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ABSTRACT. Conditions are established on a, ß e R for there to exist a con-

stant K = K(ct,ß) such that

Y^ ¿(ttM/W/M) < K ( ̂ 2 dh)2 )   Ih^/lla
ieE \l€E J

for all / 6 L1(G) and E Ç G where G is a compact metric group, G is its

dual, / is the Fourier transform of / and w: G —> R+ is the function taking

x € G to the area of the ball in G with centre e and x on its boundary. This

is followed by a partial analogy for compact riemannian manifolds.

1. Introduction. The following is a special case of a result in [6] for multiple

Fourier series: given a, ß G R and k G Z+ = {1,2,... }, there exists a constant K

such that

(1.1) (El/Ni2)       <K\E\°\\\x\k0f\\2
\nEE /

for ail / e L^T*) and all finite E Ç Zk if and only if a, ß satisfy

(1.2) ß < 1/2,     a > 0    and    a > ß.

(\E\ denotes the cardinality of E and the function \x[ is defined on Tfc by identifying

this group with (—5, 2]k-) This is a local uncertainty inequality in the sense that

concentration of / limits the localization of / on any given set. The main result

below, Theorem 2.4, is a direct analogue valid for all compact metrizable groups.

We then give a somewhat less complete version for compact analytic manifolds.

Local uncertainty inequalities for certain noncompact Lie groups are given in [7]

and for Rd in [1, 4, 5].

2. Compact metric groups. Throughout this section G will be a compact

nonfinite metric group equipped with normalized Haar measure dp and G will

be its unitary dual, that is, G is a maximal set of pairwise inequivalent unitary

irreducible continuous representations of G. Denote by M^ the (finite-dimensional)

Hubert space on which 7 G G acts. As usual, the Fourier series of / G L1(G) is

written as

/ ~ ]T d(7)tr(/(7b(-)),

TGG

where ¿(7) is the dimension of )i1 and 7(7) = fG f (x)^(x~x) dp(x). Our first

concern is to introduce a function which plays the role of |z| when G = Tk.
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Let d(-, ■) be a metric on G which describes its topology. Without loss of gener-

ality assume that the metric is normalized so that sup{d(e,x): x G G} = 1. Since

G is compact, this supremum is actually attained. Denote [0,1] by / and define a

nondecreasing measurable function A: / —» / by

A(r) = p(Br)    where Br = {x G G: d(x,e) < r}.

Since G is nonfinite and compact, A(0) = 0. Also the fact that if rn \ r as

n —♦ oo for some sequence (rn), then Br = f)n Br„, shows that A is continuous on

the right.

Define a continuous map </>: G —> I by cb(x) = d(x,e). Also let B'r denote the

complement of Br in G.

2.1 LEMMA.   For any e > 0, p{xGG: A((f>(x)) < e} < e.

REMARK. A is right continuous, <j> is continuous and so A o <p is measurable.

Hence the set in Lemma 2.1 is measurable.

PROOF OF 2.1. Given e > 0, let Y = {x G G: A(<¡>(x)) < e}. Since always y G

B<t,(y), Y Ç \J{B^xy. x G Y}. On the other hand, suppose y G U{50(x): x e Y):

that is, y G B^x) for some xGY. Hence qb(y) < 4>(x) and so A(<¡)(y)) < A(cb(x)) <

e, with the conclusion that y GY. This has established the fact that

y- = U{p0(x): *ey}>

from which the conclusion in Lemma 2.1 is a straightforward consequence.

2.2 LEMMA.   The function w = A o <f>; G —> / is measurable and satisfies

I
A(r)l-0

w~8 dp <    ; ; for 0 < e < 1
Br I-"

and

\\w-91b>\\oo <A(r)-6    for6>0

for each r > 0.

Further, for Ô < 0, w~e is continuous and hence bounded since G is compact.

Consequently

/  w~e dp < oo    for 6 < 0.
Jg

PROOF. We just give a sketch of the proof of the first inequality. Define Gt =

{x G G: w(x)~1 > t} for t > 0. By the change of variable formula [3, (21.72)],

(2.1) f   w~edp= f    6te-lp(GtnBr)dt.
JBr JO

First consider the integral h = fQl,A{r) 6t8-1p(Gt D Br)dt.   Since p(Gt H Br) <

p(Br) = A(r), we have

fl/Mr)
(2.2) h<A(r)l ete-1dt = A(r)1-9.

Jo

Now consider I2 = $™Mr)&te-ln(Gt n Br)dt.   Whenever t > 1/A(r), Gt Ç Br.

(Let x G Gt; then A(<j>(x)) < t~l < A(r) and so tfi(x) < r, that is, x G Br.) Hence

/•OO

I2= ete-1p(Gt)dt.
Jl/A(r)



LOCAL UNCERTAINTY INEQUALITIES FOR COMPACT GROUPS 443

Lemma 2.1 shows that p(Gt) < 1/t and so

(2.3) I2< f
J\

0te-H-ldt=A{r)1~
/Mr) ! - e

Combining (2.2) and (2.3) and substituting in (2.1) gives the required inequality.

REMARK. In the above, notice that A(r) > 0 for r > 0. This is because BT is a

neighbourhood of e for each r > 0 and so has positive Haar measure.

2.3 ASSUMPTION. To obtain a more complete analogy with the result (1.1) for

Tk we will need G and its metric to satisfy the following: there exists A > 0 such

that for all s G [0,1] there exists r G [0,1] with

(2.4) s < A(r) < Xs.

A wide class of groups, including the connected compact Lie groups, can be equip-

ped with compatible metrics so that this condition is satisfied.

Whenever ECG, define \E\2 = (E^e^)2)172-

2.4 THEOREM. Let G be a compact metric group and suppose a,ß G R. Con-

sider the following inequality: there exists a constant K = K(a,ß) such that

(2-5) I J2 dhMf(l)f(lY) < K\E\>a\\wPf\\i

for all finite E Ç G and all f G Ll(G).

(i) The inequality is valid for {(a,ß): a > 0, /? < 1/2 and ß < a} and

{(a,ß): a = 0, ß<0}.

(ii) // G also satisfies Assumption 2.3 the inequality continues to hold when

0<a = ß< 1/2.

2.5 REMARK. When G = Tk the function w = A o nb can be chosen to equal

|i|fc. Furthermore, in this case |i?|2 reduces to \E\.

PROOF (OF THEOREM 2.4). We first introduce spaces which are nonabelian

analogues of /P(Z). Full details are available in Hewitt and Ross [2]. Let <£ be the

set of functions ip on G with ^(7) G B(¿/7) for 7 € G, where S(^-,) is the space of

bounded linear operators on H1. For 1 < p < 00, let <BP be the normed subspace

of <S as in [2, (28.24)]:   denote the corresponding norm by || • ||p.   In particular,

IHIa = (E7eó d(7)tr(V(7rV(7)))1/2 and IMU = ™P^ô Ml)\l where ||^(7)||

is the operator norm of ip(q). Let E be a finite subset of G.

(i) Throughout the proof of part (i) we assume that a, ß G R satisfy a > 0 and

ß < 1/2. Define ipE G £ by iPe(i) = Id(i)i the identity operator in B(#7), when

7 G E and 0 otherwise. For p G [1,00] define p' and p* by p' = p(p — l)"1 and
p* =2p(p-2)~l.
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Given / G L1, the following sequence of inequalities follows from (28.33) and

(31.22) of [2] and Holder's inequality:

1/2

£d(7)tr(/(7)/(7n]        =\HEf\\2

J
(where 2 < p < co)

i/p*

||(Ao^-^||p#||(Ao^/||2.

Let a = l/p#. By Lemma 2.2, ||(A o 0)~"||p# is finite when ßp* < 1 (that is,

when ß < a) and a — 1/p* > 0, and when ß < 0 and a — 0.

In the preceding argument we required 2 < p < oo which implies 0 < a < 1/2.

Hence ß < 1/2 is also required. Thus for the pairs {(a,ß): 0 < a < 1/2, ß <

1/2, ß < a} and {(0, ß): ß < 0} we have the required inequality with the constant

K = ||(Ao</>)-0||1/Q. Since |£;|2 > 1 for nonempty E, \E\1a < \E\la' whenever

a < a'. This completes part (i) because the validity of the inequality (2.5) for

a pair (a,ß) implies its validity for all pairs (a',ß), with a' > a, with the same

constant.

(ii) Up until the last step, the proof of part (ii) follows that of Theorem 1' of [4]

or Theorem 1.1 of [7]. We then invoke (2.4). Given r £ (0,1), let /i = flBr and

h = f-fi- Then
1/2

£ d(7)tr(/(7)*/(Tf)) I       <h+h,
,7€E I

where

and

< l^bll/illoo < \E\2\\fi\\i < \E\2\\w-%\\wf>fi\\2
A(r\-ß+l/2

1/2

h=     Ed(^tr(/2(7)72(7))
\~teE

< H/2II2 < \\w-0lB.r\U\w0f2\\2 < A(r)-^||^/2||2.

(In both cases the final inequality follows from Lemma 2.2.) Hence

/ N   1/2

(2.6) J2 d(lMfhrfd)) < A{r)-* (^Z^P + l) ll«^J
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using the fact that [\w0 fx[\2, |K/2||2 < \\w0f\[2.
The proof is completed by applying inequality (2.4) (that is, Assumption 2.3)

with s = |.E2|~2. If E is nonempty (which we can of course assume), then I-EI2 > 1

and so s — \E2\~2 < 1. Thus by inequality (2.4), there exists r such that A(r) <

X[E[22 and A(r) > \E\22. Thus A(r)1'2 < X^2\E\2 x and A(r)~ß < [E\\0 which,

upon substitution into (2.6), gives

)l/2

<W\f (773^172 +l)ll^/lb>

as required.

3. Compact manifolds. In this section X will denote a compact oriented

riemannian manifold. A suitable reference is Warner [10]. Let d denote the metric

on X induced by the given riemannian structure on X. Fix xq G X and write

4>(x) = d(x, xo) for x G X.

Denote the Laplace-Beltrami operator (with respect to the given riemannian

structure) on C°°(X), the space of infinitely differentiable functions on X, by A.

The spectrum A of A is of the form A = {Ai, A2,... }, where 0 < Ai < X2 < ■ ■ ■ ■

Let H\ be the eigenspace corresponding to A G A. Then d(X) = dim M\ < 00 and

¿2po = 0£^-
AGA

Fix an orthonormal basis <j>\   ,..., (px     for each M\ and define c(A) by

C(A)=max{|]0^)||oo: 3 G {1,... ,d(X)}}.

(For simplicity we suppress the fact that c(A) depends upon the chosen basis.)

For each subset E Ç A denote the orthogonal projection of L2(X) onto

0Ea6E^a ^y Pe- (When E is a singleton {A}, denote Pe by Px-) Suppose

0 < 6 < 1/2 and define Ke by

a:, = ||(Ao0)-9||2,

where A(r) is the volume (in the canonical riemannian measure induced by the

riemannian structure) of the set {x G X: d(x,xo) < r}. As in Lemma 2.2, Kg < 00

since 0 < 6 < 1/2.

Let f GL2(X). Then

d(X

2 _ V- / /   fAi)SOL'*\Pxf\\i = V      f*

< c(X)2d(X) (^ l/l)   < JfY2c(A)2d(A)||(A o 4)°f\\l

Hence, whenever E Ç A,

\\PBf\\l<K¡'52c(\)*d(\)\\(Ao-4>)$f\\l
A6E

= K2p(E)2\\(Ao4>)»f\\2,

where p(E) = (Eage^MA)2)1/2.
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In summary, with notation as above,

(3.1) [[PEf[[2<Kep(E)[\(Aocf>)ef\[2

for / € L2(X), EGA and 0 < 8 < 1/2 where Kg < oo, a local uncertainty

inequality directly analogous to (1.1) and Theorem 2.4.

3.1 THE TWO-DIMENSIONAL SPHERE. Suppose X = S2, the two-dimensional

sphere, with the usual riemannian structure. In spherical coordinates

S2 = {(a, ß): 0 < a < 2tt, 0 < ß < tt}

with the usual identifications. The eigenvalues of the Laplace-Beltrami operator are

n(n + 1) with n G N = {0} U Z+ and the corresponding eigenspaces #„(„+!) have

dimension 2n + 1 [8], Let {Y™: —n < m < n, m G Z} be the associated spherical

functions: they form a column of entry functions for the usual description of the

(2n + l)-dimensional representation of 5(7(2) [9] and thus satisfy HF^Hoo < 1.

The functions {(2n + l)1/2!^": — n <m < n, m G Z} make up an orthonormal

basis for Mn{n+i) and so, with respect to this basis, cn = c(n(n +1)) < (2n +1)1/2.

The metric d(-, ■) with respect to the usual riemannian structure on S2 is just the

euclidean distance along great circles. Define <j> on S2 by <j)(ct, ß) — ß, that is, the

geodesic distance between the pole (0,0) and (a, ß). Then

(A°<t>)(a,ß) = 27r(l-cos/3),

the surface area of the cap {(a,ß')\ 0 < a < 2tr, 0 < ß' < ß}. Suppose E Ç N;

with the above notation, (3.1) becomes

1/2

1/2

\[PEf\h<Kg i]T(2n+l)2j      j^(2ir(l-cosß))20\f(a,ß)\2dp

for / G L2(S2) and 0 < 6 < 1/2 where

»-(/„lA-r-y
/•27T      />7r

= /      /   (27r(l-cos£)r2esin/?d/?£ia

= 2(27r)-2e(l-2Ö)-1

and dp is the (riemannian) measure given by dp — sin ß dß da.
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