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A THEOREM OF CRAMER AND WOLD REVISITED

ALLADI SITARAM

Abstract. Let H = {( \. »•): v > 0) ç R! and lei E be a Borel subset of H of

positive Lebesgue measure We prove that if \i and v are two probability measures on

R: such that n(o(£)) = v{a(E)) for all rigid motions o of R:. then n = v This

generalizes a well-known theorem of Cramer and Wold.

1. Introduction. A celebrated theorem of H. Cramer and H. Wold particularly well

known to probabilists (see [3]) asserts: If n and v are probability measures on R2

such that they agree on all half planes, then /x = v. This can be reformulated in the

following way: Let H = {(x, y) G R2; x > 0}. If /¿ and v are probability measures

such that /x(a(//)) = v(a(H)) for all rigid motions a of R2, then ¡i = v. The aim of

this note is to generalize this result to an arbitrary Borel set E of positive Lebesgue

measure contained in H. The results in this paper are valid for R", n > 2, but for

notational simplicity we consider R2—the same proofs go through for any n s* 2. A

special case of our result—for a restricted class of Borel sets £, i.e. those that

"pave" the half space H—appears in [4, §1.2.4]. However, the methods in [4] are

different, where the Radon transform is used.

2. Notation and terminology. For any unexplained notation or terminology please

see [5],

By a rigid motion of R2 we mean a homeomorphism of R2 of the form (a. y) —

T(x. y) + (x0. y0), where (x0, y0) is a fixed vector in R2 and T is a special

orthogonal linear transformation of R2 (i.e. T is a matrix of the form

/   cos0     sinöU
I -sin 6    cos 6 11 '

Throughout this paper A denotes the Lebesgue measure on R2. Let C denote the

class of all (finite) complex measures on R2. If T is a tempered distribution (in the

sense of Schwartz), then T denotes the Fourier transform of T (which is again a

distribution) and Supp T denotes the (closed) support of T. For standard facts

regarding distributions, Fourier transforms etc., see [5]. If g is a bounded Borel

function on R2, then g defines a tempered distribution and g will denote the

(distributional) Fourier transform of g. If ¿i is a finite complex measure, then ju * g is

the bounded Borel function defined by

(p* g)(x) = | g(x-y)dp(y).
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Finally we note that for a complex measure or an L'-function the usual notion of

Fourier transform coincides with the notion of distributional Fourier transform.

If £ C R2, let 1/. denote the indicator function of £, i.e. \,(x) = 1 if a G £ and

lE(x) - Oif x G £.

H will always stand for the subset of R2 defined by H — {(a, y) G R2: x 3» 0}.

We end this section by quoting a result that will be needed in the next section.

Proposition. Let f be a bounded measurable function on R2 and ju G C. If ju. * /

vanishes identically, then fi vanishes on Supp /.

(Note. For a proof of this theorem, we refer to p. 232 of [2]. In [2] /n is taken to be

an L'-function but by convolving <i with an L'-function whose Fourier transform is

nowhere vanishing (e.g. the Gaussian) we can get the theorem quoted above. Note

also that Supp/is called "spectrum of/" in [2].)

3. The main result. We start with a proposition which combined with the

proposition quoted in §2 yields the main result.

Proposition 3.1. Let h be a nonnegative bounded Borel measurable function on R2

such that h is positive on a set of positive Lebesgue measure and such that Supp h C H.

Then R X {0} C Supp h.

Proof. First assume h G ¿'(R2). Let/(a) = /R h(x, y)dy. The hypotheses on h

easily imply that/is a nontrivial, nonnegative L'-function on R which is supported

in R+. Now if / is the one-dimensional Fourier transform of /, then / can be

extended to a bounded function g in the region S — {z G C; Im z =s 0}. g will be

analytic in S0 = {z G C; Im z < 0} and continuous in S. Thus / is the "boundary-

value" of a bounded analytic function in S() and consequently / cannot vanish

identically on any nonempty open subset of R, i.e. Supp / = R. Now observe that if

h is the (two dimensional) Fourier transform of h, then

h(X,Q) = f h(x, v)e-'Xxdxdv=f(X).

Thus Supp h D R X {0} because Supp/ = R.

Now we drop the assumption that h G L'(R2). To prove the proposition let us

assume h vanishes in a neighborhood U (in R2) of a point (Ao,0) G R X {0}.

Choose e sufficiently small such that the open ball of radius 2e with centre at (Xo,0)

is contained in U. Let 0 =£ h{ be a nonnegative function in L'(R2) such that ft, is a

C°°-function and Supp/i, is contained in the ball of radius e around 0. (It is always

possible to do this.) Then Supp(M,) = Supp(/i * /?,) C Supp/i + Supp/i,. So if

W = {(a, y) G R2; /(a - X0)2 + y2 < e}, then Supp(M,)"n U' - 0. However

hhx is a nonnegative L'-function with Supp M, Ç H and by the first part of our

proof hhx must be zero almost everywhere on R2. Since h] is a C°°-function of

compact support, hx is the restriction of an entire function to R2 and hence

ht(x) =£ 0 a.e. on R2. Thus h is zero a.e. which gives us a contradiction and the proof

of our proposition is complete.
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Proposition 3.1 and the Proposition in §2 easily imply the following generalization

of the Cramér-Wold theorem.

Theorem 3.2. Let E be a Borel subset of H such that X(£) > 0. Let ju, v G C such

that ii.(o(£)) — v(a(E)) for all rigid motions a o/R2. Then ¡i — v.

Proof. Let / be any line through (0,0) in R2. We will prove jtî — v on /. By

Proposition 3.1, Supp 1EDRX {0}. This implies that there exists a rotation Lof R2

such that Supp \Th: D /. Now \i(a(E)) = i/(o(£)) for all rigid motions o, implies that

A * I77: = ^ * 're (where ji(A) — \x(-A)), for every rotation T of R2. Thus by the

Proposition in §2 it follows that (/x) = (v) on /. Since / is arbitrary this implies

( /I ) = ( 0 ), i.e. jû = v, i.e. ß = v, and the proof of our theorem is complete.

Remark. The technique used in this paper is essentially that of [1]—this paper

could be considered a continuation of [1].
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