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ABSTRACT. A Borel set E in a topological group G is said to be a P-set for

the space of integrable functions on G if the zero function is the only integrable

function whose integral over all left and right translates of E by elements of

G is zero. For a "sufficiently nice" group G and a Borel set E of finite Haar

measure a certain condition on the Fourier transform of a function related to E

is shown to be a sufficient condition for E to be a P-set. This condition is then

applied to several classes of groups including certain compact groups, certain

semisimple Lie groups, the Heisenberg groups and the Euclidean motion group

of the plane.

1. Introduction. Let (X, ß, p) be a measure space on which a group H acts

as a group of measure preserving transformations. The following kind of question

has come to be known in the literature as the "Pompeiu problem" (see [Z]): Given

a class C of measurable functions and a measurable set E C X (of, say, positive

finite measure), when can you "recover" a given f G C from the "data" / E f dp,

g G HI A simpler version of this question is: If / G C and / _ / dp = 0 Vg G H, is

/ = 0? This problem has been studied in detail when (a) X = R" and H is either

the group of translations or the group of rigid motions (see for example [Ba-Si, Be

I, Br-S-T, Sa and Si I], and when (b) X is a symmetric space and H a transitive

group of isometries of X (see for example [Be-Sh, Be-Z, R I and Si II]). Another

case which is worth studying is: X a locally compact unimodular group, p the Haar

measure on X, and H the group of two-sided translations on X. Some progress on

this problem has been made by I. K. Rana (see [R II]), who deals mainly with the

locally compact abelian group situation. In [Si II] the case when X is a noncompact

semisimple Lie group is taken up very briefly. There it is shown that, unlike the case

of R™ or symmetric spaces of the noncompact type, for G — 5L(2,R), there exist

relatively compact sets E with positive Haar measure and nontrivial / G L*{G)

with the property that J E f dp = fE f dp = 0 Vg G G. Actually, if one considers

two sided translations, a more natural question to ask is the following: Do there

exist E and / ^ 0 as above such that / „ / dp = 0 Vgi, g2 G G? It can be proved

that the example given in [Si II] actually satisfies this slightly stronger property.

The purpose of this paper is to consider the case when X is a unimodular group

G, H is the group of two-sided translations of G on itself, and C = L1 {G, p) with p

the Haar measure on G. After proving (in §3) sufficient conditions for a set E to be

a P-set (see §2 for the definition), we examine some concrete situations where the
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conditions can be verified (semisimple Lie groups, Heisenberg groups, the Euclidean

motion group on the plane and compact groups).

2. Notation and preliminaries. Throughout this paper G will denote a

"sufficiently nice" locally compact unimodular group and G its unitary dual, that

is, G is a maximal set of pairwise inequivalent irreducible unitary representations of

G. We assume that, for the class of groups we are dealing with, I. Segal's abstract

Plancherel theorem is valid (see [Wa]). Fix a Haar measure p on G and let m

be the corresponding Plancherel measure on G. E will denote a Borel subset of

G with 0 < p{E) < oo and Ë = {g G G: g'1 G E}. Let 1E and 1E denote the

indicator functions of E and E respectively. Note that 1^; and 1E are bounded

measurable functions and are in every Lp{G,p) for 1 < p < oo. For / G Ll{G) and

7T G G, f{ir) will denote the bounded linear operator on the Hubert space H„, the

representation space for ir, given by

/(*") = /  f{x)n{x)dp{x),
JG

where the integral has to be suitably interpreted. /(7r), which is also denoted f~{ir)

or 7r(/), is the so-called operator valued Fourier transform of /. If h G L1 n L2

then {ir G G: h{ir) = 0} is a measurable subset of G and so it makes sense to

talk about m{{ir: h{ir) = 0}). If g G G and h is a function on G, 9h and h9

will denote functions on G defined by 9h{x) — h{g_1x) and h9{x) = h{xg). A

set E, as above, is said to be a "P-set for £X(G)" if and only if: / G LX{G) and

fg Eg f dp = 0 V<7i,02 G G implies that / = 0 a.e. Finally for hi,h2 G Ll{G),

h\ * h2 will denote the convolution

{hi*h2){x)=  /  h1{xg)h2{g~1)dp{g)
JG

=  /  h1{xg~1)h2{g)dp{g).
JG

One knows that {h\ * h2)~{x) = hi{Tr)h2{-ir) and {9h)~{ir) = n{g)h{Tr).

3. Some basic results.

LEMMA 3.1. Let E be a Borel set in G with 0 < p{E) < oo and f G L1{G).

Then LlEg2 f dp = 0 Vgi,g2 G G if and only if iE{ir)Tr{g)f{Tr) = 0 W G G and

V(7GG.

PROOF. It can be easily proved that the condition L Eg fdp = 0 Vgi,g2 G G

is equivalent to the condition 1¿ * 9f = 0 Vg G G. By the injectivity of the Fourier

transform, this in turn is equivalent to {1E * 9/)^(tt) = 0 W G G, Vf? G G. The

lemma then follows from the standard properties of the operator valued Fourier

transform mentioned in §2.

PROPOSITION 3.2. Let E be as in Lemma 3.1. Ifm{{n G G: iE{n) = 0}) = 0

then E is a P-set for L1{G).

PROOF. Suppose E satisfies the above condition and / G Ll{G) is such that

/ E    f dp = 0, V<?i,<72 G G.  Then we have to show that / = 0 a.e.  By Lemma
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3.1 lE{n)n{g)f{n) = 0 Vf? G G, Vtt G G. Now for a fixed x S G, let #„ be
the Hubert space on which 7r acts. Since n is irreducible, for any nonzero v G Hn,

Span{7r(¡7)z; : g G G} is dense in H„. Therefore if l¿(7r) /Owe must have f{n) = 0.

(Otherwise choose v G Hw such that w = f{n)v ^ 0. Then since lE{n) ^ 0 and

span{n{g)w} is dense in Hn, we must have lE{ir)ir{g)w ^ 0 for some g G G thus

giving a contradiction.) Thus f{w) = 0 a.e. tt and therefore / = 0 a.e. (For

ligL'n L2, the fact that h{n) == 0 a.e. 7r implies h = 0 a.e. follows from the

abstract Plancherel theorem. That it continues to be valid for h G L1 follows from

a simple argument involving convolution against an approximate identity.)

4. Some applications of the basic results.

(a) SEMISIMPLE LIE GROUPS. Let G be a noncompact, connected, semisimple,

rank-1 Lie group with finite centre. (For simplicity we assume rank G = 1, though

this is not really necessary.) The example of a set E which is not a P-set given

in [Si II] depends on the existence of the discrete series. In this section we show

how the existence of the discrete series is not really necessary to construct such

examples, thus answering a question raised at the end of [Si II].

Let G = KAN be an Iwasawa decomposition of G. Let M be the centralizer

of A in K. A is isomorphic to R. For a G M let {i^a,\}\^x De ^ne principal

series of representations of G (see [Wa]). If G has discrete series let us denote the

corresponding subset of G by G4. Then one knows that the Plancherel measure, m,

for G is "supported" on the principal series and Gd (moreover if 7r G G<¡, m(7r) > 0).

Now for certain groups one can pick S G K for which the trivial representation of

M does not occur in 6\m- (SL(2,R) and SL(2,C) are examples of such groups.)

Let Xê{k) = (dim6)(traceS(fc)) for k G K and 6 G K. Pick a nontrivial function

/ G LX{G) with the property that Xs * f — f- (That such functions exist can

be shown in the case of SL(2, R) or SL(2,C).) For such /, one can show that

Z(""i,a) = 0 where 1 denotes the trivial representation of M. Now take E to be a

Ä"-bi-invariant set in G of positive finite measure. (It is actually enough to take E

invariant on one side by K.) Again for such a set one can show 7rCTix(l¿) = 0 if a is

not the trivial representation of M. Also l¿(7r) = 0 if tï G G4- Combining all this

we have lE{n)ir{g)f{ir) = 0 V<j G G and a.e. tt G G. Thus JgiEg2 f{x)dp{x) = 0

^9\,92 € G follows from Lemma 3.1, i.e. E is not a P-set for L1{G) since / was

chosen to be nontrivial. (Note: Lemma 3.1 continues to be valid if we replace

"Vtt G G, Vff G G" by "a.e. irGG,VgG G".)

In particular, if E is relatively compact the above shows that things are in sharp

contrast to the case of R" or a symmetric space of the noncompact type where any

relatively compact set E of positive measure is a P-set for L1 (see [R I, Sa, Si II]).

In view of the "holomorphy" of the Fourier transform for L1 functions on a

semisimple Lie group one can restate Proposition 3.2 for noncompact semi simple

G as follows: If for each a G M 3Xa G Â with iïa,xa (1¿) ^ 0 and n{lE) ^ 0 W G Gd

then E is a P-set for L1(G). However what would be interesting is to apply this to

obtain a geometric criterion for E to be a P-set for L1{G). For example if F is a

discrete subgroup of G with volume {G/F) < 00, then is a fundamental domain for

G/r a P-set for L1? Notice that this is analogous to the case of a rectangle in R2.
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(b) COMPACT GROUPS. In this case G is discrete (though not necessarily count-

able) and for 7r G G, m.{ir) = dim(7r) > 0. Using the Peter-Weyl theorem we can

strengthen Proposition 3.2 to read: E is a P-set for L1 iff 1¿(tt) / 0 W G G.

Suppose G is a compact Lie group. Equip G with a bi-invariant Riemannian

structure and fix a positive number fin such that for any s < .fin, the exponential

mapping is an analytic diffeomorphism from the open ball of radius s around 0 onto

the open geodesic ball of radius s around e. Using a real analyticity argument along

the lines used in [Be-Z] for compact symmetric spaces of rank-1, one can show that

for fixed n G G, the mapping r —► lßr(7r) is a nontrivial real analytic function of

r in the interval [0, fio) and hence can vanish on only a countable set S„ of values

for r. (Here Br is the geodesic ball in G of radius r about e. Also since 7r(e) = /,

lßri71") is a nontrivial function of r.) Since G is a Lie group G is countable and so

it will follow that for r in [0,fin)\S, lßr(7r) £ 0 Vtt G G, where S = \JSn. Thus

for all such r, Br is a P-set for L1. (In the case of compact symmetric spaces of

rank-1, [Be-Z] were actually able to identify explicitly the exceptional countable

set S.)

Now suppose G is a compact group for which G is not countable. Then for any

E of positive measure in G, by the Peter-Weyl theorem,

Pell'= £ trâèW * www <cx)-
sea

Since G is not countable, we have tr(l¿(¿>) * 1¿(<5)) = 0 for all but countably many

6. Equivalently lE{6) = 0 for all but countably many 6. So E cannot be a P-set.

Thus, in this case, there are no P-sets.

In [R II] Rana asks the question whether in an arbitrary locally compact, second

countable group, determining sets exist for the left action. In fact we do not know

the answer to this question even if we consider, as in this paper, two-sided action.

However, the example above shows that things can be quite bad if we do not assume

second countability.

(c) THE HEISENBERG GROUP Hn. The Heisenberg group Hn is a simply

connected nilpotent Lie group and consists of triples {p,q,t) with p, q G R" and

t G R (as a set Hn is just R2n+1). Multiplication is defined by

(p, q, t) • (p\ <?', i'j = {p + p',q + q', t + t'+ {pq' - p'q)/2)

where pq denotes the usual dot product in R™. The Haar measure dp is just dp dq dt.

For each h G R\{0}, one can define an irreducible unitary representation 7Tj, on

L2(R") by: {{nh{p,q,t))f){x) = e^'+'^+^fix + hp). {*h}heB.\{0) is a

family of inequivalent irreducible unitary representations and in fact the Plancherel

measure is supported on this family and is given by dm = \h\n dh. If g G C£°{Hn),

■Xh{g) is given by an integral operator with kernel Kh{x,w) given by

where i^>3<, is the ordinary (Euclidean) Fourier transform of g in the second and

third variables. Exploiting the above connection with the ordinary Fourier trans-

form and using analyticity properties of the ordinary Fourier transform for com-

pactly supported functions, one can easily prove: If g G C£°{Hn) and g ^ 0 then

m{{h: TTh{g) — 0}) = 0. A slight modification of this leads to the following:
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LEMMA 4.1. If g is a nontrivial bounded measurable compactly supported func-

tion on Hn then m{{h: irh{g) — 0}) = 0.

In view of Proposition 3.2 the following corollary is immediate.

COROLLARY 4.2. Let E be a bounded {i.e. E compact) Borel set of positive

Haar measure in Hn.  Then E is a P-set for Ll{H.„).

We conclude this section with the following question: Does the above hold for

any simply connected nilpotent Lie group?

For details about the representations of nilpotent Lie groups and Hn, see [L] and

[T].
(d) The Euclidean motion group on the plane. For p g R2 and

A G SO(2) let Tp^A be the rigid motion of R2 defined by tp,a{v) — Av + p, v g R2.

Let G = {tp¡a '■ P € R2,A G SO(2)}. The group multiplication is composition

of rigid motions and G as a manifold is diffeomorphic to R2 x SO (2). The Haar

measure is dpdk where dp is Lebesgue measure on R2 and dk is Haar measure on

SO(2). Let {7r/,}heR+ be the "principal series" representations of G (see [Su] for

details). The "principal series", each of which is realized on L2(SO(2)), is a subset

of G that supports the Plancherel measure m. If one examines the proof of the

Paley-Wiener theorem for G proved in [Su] one finds: if g G C£°{G) and g ^ 0,

then m{{h: Trn{g) = 0}) = 0. A slight modification of this once again yields:

LEMMA 4.3. If g is a nontrivial bounded measurable compactly supported func-

tion on G, then m{{h: irh{g) = 0}) = 0.

Consequently we have

COROLLARY 4.4. If E is a bounded {i.e. E compact) measurable subset of G

of positive Haar measure, then E is a P-set for Ll{G).

Again we end this section with a question of what happens to motion groups in

general? (By a motion group we mean a semidirect product of a compact group

and a vector group.)

5. Concluding remarks. We hope that this paper demonstrates that much

needs to be done regarding the Pompeiu problem for groups. For example what

happens if we drop the integrability condition on the functions? From [Be II]

one understands that these questions are related to questions about mean periodic

functions on unimodular groups—again an area where much needs to be done. See

also [We]. Also it is clear from the above examples that the Pompeiu problem on

a given group G is very much related to the "structure and nature" of G.
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