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A THEOREM OF CRAMER AND WOLD REVISITED
ALLADI SITARAM

ABSTRACT. Let H = {(x.y): x>0} C R? and let E be a Borel subset of H of
positive Lebesgue measure. We prove that if g and v are two probability measures on
R® such that u(o(E)) = v(o(E)) for all ngid motions ¢ of R®. then u = v This
generalizes a well-known theorem of Cramér and Wold.

1. Introduction. A celebrated theorem of H. Cramér and H. Wold particularly well
known to probabilists (see [3]) asserts: If p and v are probability measures on R’
such that they agree on all half planes, then p = v. This can be reformulated in the
following way: Let H = {(x. ») € R* x = 0}. If u and v are probability measures
such that u(a(H)) = v(e(H)) for all rigid motions ¢ of R?, then u = v. The aim of
this note is to generalize this result to an arbitrary Borel set E of positive Lebesgue
measure contained in H. The results in this paper are valid for R", n = 2, but for
notational simplicity we consider R*—the same proofs go through for any n = 2. A
special case of our result—for a restricted class of Borel sets E, i.e. those that
“pave” the half space H—appears in [4, §1.2.4]. However. the methods in [4] are
different., where the Radon transform is used.

2. Notation and terminology. For any unexplained notation or terminology please
see [S].

By a rigid motion of R> we mean a homeomorphism of R? of the form (x. y) —
T(x.y) + (xq. ¥y). Where (x,.¥,) is a fixed vector in R* and T is a special
orthogonal linear transformation of R’ (i.e. T is a matrix of the form

( cos ¢ sin(i))
-sinf cos@//’

Throughout this paper A denotes the Lebesgue measure on R*. Let C denote the
class of all (finite) complex measures on R?. If T is a tempered distribution (in the
sense of Schwartz), then 7 denotes the Fourier transform of T (which is again a
distribution) and Supp T denotes the (closed) support of T. For standard facts
regarding distributions, Fourier transforms etc., see [5]. If g is a bounded Borel
function on R?, then g defines a tempered distribution and g will denote the
(distributional) Fourier transform of g. If p 1s a finite complex measure, then p * g is
the bounded Borel function defined by

(nrg)(x) = [ glx=r)du().
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Finally we note that for a complex measure or an L'-function the usual notion of
Fourier transform coincides with the notion of distributional Fourier transform.

If ECR?, let 1, denote the indicator function of E. i.e. 1,(x) = 1 if x € E and
l(x)=0ifx & E.

H will always stand for the subset of R? defined by H = {(x. y) € R%: x = 0).

We end this section by quoting a result that will be needed in the next section.

PROPOSITION. Let f be a bounded measurable function on R* and p. € C. If p* f
vanishes identically, then [i vanishes on Supp f.

(Note. For a proof of this theorem, we refer to p. 232 of [2]. In [2] p is taken to be
an L'-function but by convolving p with an L'-function whose Fourier transform is
nowhere vanishing (e.g. the Gaussian) we can get the theorem quoted above. Note
also that Supp f is called “spectrum of /" in [2].)

3. The main result. We start with a proposition which combined with the
proposition quoted in §2 yields the main result.

PROPOSITION 3.1. Let h be a nonnegative bounded Borel measurable function on R*
such that h is positive on a set of positive Lebesgue measure and such that Supph C H.
Then R X {0} C Supp A.

PrOOF. First assume h € L'(R?). Let f(x) = [g h(x, y)dy. The hypotheses on h
easily imply that f is a nontrivial, nonnegative L'-function on R which is supported
in R*. Now if f is the one-dimensional Fourier transform of f, then f can be
extended to a bounded function g in the region § = {z € C;Im z < 0}. g will be
analytic in S; = {z € C;Im z < 0} and continuous in S. Thus f is the “boundary-
value” of a bounded analytic function in S, and consequently f cannot vanish
identically on any nonempty open subset of R, i.e. Supp f = R. Now observe that if
h is the (two dimensional) Fourier transform of A, then

AN0) = [ h(x p)e dxdy = f(M).

Thus Supp # D R X {0} because Supp f=R

Now we drop the assumption that # € L'(R?). To prove the proposition let us
assume h vanishes in a neighborhood U (in R?) of a point (A,,0) € R X {0}.
Choose ¢ sufficiently small such that the open ball of radius 2¢ with centre at (A, 0)
is contained in U. Let 0 # h, be a nonnegative function in L'(R?) such that 4, is a
C>-function and Supp A, is contained in the ball of radius ¢ around 0. (It is always

possible to do this.) Then Supp(hh ) = Supp(h * h,) C Supp h + Supp h,. So if
U ={(x,y) €ER% \(x— )\0)2 + y? <&}, then Supp(hh,) N U’ = @. However
hh, is a nonnegative L'-function with Supp hh, C H and by the first part of our
proof hh, must be zero almost everywhere on R®. Since h, is a C*®-function of
compact support, A, is the restriction of an entire function to R? and hence

h(x) # 0 a.e. on R Thus k is zero a.e. which gives us a contradiction and the proof
of our proposition is complete.
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Proposition 3.1 and the Proposition in §2 easily imply the following generalization
of the Cramér-Wold theorem.

THEOREM 3.2. Let E be a Borel subset of H such that A\(E) > 0. Let p,v € C such
that uw(o( E)) = v(6(E)) for all rigid motions o of R*. Then p = v.

PROOF. Let / be any line through (0,0) in R?. We will prove i =¥ on /. By
Proposition 3.1, Supp 1, D R X {0}. This implies that there exists a rotation T of R
such that Supp i”_- D I. Now u(e(E)) = v(a( E)) for all rigid motions o, implies that
fi * 1 = 0% 1, (where fi(A) = p(-A)). for every rotation T of R%. Thus by the
Proposition in §2 it follows that (j) = ( v) on [ Since / is arbitrary this implies
(i) = (V). i.e. fi = ¥, ie. p = v, and the proof of our theorem is complete.

REMARK. The technique used in this paper is essentially that of [1]—this paper
could be considered a continuation of [1].
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