 and y = yu, on the left and right
hand sides of the model. The variable nodal spacings,
in positive y- and z-directions, are given by

hm = Yma1 = Ymy o = Zn41 — 2,

where
1<m<M-1,1<n<N-1.

The magnetic or electric field component at an
internal node is evaluated through the respective
Helmholtz equation given by equation (1) or (2). To
obtain the equivalent finite difference equations, the
basic step is to identify the resistivity (or conductivity)
value to be assigned to a node surrounded by regions
of different resistivities. A linear variation is assumed
and the weighted average of resistivities (conductivity)
is assigned as the resistivity (conductivity) value at
the node (Weaver 1994). The discrete forms of these
equations are distinct for the two modes of polariza-
tion. In order to describe these properly, the following
constants are defined.

hj;z = h’m + h’m—l; d;t = dn + dn—l;
h;; = hm — hm-—l; dT_l = dn - dn_1§ m' Ym—

hr =h, h,_i;



2D EM data inversion

dp d.d = h,h; d =d d;

nOn—1 m'“m) n-n

“‘ﬂ hm—lhm’ d;; - dn—ld:;' (3)

2.1.1 B - Polarization

The resistivity at node (m,n) is defined to be the
weighted average of resistivities of the four cells
surrounding it, with cell areas being the weights, as

. :Bm,n =+ ﬂm,n—l -+ /Bm—l,n + ﬁm—l,n—l

where

ﬁm,n = hp nPm+1/2n+1/2-

The derivatives of resistivity in the y- and z-directions
are respectively defined as

Op _ . Pmtijan — Pm-1/2n
op Pmn+1/2 — Pmn—1/2
et 0 —_— 2 > . 6
8z~ Fmn a5 /2 ©)

At the top and bottom boundaries, it is assumed that

Pm1 = Pm3j2s  PmN = PmN-1/2 and
pm,l = p;n,N =0. (7)
On approximating the derivatives at the internal node

(m, n) by differences, equation (1) can be written in
the discrete form after some algebra. as

2,0mn + hm—lpm "B 2pm,n - hmpm,n B
RE, m+1n —“——h” m—1;n
m
2Pt 1P, 20,0 =P
+ My d%ﬂ man’n+l+T—B

mn—1

2pm” — h;bpm:” 2pm,ﬂ - df-l—p:"n.,n ,
X Bpp, 2<m<M-1,2<n< N—1. (8)

These (M — 2)(N —2) internal node equations pro-
vide the coefficient matrix for the evaluation of
magnetic field at internal nodes.

2.1.2 E-Polarization

Analogous to the definition of resistivity at a node in
B-polarization, for E-polarization the weighted aver-
age of conductivity at node (m, n) is defined as

o — Cm,n + Cm,n—l + Cm—-l,n + Cm—l,n«l (9)
m i

where, (mnn = hmdnomi1/2,n41/2- The equation (2) can
be written in discrete form as '

Em+1,n + Em——l,n __I_Em,n+l + Em,n—-l

hi, hr, di dr,

(10)
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where, a? = wpo. Once the discrete governing equa-
tions are derived the supplementary discrete bound-
ary condition equations are to.be obtained next.

2.1.3 Asymptotic boundary conditions

For B-polarization, the magnetic field is constant at
the surface. Further, within earth the anomalous field
decays exponentlally as y — too. As aresult, the field
is 1D at the side boundary nodes, i.e.

Bm,l = BO: Bl,n = B—(zn)v BM,n = B+(Z'ﬂ)7
1<m<M, 2<n<N

(11)

where, B_(z,) and B.(z,) are 1-D magnetic fields at
the left and right vertical boundaries respectively.

For E-polarization the field at the left and right
boundary nodes respectively are

Evn = Ery [12“_((26“))] (12)
and

for 2<n < N. Here, E_(z,) and E,(z,) are 1D
electric fields at the left and right vertical boundaries.
For the top nodes on the side boundaries, the FDM
implementation led to the following expressions for
the first and Mth node respectively (Weaver 1994).

(1 —¢1)By; — By = —e1E_(0) (14)
where,
_ hi(y1 — 2h1)
y1(y1 ~ M)
and ,
Ey-11— (1 +em)Emy = —enEL(0)

where,

(15)

har—1(yar + 2har-1)

EM =
Yar(ynr + ha_yy

Equations (14) and (15) replace the infinite domain
Dirichlet boundary conditions:

Ey =E_(0) and Ey = E.(0) (16)

2.1.4 Integral boundary conditions

For B-polarization, using the difference formula for
derivatives and the 1D values at the side boundary -
nodes, the discrete form of the boundary conditions
can be written as
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wo1dn— 1 .
1th s (Pm,N + "hm-1pm,N>}Bm+l,N
m

- dy-
+|i ,i—?rcrl(pm’N—i- N-1

+[~,§+

dy-1 hhn
1, . Wy -
X (Pm,N ) hmﬂm,N) =+ ”"‘%M>] BN

=[(ND) = QLIB-(z) + [(Nf )y — Q1B (zn),
2<m<M-1. (17)

The coefficients @Y, and Q¥ are given by equations
(5.21) - (5.22) of Weaver (1994, p. 164) while other
coefficients DL, WE FE MP and Nf are given by
equations (5. 84) (5 90) of Weaver (1994, p. 175) with
his constant BP replaced by WP here. The boundary
condition represented by equatlons (11) and the (M-2)
equations (17) along with the (M-2)(N-2) internal node
equations (8), complete the linear system of equations
to be solved for the (M-2)(N-1) unknowns By, .

In E-polarization, the Neumann integral boundary
conditions are applied on the top as well as the bottom
boundary interfaces. On substituting the difference
formula and using asymptotic boundary condition, the
top boundary condition can be stated in the following
discrete form:

T d1
hr

‘Ile m—2 M-1
+<hq +U> Empa+ | >+ Y, |ALE;,

=2 j=m+2

P%Em + P;LJEM,] + < + Cm) m—1,1

+ %Emz = RLE_(0) + RME, (0) — miwB,

2<m<M-1. (18)

On the other hand, the discrete form of bottom boun-
dary condition is

~ ~ md
QLELN + Q%EM,N + ( hN L+ D )Em—lN

WdN_ - m—2
+< h$n1+F) m+1N+<Z+ )B E;n

J=2  j=m+2
~ T mdy_y TdN—10Y
* (Mm Cdya f:;:n 1 mN) Eim
T ~
EEm’N_l = S}nEA_( z2,)+S¥E (),

2<m<M-1. (19)

The coefficients in equations (18) and (19) are defined
in equations (5.11) - (5.18), (5.50) ~ (5.66) and (5.87) —
(5.91) of Weaver (1994, p. 163-164, 169-170, 175) with
his constant UM replaced by EM here. The (2N-2)
asymptotic boundary condition equations (12) and
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(13), equations (14) and (15) on the top corner nodes,
(2M-4) equations (18) and (19) for the top and bottom
interfaces, complete the boundary condition equations.
These, together with the (M-2)(N-2) internal node
equations (8) and (10), give a total of MN equations
in Ep,, unknowns.

The linear system of equations for both modes of
polarization can be compiled and written in a matrix
form as

CF =S8S. (20)
C is the coefficient matrix comprising the terms from
equation (8) and (17) or (10), (18) and (19), S is the
known vector derived from boundary conditions and
F is the unknown magnetic or electric field component
vector. The size of the coefficient matrix is n; x my
where n;, the number of unknowns, is
n; + (M-2) for B-polarization
n; + 2(M-2) for E-polarization

(M-2) x (N-2), being the number of inter-

g —

with n; =
nal nodes.
The matrix C would look like

M; M, O
M; M, M;
0 Mg My
with My and My being full submatrices, My, M3, M5
and Mg being diagonal matrices and My being a tri-
diagonal matrix. The elements of matrix C are
different for E- and B-polarization. For B-polariza-
tion, the pth row for internal nodes of the coefficient
matrix C has the following five non zero elements
Cp ql = (h —~1Pp—1,g3—1 T+ hpPp,qB 1)/dq‘3 1y

Co2 = (d3pp-1,43 + dgs- IPp—lq?» l)/hp 17
Cpgs = (Cpq + Gy, g2+ Cpga + C, ,q5) +5 wﬂh;‘%’

Cp,g4 = (dg3-10p,g3-1 + dg3p,as) / o, (20a)
Cp.g5 = (hpppgs—1 + hp-1Pp-1,43)/ des;
+

hy = hy,+ hy_y, dq3 =dg +dg_y.

The column numbers ¢’s are given as
Ql=p-M+2, 2=p—1,3=p, ¢d=p+1,
¢pB=p+M-2. (20b)

Similarly, for E-polarization, the five nonzero. ele-

ments of pth row can be written as

C gl = h;—/dq&-l?

pi
Co = d;z%/h‘p 1

bt ht o odhy dh 1
Cppg = |7+ +-L4+ L 1oy
P Gay | dg | Ry | hpg  2F

X (hp-1dg3-10p-1,¢3-1 + hp-1d30p-1,3

+hpdgs—10p,g3-1 + Ppdgsopgs) |,
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Copu = d;é/ o
C .= h;/d

0,45 q3:
and the column number ¢’s are given by the same
equation (20b). Once the main field component, B, or
E,; is computed, the other field components can be
derived from it through the requisite transformation
matrices.

For B-polarization, only the horizontal component
of the electric field, E, is of practical interest that can
be derived as

E, = (Tf)B (21)

where, T2 is the transformation matrix of order (M-
2) xn;. The nonzero elements of its pth row are

Tnl 1 7 h+
T3 == | S
T et hp1 | df 27 oyt g
Tplg 1
(T]) p =W
Ppl . _ Pp—1,1
Tpg = hpdl %/J,, Tplg = hp—ldl‘pw_,u»-

Once E, is evaluated the impedance Z,, can be com-
puted as

Zya: = (T )Ba TW = [DBx]_le (22)

where, Dp, is the diagonal matrix whose elements
comprises the B, values.

Similarly, for E-polarization, the horizontal and
vertical components of the magnetic field, B, and B,
can also be derived. These field components, the
impedance Zz, and the induction vector I,, can be
written in the matrix notation as

Yz

B, =T.E,
B, = TZE, (23)
Z,, =T,E,
L,=T,E

where, Tf,Tf , Ty, and T, are the (M-2)xn; trans-
formation matrices. The nonzero elements of the pth
row of different matrices are

o idy
(Ty )p,ql - ;'}—{;;7
1 (h /p 1+h_1/p-11) ’idl i1
E _ D P p—i,
(Ty )p,q3 - §“dl Bt T oR :)'El"
'p P
E _ Z dl
Ty has = 572
o i1
(Ty )p,q5 T wdy’
E _ih
(Tz )p,q2 - wh—;’

(T2), .5 = —p+—w(1-— 1>ﬁ£
2B hy Pl ooy pp-11) Y|
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(T®) = _ihp

z /p,gh w h%
The transformation matrices for impedance and
induction vector are given as

Ta:y = {DBy}_l )

T, = D5, [T 24

where, Dp,, a diagonal matrix, is comprised of B,
values. Thus, any field component, impedance or induc-
tion vector can be computed, using these relations and
then the corresponding Jacobian can be evaluated.

2.1.5 Forward matriz solver

The forward matrix equation has been solved using
the Gaussian elimination, a direct method. Special
measures are taken to exploit the special block tridia-
gonal structure of the coefficient matrix. The FDM
coefficient matrix C is complex and has distributed
eigenvalues. To exploit its special sparsity structure,
iterative methods can be used. The early workers
(Jones and Pascoe 1972; Hibbs and Jones 1976) did
use relaxation methods but they did not address, in
detail, its accuracy. Apart from this, though the
matrix is diagonally dominant, yet the off-diagonal
elements, corresponding to the second and (M-1)th
nodes, are almost equal to the diagonal one restricting
the use of iterative methods. Moreover, for the solu-
tion of a matrix equation with different right hand
sides, the direct methods may score over iterative ones
inspite of the enormous sparsity of the coefficient
matrix.

Another alternative is to use the conjugate gradient
(CG) method that is a semi-iterative method. Due to
distributed eigenvalues of the matrix C, it will result
in a number of iterations approaching the order of
matrix. Although the number of CG iterations is less
than what is needed in iterative methods, the time
taken may, in some cases, equal that for the iterative
method because of the complexity of a CG iteration.
To overcome this inefficiency, preconditioning, an
algebraic procedure to generate a transformed system
of equations having a better eigenvalue spectrum, is
used (Jacobs 1981). The widely used preconditioner,
the complete Cholesky decomposition (Meijerink and
van der Vorst 1977; Kershaw 1978), works satisfacto-
rily only for a real and positive definite matrix.
Another possible approach is to use augmented
conjugate algorithm where the original complex
system is augmented by its adjoint (Sarker et al
1988). But since the positive definiteness of the matrix
is not known a priori, it can not be used. Mackie and
Madden (1993) and Mackie et al (1994) have used a
minimum residual algorithm for real symmetric
matrices (Axxelson 1980) by neglecting the imaginary
part of the diagonal term. This approach could not be
followed as the coefficient matrix C is not symmetric.
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In the case of matrix solvers based on direct
methods, the already existing LU decomposition of
matrix C can be reused. In other methods, the whole
procedure is to be done afresh each time. All these
points justified the use of the direct method for solving
the forward problem.

2.2 The Inverse problem

The 2D non-linear inverse problem is posed by quasi-
linearizing the Taylor series of the response function
F;(P;) about an initial guess parameter vector P as

F(P)=F PO)+Z P P) + ZZ
jlk-—
B?F,
BPBPk( = P)(B,—~ B+
i=1,2,...,m. (25)

This equation can be written in a concise form with J
and H as the Jacobian and Hessian matrices respec-
tively as

F(P) = F(P°) +JAP +1APTHAP + - - -

that reduces to the following simple form if P? is
sufficiently close to P

AR = JAP (26)

where AR is the difference column vector between the
observed and computed responses F(P) and F(P?)
respectively, AP is the unknown parameter correction
column vector and J is the Jacobian matrix compris-
ing partial derivatives of observed response function
(data) with respect to the unknown parameters. The
matrix J is a measure of how each data point would be
affected by a change in a particular parameter and is
normally termed as ‘sensitivity matrix’. The inverse
solution of equation (26) is obtained using the ridge-
regression least squares and ridge-regression minimum
norm estimator as

AP = (JH3 4+ 1)1 3 AR (27)
and,
AP = JH (337 + N1)'AR (28)

respectively. The solution of equation (26) in current
iteration is used to update the initial guess to be used
for the next iteration as

P=P'+AP. (28a)

At the end of each. individual iteration, the inverse
solution is checked for convergence. The inversion
process is stopped the moment either the convergence
is achieved or the iteration number exceeds the speci-
fied limit.

From the inverse problem formulation it is evident
that the basic steps of every inversion iterations are
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the forward computation, the generation of Jacobian
matrix and finally the solution of equation (26). There-
fore saving at any of these steps can significantly
reduce the total computer time. The Jacobian matrix
in equation (26) is composed by differentiating equa-
tion (20) with respect to the unknown resistivity
parameter, P;,

OF 0C

This can be cast into the following matrix equation
Cl=Y (30)
where, the jth columns of matrices J and Y are

OF oC

— and Y;=—F.

OP; ' 0oP

It should be mentioned here that the initial guess is
the current estimate of p;, the resistivity of the jth
block. For numerical accuracy, log p; is used as a para-
meter vector

F=0 j=12,....,m (29)

sz

P; =log p; = —log 0. (30a)

The derivative with respect to it is defined as

8 _190 _ 19
OP;  p;0p;

0;00;

Equations (20) and (30) have the same coefficient
matrix C. Therefore, in the case of a matrix solver
based on direct methods, the already existing Lower
and Upper triangular (LU) decomposition of it can be
reused. Thus, each column of the matrix J can be
efficiently computed using equation (20) with the
corresponding columns of matrix Y as a new right
hand side. After composing the matrix J, the estima-
tion given by equation (27) or (28) is used for obtain-
ing the inverse solution. For every inversion iteration
equation (26) is solved as many times as the number
of unknown resistivity parameters. The Jacobian for
the various response functions can be derived from the
following expression of the derived response functions

R =TF (31)

with R as the derived response function vector, T as
the transformation matrix formed from the relation-
ship between the response function and the respective
field components and F as the corresponding field
component vector. leferentlatmg (31) with respect to
P;, we get

R
9P,

T8F+BTF

OP; OP; 32)

2.2.1 Derivative of coefficient matriz

The derivative of a coefficient matrix element is zero
unless its expression contains p;. Since an internal
node is associated with four regions, the elements of
the row corresponding to this node contain only these
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four block resistivities. As a result, the matrix J is
grossly sparse with each row having at most four non-
zero entries in column positions corresponding to the
element whose resistivity is perturbed. For B-polar-
ization, the derivatives of different entries in the pth
row of matrix C are:

8Cp,q1 _ _( h;- )i
O dg-1) By’

0Cp.43 1
8;; = _(Op,ql +Cpp2 + Cp,ga + Cp.g5) Fj’

8Cp,q4 _ h; 1
9F; - dg) Pj’
9Ch5 - dr;rS i
9P hp-1) Py’
where ¢;’s are given by equation (20b).
For E-polarization, since the resistivity appears
only in the imaginary term of the diagonal element, all

the off diagonal terms will vanish. The pth diagonal
element of derivative matrix is

ocC 3 M 1
8]]);1 = —fWw— hp 1dq3_1Fj.

(33)

(34)

If the body is outcropping, in E-polarization, the
top row block matrix, corresponding to the top
integral boundary condition is to be differentiated
with respect to P;. Since only the node at which the
condition is being evaluated contains a resistivity
term, all other entries in the full block will vanish. The
derivative of the diagonal element of the top block is
given by

hp..] l

Cpgs g L
®hy P,

T
9P, w——d

= (35)

Once, computation of the derivative of the coeffi-
cient matrix C is over, it is multiplied with the corres-
ponding field vector F to construct the jth column of
the right hand side matrix Y of equation (30).

2.2.2 Computation of Jacobian/derived Jacobians

The Jacobian matrix J can be computed explicitly by
solving equation (26) using any standard matrix
solver. The Jacobian J 5B , corresponding to the main

field component, B, or Em, is used to derive the .

Jacobians for derived response functions.
For B-polarization, the jth column of Jacobian, J Yo
of impedance Z,, can be written as

0Zys _LOE, _,0B,
3P, = (Jy); = [DB,] 35, ~ [Dg, ][DBJ 7P,
(36)

- where, Dp, and Dp, are the diagonal matrices for B,
and E, respectively. From equation (23), since the
" constant magnetic field does not depend on resistivity,
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the second term will vanish and the above equation
will reduce to the following equation

0B, 0T,
_ -1 Y
L | (37)
For E-polarization, the Jacobians J, for the
impedance Z,, can be derived as
0Zgy, -10E, —20B,
o - — [Dg,][D —,
8 .7 (J ./) [DBy] 8PJ [ E.r][ By] aI)J
(38)

On using equation (23), it reduces to the following
equation

(Joy); = [Dp, |7 37

Here T'J is the derivative of transformation matrix T
with respect to P;.

For induction vector I, the jth column of the
Jacobian J,, can be written as

ZTyTny

Z,, T'E,].

y 'z

(39)

oL, o adB. ,8B,
pr - (Jzy)J - [DB,,] 6Pj [DBZ] [DBy] 6PJ .
(40)

Using the respective transformation matrices from
equation (23), the above equation reduces to the
following form

(Jzy)j = [DB,,]—l[(Tz - IzyTy)Jf + (T'z - IzyT;;)Ea:]

(41)

where superscript () indicates differentiation with
respect to P;. The different forms of Jacobian matrices
can be written in a generalized form as

Jp=T'F +TJ,. (42)

Depending upon the response vector AR, the
transformation matrices are developed and the
derived Jacobians are computed. Once J is evaluated,
the inverse problem equation (26) can be solved using
a suitable matrix solver.

2.2.3 Inverse matriz solver

The EM inverse problem is stated, in a matrix form, in
equation (26). On account of the finite and erroneous
data, the problem is ill-posed and needs to be
regularised for obtaining an approximate solution.
The problem is, in general, either overdetermined or
underdetermined, depending upon the number of
observations and parameters. For such cases, ridge-
regressed least square or minimum norm estimators
are used. ,

"To obtain a least square or minimum norm solution,
the matrix J should be evaluated before hand using
equation (27) or equation (28). Since the inverse
problem given by equation (26) is to be solved only for
the single right hand side, semi-iterative methods can
be used instead of the direct ones. Due to real data
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being invariably erroneous, the resulting system of
governing equations will be inconsistent. Therefore,
only an approximate solution can be sought. This
means that inaccuracy in the estimation of unknown
parameters within a prescribed error range can be
tolerated and this can be more efficiently achieved
through iterative or semi-iterative methods. But when
solved using direct or iterative methods, equation (20)
is to be solved as many times as the number of blocks
in the inversion domain, for each inversion iteration.
In the case of CGM, on the other hand, one avoids the
explicit construction of J. Instead, only the product of
J or of its Hermitian with a given vector need be
known. It is so because the coefficient matrix appears
only in the product of the search vector P with itself.
Hence, equation (20) is to be solved only twice for
every inversion iteration.

Most of the literature on CGM has only dealt with
the case of a real, symmetric and positive definite
matrix (Reid 1971). However, the system of equation
(26) is complex. As a result, it is solved using the
complex Bi-Conjugate Gradient Method (BCGM)
where the matrix J or its Hermitian appears only in
their product with the search vector P (Jacobs 1986).
Since the resistivity is a real quantity, only the real
part of the correction vector AP is retained. The
irregular behaviour of convergence is observed in
BCGM. Moreover, the solution, as obtained, does not
reflect the true behaviour of the resistivity. Hence, a
way out has been found to recast equation (26) into
real form and the regular steps of BCGM are modified
to solve this equation for an equivalent real system.
The complex matrix and the right hand side are
broken up into their real and imaginary parts and the
equation (26) is written as

(3, +i3,)AP = (AR, +iAR) (43)

where, the ‘r and ‘4’ subscripts denote the real and

imaginary parts respectively. Equation (43) can be

written as
Jr _ AR,
(3)ar= (o)
or v
J.AP = AR, (44)

where, the subscript ‘¢’ indicates appended real and
imaginary components of the quantity. The solution
so obtained, correction vector AP, is real. There is no
need of preconditioning as the system converges in two
or three iterations. The inverse solution is obtained
uSing BCGM to solve the matrix equation of type
Ax = b, with the coefficient matrix A and the right
hand side vector b defined for the two estimators
given by equation (27) or (28).
For the least squares,

A =373, +N1)
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and

b =JTAR,.

For the minimum norm,

A = (JJI7 + NT)
and

b = AR..

For the minimum norm estimator, the solution
vector x is multiplied by J f to get the estimate.
Hence, for solving the above equations, the product
(373,)q or (3.J7)q is required. These can be com-

puted as described below. Rewriting equation (26) in
real and imaginary parts as:

(Cr +4Cy) (I +id;) = Y, + 1Y, (45)

and splitting this into two equations corresponding to
the real and imaginary parts, we get

CJ,—CJI =Y, (486)
and,
CJ,+C.J; = Y;. (47)
Equation (46) and (47) can be combined as:
G -Cil (I i Y,
C'i C'r Ji - Yi
or,
Cele=Y.. (48)

Multiplying equation (48) with an arbitrary vector q
and solving we get:

ch = Cc—chq' (49)

Similarly, taking transpose of equation (48), solving
and then multiplying with the arbitrary vector q we
get

Tq=YI(Ch)"q. (50)

For every inversion iteration equation (20) is solved
with as many right hand sides as the number of blocks
in the case of direct methods while in the case of
BCGM, it is solved only twice for each conjugate
gradient iteration. Hence, BCGM scores over the
direct method as long as the number of iterations
needed for convergence is less than half the number of
blocks in the inverted model. Further, BCGM is
preferred to other iterative matrix solvers because of
its faster convergence rate. One iteration of the quasi-
linear inversion includes the solution of the forward
problem, generation of Jacobian and the solution of
the inverse problem. While solving the inverse
problem, there are two levels of iterations. The outer
loop is on the iterations of quasi-linearization and the
inner loop is on the iterations of the BCGM to obtain
the parameter correction vector. The correction vector
AP obtained by solving the inverse problem is added
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to the initial guess P°. However, since P; is related to
pj through equation (30a), equation (28a) gets
modified as

(51)

The logarithmic parameterization works well for
larger changes in the model parameter resulting from
larger dynamic range in the signals and therefore it
stabilizes the inversion process. After each iteration
the solution convergence is checked on two counts, the
degree of improvement in the parameter vector and
the level of fit. For the latter, the computed response
of the model is compared with the observed one and
the root mean square (rms) error is then compared
with the pre-assigned threshold value.

p; = p)exp(AP).

3. Numerical experiments

Based on the above development, a software has been
developed that consists of 6120 lines, 42 subroutines
and 3 function subprograms. The main program has
two basic modules-forward and inverse. It is written in
FORTRAN 77 and implemented on an IBM compa-
tible EISA based PC486 machine with 32 MB RAM
and 383 MB hard disk, using SVR 4.0 version of Unix
operating system and F 78 FORTRAN compiler. For
a typical model with 31 x 15 nodes, the program takes
about 3 min for 10 inversion iterations.

Once the software is developed, it becomes essential
to establish its accuracy and efficiency. Every aspect
of the algorithm EM2INV was checked by designing
exercises of diverse nature. For understanding the
relationship between various model parameters and
the computed responses, experiments for forward
algorithm have been specially devised. Results of
these experiments help in setting up the guidelines
that can be used for a successful inversion of real data.

3.1 Forward algorithm

A model solved by Brewitt-Taylor and Weaver (1976)
which will henceforth be referred to as the BW model
is used for these tests. The model is 500 x 500 m?
square target of resistivity 0.1 ohm m, buried at a depth
of 100m, in a half-space of 1ohmm. The Dirichlet
boundary conditions are imposed at the domain
boundaries and the BW grid comprises 41 x 41 nodes.
Horizontally, the body is located at the centre of the
grid. Real and imaginary parts of the electric field at
grid points are found to be in excellent agreement
with those of BW. The accuracy of finite difference
method depends on grid spacing of the mesh (Chen
and Fung 1989). For mesh convergence study, a
comparison between various coarser and finer versions
of BW grid, along with the optimal grid used by
EM2INV, was made. The mesh spacings which are
four and two times of the original grid spacing result
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in the coarser grids of 11 x 11 and 21 x 21 nodes
respectively, whereas a finer 81 x 81 nodes grid is
obtained when spacings are reduced by half. The size
of EM2INV grid which was generated by an auto-
matic grid generator, is 31 x 12. The real and
imaginary components of the electric field for all these
grids exhibit excellent convergence to those of finer
grid. The refinement of optimal grid does not improve
the results at all. The reduction in size of the optimal
grid renders significant reduction in computation time.
Another test conducted on the algorithm was to verify
the convergence of the buried target response to that
of a half-space when the resistivity contrast is reduced
to 1. The resistivity of the rectangular target of BW
model is modified to 0.9ohmm for this test. The
impedance for the E- and B-polarization were
computed and found to be identical within computa-
tional errors.

A comparison of results obtained by the forward
algorithm with published results was the next method
of validation. For this purpose the bench mark model
is taken from the report of an international project on
the comparison of modelling methods for EM induc-
tion problems (Zhdanov et al 1990). In this report the
results of important numerical methods developed by
various workers through out the globe are compiled.
Here we present only two models. The first model
(figure 3(a)) is a two layer one with layer resistivities
100 and 10 ohm m. T'wo conductive blocks of resistiv-
ities 0.0l ohmm and 0.1 ohmm are embedded in the
first layer at a depth of 7km. The second model
(figure 3(b)) has a 10km thick inhomogeneity out-
cropping in the top layer. The real components of the
base electric field, F,, and magnetic field, H,, were
computed for these models at periods 1000s and 100s
respectively. These results are compared with pub-
lished results in figures 3(c-f).

The first inversion exercise was performed on the
conductive block model of Agarwal et al (1993). This
model consists of a conductive block embedded in the
top resistive layer of a two layer model. The 20km
wide, 10 km thick block of resistivity 10 chmm is at a
depth of 10km. The 40km thick top layer of
100 ochmm resistivity is underlain by a conductive
layer of 10 ohm m resistivity. The horizontal extent of
the model grid was 200km (—100km to 100km),
while its vertical extent was 100 km (0 to 100 km). On
the basis of the synthetic forward response, a
40 ohmm inversion domain; extending from —30km
to 30 km in horizontal direction and 5km to 25km in
vertical direction, was identified. Since the body was
best sensed at the 80s period, the corresponding E-
polarization impedance, Zg, was inverted. Both the
real and imaginary components of the inverted model
impedance closely fit the true values. The root mean
square (rms) error during the inversion process
continuously decreased with the increasing iteration
number, signifying acceptability of the inversion



244

Figure 3. The two models chosen from report of Zhdanov et al (1990), (a, d). Comparison of EM2INV results with some of the
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Figure 4. Inversion of synthetic Z, data for conductive block

model with increasing randorm noise. The comparison of true
and inverted model responses for (a) noise free, (b) 2% noise
and (c) 5% noise. Parts (d)-(f) show the contours of resistivity
(in ohm m) within inversion domain while parts (g)-(i) show
the convergence of rms error in inversion for noise free, 2% and
5% noise respectively.

quality. The top horizontal and the two vertical
boundaries of the body were well resolved. However,
the bottom horizontal boundary could only be reason-
ably inferred. The inverse solution stability was
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studied by inverting the noisy data. Before inversion,
random Gaussian noise of different signal to noise
ratios were added to the synthetic response. The
addition of noise resulted in high frequency oscilla-
tions in an otherwise smooth response curve. The
inversion of different noisy Z, responses revealed that
the quality of inverted model was acceptable as long
as the noise level was <5%. The inversion results
for 0%, 2% and 5% Gaussian noise cases are shown
in figure 4. These results confirm the stability of
EM2INV.

3.2 Experiment design exercises

The experiment design exercises performed, not only
rigorously tested but also enhanced the algorithm’s
forward response generation as well as data inversion
capabilities. For data inversion, the initial guess
model is obtained from the observed anomaly. Hence,
the forward modelling experiments were conducted
with the goal of studying the impact of model
parameters on the forward responses. The inversion
experiments, on the other hand, were performed to
gauge the inversion quality under different situations.
Such experiments help in improving quality of
inversion and also in planning data acquisition. Three
two-layer earth models, with conductive and/or
resistive block(s) buried in the top layer, were chosen
from Agarwal et al (1993). Model 1, described in the
previous section, has a conductive block, model 2 has
a resistive block and model 3 has a pair of resistive-
conductive blocks. Model 2 is similar to model 1,
except for the block resistivity which is 1000 chmm
instead of 10 ohmm. In model 3, two blocks of width
10km and thickness 10km, having resistivities
10ohmm and 1000 ohmm, are buried in a host of
100 ohmm. The separation between the two blocks is
40km.

3.2.1 E:cpem'menté with forward algorithm

Parameters studied with models 1 and 2, were: (i) the
contrast between the target and host resistivities (2, 5,
10, 100, 1000 for model 1 and 10, 50, 100 for model 2)
and (ii) the depth to the top of the target (0, 10, 30,
40, 50km). For model 3, the inter-block resistivity
contrast and the horizontal separation (0, 10, 20,
40km) were the key parameters studied. Since the
body was sensed best at the period 80s, all the
responses were generated for this period. A careful
study of these responses revealed that the anomaly
peak sharpened with increasing resistivity contrast
ratio. However, this sharpness was perceptible only up
to a certain depth of burial beyond which even a large
contrast ratio did not help in detection of the body.
For a constant contrast ratio, the magnitude of
anomaly was greater for the conductive block than for
the resistive block. The conductive and resistive blocks
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were better sensed by the E- and B-polarizations
respectively. The model 3 responses clearly supported
this observation because the corresponding Pay CUTVES
did not reflect the presence of resistive block at all and
instead, merged into the half-space values. The impact
of the depth of burial was studied only on models 1
and 2. The apparent resistivities were computed at
different depths of burial for a given resistivity
contrast ratio. It was observed that due to attenua-
tion of the signal, the magnitude of anomaly decreased
with increasing depth of burial. This study revealed
that for the burial depths greater than 30km the
almost flat 80s period anomalies contained virtually
no information about the target. The outcropping
body was distinctly perceptible in the B-polarization
responses due to a sudden jump in the p,, values at
the edges. This feature helped in estimating the
horizontal extent of the body. The model 3 apparent
resistivities py; and p,, were computed, for a fixed
contrast ratio, for different separation values. The
effect of separation between the two blocks was
reflected better in Py than in pgy. For pg,, this effect
was perceptible only when the block was conductive in
comparison to the host rock. As the block became
resistive the response curves became almost identical
for the different separation values.

3.2.2 Ezperiments on inversion algorithm

The inversion algorithm is a versatile one and can be
used to invert various response functions. The
profiling as well as the sounding data can be inverted
equally efficiently. Numerous factors like choice of
response function, mode of polarization, number of
periods used for inversion, spread of observation
points, individually or jointly affect the quality of
inversion. In order to study these influences, some
theoretical experiments were designed which, in turn,
further established the efficacy of EM2INV. These
exercises were conducted on models 1 and 2. Apart
from using a priori information about the layered
earth models (1D), better initial guess models were
constructed on the basis of forward anomalies. For the
models under consideration, the inversion domains
encompassing the target extended from —30km to
30km horizontally and from 5 km to 25km vertically.
The assumed resistivities of the inversion domains for
models 1 and 2 were 40 ohmm and 500 ohm m respec-
tively. The grids used to invert the data were different
from the ones used in the forward computations.
During the inversion process, periods smaller than 10s
resulted in large numerical grids which could not be
handled on the available computational facility.
Therefore, we used 11 periods (in s)-10, 15, 20, 40,
80, 160, 320, 640 1280, 2560 and 5120 for generation of
synthetic responses. The choice of standard frequency
(period) was crucial because the inversion domain
blocks of the corresponding grid were used as super-
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blocks in subsequent inversion iterations. For selection
of the standard frequency, the single frequency inver-
sion at each period of the given range was carried out.
Since the inversion of the 80s response was efficient,
this particular period was taken as the standard one.
The 31 grid points of the standard frequency grid,
extending from —204km to 204km, were used as
observation points for inversion. The observation
points were (in km) —204, —144, —114, —99.3,
—84.3, —69.3, —58, —46.7, —35.5, —24.2, —17.1,
—-13.6, —10, —-6.6, —3.3, 0, 3.3, 6.6, 10, 17.1, 24.2,
35.5, 46.7, 58, 69.3, 84.3, 99.3, 114, 144, 204. The
optimum value of the regression parameter was taken
to be 0.1. The minimum-maximum limits of the resis-
tivity values were 1-100 ohm m and 100-5,000 ohm m
for models 1 and 2 respectively. Before undertaking
the 2D inversion, the synthetic responses were
corrupted with 2% random Gaussian noise.

The MT as well as GDS response functions,
impedance and induction vector respectively, can be
inverted using EM2INV. In order to analyze the rela-
tive performance of the impedance Z, and the
induction vector I, these responses were computed
at the standard frequency for model 1 and then
inverted. The responses computed for the inverted
model fit the true Z; and I, responses. Although
there was greater % rms error in the inversion of MT
data, yet the target resistivity was better estimated
than from the GDS data. The MT data resolved the
exact depth of burial while the GDS data demarcated
the horizontal extent of the target. Both the MT and
the GDS data could not resolve the lower boundary of
the body.

The next exercise aimed at studying the relative
performance of the two modes of polarization of the
MT data. For this purpose, the B- and E-polarization
responses of models 1 and 2 were generated for the
standard frequency and then inverted. For model 1,
the inversion of Z;, imaged the target better than that
of Z,,. On the contrary, the inversion results for model
2 indicated superior inversion of Z,, response. The
target got shifted upwards during the inversion of Ty
response. For both the models, the lower end of the
target was not clearly identified in either modes. The
lateral boundaries were well imaged by inversion of
Zy; response for both the models. Thus, the conduc-
tive bodies were better resolved by inversion of E-
polarization data while the resistive bodies by
inversion of B-polarization data.

The different depth levels of inhomogeneity can be
tapped by controlling the frequency which, in turn,
controls the penetration depth. Generally, a large
number of frequencies are used to improve the
resolution. This results in overall increase of computa~
tion time that is linearly proportional to the number
of frequencies used. A theoretical exercise that demon-
strated the impact of the number of frequencies on the
quality of inversion was devised. It also identified the
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minimum number of frequencies necessary for per-
forming an efficient inversion. These exercises were
performed through the inversion of Z, response of
model 1. Initially, the model response generated at the
standard frequency was inverted using all the observa-
tion points. Subsequently, the number of frequencies
was increased one by one. The period lying on either
side of the standard frequency was selected from the
given range 10s-5120s. The procedure was repeated
till all the frequencies of the range were included and
for each step the inversion was carried out. It was
observed that with increasing number of frequencies,
there was no remarkable difference in the inversion
results. An increase in the number of frequencies
continuously decreased the % rms error, but at a
significant increase in computer time. These results
established that if the extent of profile length was
large enough to tap the target, then an increase in
number of frequencies did not improve the inversion
quality.

Besides the frequency, the spread of observation
points also controls the penetration depth. Larger the
spread deeper will be the penetration. An experiment,
analogous to the previous one, which aimed at finding
out the minimum number of observation points
needed for a good quality inversion was carried out.
Initially all the 31 observation points, extending from
—204 km to 204 km, were used for inversion of Z,, at
standard frequency. Gradually two observation
points, one each from the flanks, were removed till
only one observation point, the centre of the profile,
was left. If the set of frequencies used was not able to
invert the data properly then another frequency was
added. The body was best resolved when inversion
was performed using all the 31 observation points.
However, even when very few (5 or 1) observation
points, were used for inversion, it helped in decipher-
ing the approximate model. The most interesting
result was obtained when the inversion was carried
out using only one observation point. These results
illustrated that even a single observation point of the
profile contained significant information about the
body and yielded an approximate model after inver-
sion. This result highlights the utility of the 2D
inversion in comparison to the 1D inversion, where the
single point data inversion provides only a layered
earth model.

4. Examples

The algorithm EM2INV was first tested on several
data sets derived from theoretical models simulating
the basic structures, commonly encountered — horst,
sill, dike, faulted block, conductive block, resistive
block, salt dome, sedimentary basin etc. After a

comprehensive literature survey, the 2D models, .

representing geologically meaningful situations, were
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selected. Various workers (Patra and Mallick 1980;
Pek 1985; Madden and Mackie 1989; Oldenburg 1990;
Zhdanov et al 1990; Smith and Booker 1991; Agarwal
et al 1993) have given simple 2D geophysical models.
The results presented here pertain to the two models —
coductive and resistive pair model (model 3)
embedded in two-layer earth (Agarwal et al 1993)
and the sedimentary basin model (model 4, Madden
and Mackie 1989). One field example from Central
Himalaya has already been published (Rastogi et al
1998) and that may be seen in conjunction with the
present paper for completeness.

A study, to ascertain whether the stacked 1D
models can be improved further by 2D inversion or
not, was conducted on the models taken from Agarwal
et al (1993). As a result, the inversion became a two
step procedure. In the first step, the 1D inversion was
carried out at each observation point for given time
periods and then the inverted 1D models were stacked
to derive the initial 2D model. In the second step 2D
inversion was performed to get the final model. The
straightforward inversion scheme (SIS) (Gupta ef al
1996) was used for the first step while EM2INV was
used in the second step. SIS requires the number of
layers in the model and the constant layer thickness in
unit of layer skin depth. The number of layers
assumed was in general 100. For EM2INV, the
inversion domain encompassing the true body and
its resistivity was defined on the basis of the 1D
stacked model. The forward responses, computed for
the given period range at specific observation points
and corrupted with 2% Gaussian noise, were used as
data for SIS. For EM2INV, only the significant
periods, for which the body was better sensed, were
used. For a general model with 9 observation points
and 6 periods, the CPU time taken for SIS was about
120 seconds per observation points while for EM2INV,
using all the observation points and 2 periods, the
time taken was about 816 seconds.

The response for model 3, to be used in SIS and
EM2INV, were calculated for the same 11 periods as
for model 1. The number of sites were increased to 19
(in km) as —100, —75, —50, —40, —35, —30, —25, —20,
—-10, 0, 10, 20, 25, 30, 35, 40, 50, 75 and 100, to cover
full width of the region containing the anomalous
bodies. The domain used for 2D inversion extended
from —40 km to 40 km horizontally and from 10km to
25 km vertically. Since the inversion of the starting
model with a depth of burial different from the true
one did not succeed, the exact burial depth of blocks
was taken. The assumed resistivities of inversion
domain were 150 ohm m and 30 ohm m respectively for
both Z, and Z, inversions. The basic inversion
results, the pseudosections and the resistivity con-
tours, resulting from the 1D and 2D inversions are
shown in figure 5. The Z; inversion better indicated

‘the presence of the resistive block (figure 5(b) and

5(d)) while the Z, inversion reproduced the con-
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ductive block more prominently (figure 5(c) and 5(e)).
Figures 5(d) and 5(e) present the 2D resistivity
contours and further support this observation by
giving better estimates of resistivities. This exercise
illustrates that the results of B- and E-polarization are
complimentary to each other and can be used for
estimating the true model in a comprehensive manner.
The inversion of the response of a simple basin
model 4, used by Madden and Mackie (1989) was
performed by directly using EM2INV. Figure 6(a)
depicts the 2D model with a 2:1 vertical exaggera-
tion. The conductive basin of 5 ohm m resistivity was
buried in a resistive host of 300ohmm. A numerical
value 9999 ohm m was assigned to the highly resistive
basement. Since the model was conductive, the
inversion of Z, scored over that of Z,. Moreover, in
this particular case, the inversion results of Zyy Were
not very satisfactory. Hence, results of Zgy only are
presented here. The forward response was computed
for period 10s and inversion was carried out using all
the grid points as observation points. Based on a
priori information from the 1D model and the forward
anomaly, the inversion domain was taken from —7 km
to Tkm and Okm to 9km in horizontal and vertical
directions respectively. The resistivity was assumed to
be 100ohmm. The misfit between the true and
inverted responses, the resistivity contour and the %
rms error are given in figures 6(b), 6(c) and 6(d)
respectively. The response of the inverted model
matched with the true Z; response. The inverted
model was able to identify the bottom boundary of the
basin. Being Z,, inversion, the resistivity was under-
estimated in the vertical model (figure 6¢). The % rms
error was high in the first iteration. As soon as the
true parameter values were approached in subsequent
iterations, the error estimates reduced and convergence
was achieved after few more iterations (figure 6d).

5. Concl_usions

The algorithm EM2INV, presented in this paper, .

constitutes an efficient and reliable software package
for the inversion of 2D geoelectromagnetic data. The
algorithm has been rigorously and comprehensively
tested. All the studies conducted to investigate the
efficacy of this algorithm yielded encouraging results.
The comparison of the results of EM2INV with those
obtained using other existing algorithms, highlighted
the efficiency of the algorithm. This justified a quali-
fied faith in the algorithm. Primarily from the results
of experiment design exercises and from the inversion
studies carried out on different data sets, the following
conclusions can be drawn:

e The choice of time periods, employed for data
acquisition, should not only be constrained by the
skin depth but also by the spread of observation

points, i.e. length of the profile. If the profile length-
is sufficiently large then increase in number of
periods does not improve the inversion quality.

e For a wide spectrum of frequencies, even a single
observation point on the profile contains significant
information about the inhomogeneity. 2D inversion
of such data set does yield an approximate model.

o Inversion of MT data provides better estimates of
the vertical variation whereas GDS data deciphers
the horizontal variations better.

e The conductive and resistive bodies are better
resolved by inversion of the E- and B-polarization
responses respectively.

e The localization of vertical boundaries is better
achieved by inversion of the B-polarization data in
comparison to the E-polarization data which are
good in demarcating the horizontal boundaries.

e The inverted resistivity values are overestimated in
the B-polarization data, in comparison to those
obtained by the E-polarization data.

e An initial guess model derived from 1D stacked
results substantially improves the inversion quality
in comparison to the one using the initial guess
model on the basis of the 2D forward anomaly.
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