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LOCAL UNCERTAINTY INEQUALITIES FOR
LOCALLY COMPACT GROUPS

JOHN F. PRICE AND ALLADI SITARAM

ABSTRACT. Let G be a locally compact unimodular group equipped with

Haar measure m, G its unitary dual and p. the Plancherel measure (or some-

thing closely akin to it) on G. When G is a euclidean motion group, a non-

compact semisimple Lie group or one of the Heisenberg groups we prove local

uncertainty inequalities of the following type: given 0 6 [O, |) there exists a

constant Kg such that for all / in a certain class of functions on G and all

measurable E C G,

( f »(*(/)•»(/)) du(n) J        < K9p{E)e\\4>efh

where <pg is a certain weight function on G (for which an explicit formula is

given). When G = Rfc the inequality has been established with <pg(x) = \x\ks.

1. Introduction. Throughout G denotes a locally compact group equipped

with left Haar measure dm. (Instead of fG f(x) dm(x) we will sometimes write

fGf(x)dx or fG f dm.) Denote the dual of G by G, that is, G is a maximal
set of pairwise inequivalent unitary irreducible (continuous) representations of G.

For each ir E G, H„ will denote the corresponding Hilbert space. The Fourier

transform / of / E Ll(G) is defined by f(ir) = ir(f) = JG f(x)ir(x) dx for ir EG.

Hence 7r(/) e B(H^), the space of bounded linear operators on H„.

Recently we showed for certain groups G (including the motion group, the affine

group, the Heisenberg group and all semisimple Lie groups (under some extra con-

ditions)) that if / € L1(G) ("1 L2(G) satisfies m{x E G: f(x) =£ 0} < oo and

p{ir: ir(f) ^ 0} < oo then / = 0 a.e. [11]. (Here p, denotes some type of "measure"

on G closely related to the Plancherel measure. Also in some cases the restriction

on / may be more stringent, in others more relaxed.) Benedicks [1] established this

result for G = R* with m and p denoting Lebesgue measure.

This result is a simple type of uncertainty principle since it places a restriction on

the amount to which both a function and its Fourier transform can be concentrated.

In the following we make this idea more precise for certain groups by establishing

local uncertainty inequalities.

In euclidean Fourier analysis uncertainty principles state that the more a function

is concentrated about some point, the more its Fourier transform must be spread,

and vice versa. However, they do not preclude that this spreading (which is usually

measured as a standard deviation) may be achieved by two or more peaks far apart.
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Local uncertainty principles state that if a function is concentrated, then not only

is its Fourier transform spread out, but that it cannot be "too localized" at any

point. A variety of inequalities supporting these latter principles can be found in

[3, 9, 10] along with applications.

Of central interest to this paper is the following slight sharpening of a local

uncertainty inequality proved in [9]. Because its proof provides a blueprint for the

main results below, Theorem 3.1 and its Corollary, we give a sketch of it here. Most

of the steps are made up of familiar inequalities but for more details see [9]. We

also indicate in the proofs of two corollaries how local uncertainty inequalities imply

global uncertainty inequalities, in particular, the classical uncertainty inequality

involving standard deviations. The notation used in the remainder of this section

is as follows: Given / E L1(Kk), its euclidean Fourier transform / is defined by

f(y) = J f(x)e~2™y dx

where xy = xyyy + ■ ■ ■ + Xkyk and, unless stated otherwise, /.. .dx denotes inte-

gration over Rfc with respect to Lebesgue measure. Let ujk = 2irk'2/T(k/2); when

fc E Z+ = {1,2,...} and fc > 1, this is the surface area of the unit ball in Rfc.

Generally x will be the variable used with / and y with its Fourier transform /.

1.1 THEOREM. Suppose 0 < 6 < 1/2. For all measurable sets E E Rk with

Lebesgue measure m(E) < oo and all functions f E L2(Rfc),

(/£l/(2/)|2^)       <Kym(E)6[[[x[k6f[\2

where

K1 = (uJk/(2e)2k)9(l-29)e-1.

Furthermore, no inequality of this form is possible (a) for any other power ofm(E),

and (b) for 0 outside [0, ^).

PROOF. Let B denote the closed unit ball in Kk and B' its complement. Denote

by lr and lr< the characteristic functions lrs and 1tb' respectively. Given /, E and

6 as in the statement of the theorem,

(7 l/l2)       < t|(/lrri£||2 + IK/lrO^lislla    where r>0

<m(F)1/2||(/lrr||0O + ||/V||2

< m(E)l'2\[flr[[y + [\lr.\x[-ke[\00[\\x[kef\\2

< m(£)1/a||lr|zrw||a||lr|a:|M/l|2 +r-fce|||*r/l|2

* (m{E)1/2 (fca^))1/2rfc(1-2fl)/2+r"fc9)ll|xr/"2"

By choosing r > 0 to satisfy

rk = (26k)2/m(E)cokk(l - 29)

we minimize the right side to obtain the desired inequality.

Proofs of the facts contained in the last sentence of the statement of the theorem

are given in [9].



LOCAL UNCERTAINTY INEQUALITIES 107

1.2 COROLLARY.   Suppose 0<a< fc/2. For all functions f E L2(Rk)

\\m<K2[[[x[af[\2\[[y\af\[2

where
2a/k

K    = o_^fc_
2        (2afc)«fc(l-2Q/fc)1/2-

PROOF. Take E = {y E Rk: \y\ < r} in the statement of Theorem 1.1; then

m(E) = rkujk/k. Let 9 = a/k and E' be the complement of E. Then

11/112 = ll/lll = / l/T + / l/l2
3e Je'

<K2(ojk/k)2a/kr2a[[[xrf\[2+r-2a[[[y[af\\2.

Now minimize the right side by taking

r=( \\\y\afh Y/2a("k\-v2k

\Ky[[[x\°f[\2) \k)

to get the required inequality.

The inequality |||z|Q/||2 < ||/||J~a//J|||x|/J/||£/'9 for 0 < a < /? applied to / and

/ allows the following to be deduced from Corollary 1.2.

1.3 COROLLARY.   Given 0>O, there exists a constant K such that

\\f\\l<K\\\A0fU\y\pfh
for all fEL2(Rk).

Inequalities of the form described in Corollaries 1.2 and 1.3 are examined in

detail in [2]. When /? = 1 the inequality has the same general form as the classical

Heisenberg-Pauli-Weyl inequality [2]. See also [7].

In this paper we prove analogues of Theorem 1.1 for semisimple Lie groups with

finite centres, motion groups and the Heisenberg groups. In the case of symmetric

spaces we deduce a global uncertainty principle from the local one in the same

manner as Corollaries 1.2 and 1.3 were deduced from Theorem 1.1.

The second-named author thanks the University of New South Wales for its

hospitality during the preparation of this paper. This visit was supported by the

Australian Research Grants Scheme. We are also both grateful to Michael Cowling

for numerous helpful conversations.

2. Semisimple Lie groups and motion groups. In this section we introduce

some notation and quote some results from Warner [14] which will be used in the

sequel. In §§3 and 4 we will be concerned with the following two classes of groups

G: (a) Noncompact, connected semisimple Lie groups with finite centre and (b)

euclidean motion groups, that is, semidirect products of compact groups K and

Rn, where K acts as a group of linear automorphisms of R". In the case of (a)

above, K will always denote a fixed maximal compact subgroup of G. Thus in both

cases G can be written as G = Rn • K and topologically G is homeomorphic to

R" x K. Always G will denote the dual of G. For the groups above, which are

all unimodular, one has the Plancherel theorem due to I. Segal (see [14, vol. II, p.

52]).
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2.1 THEOREM. Fix a Haar measure dm on a Lie group G, where G belongs to

one of the classes 3ust described. Then there exists a unique positive measure pt on

G such that

f \f(x)[2 dm(x) =  I Tr(ir(f)*ir(f))du(ir)
Jg Jg

for all fEL1(G)C\L2(G).

2.2 REMARKS. For any tt e G and / 6 L1(G) the operator ic(f) is well defined

and acts on H„, the underlying Hilbert space of ir. The assignment ir i—► f(ir) =

ir(f) is the group theoretic analogue of the usual Fourier transform and given E C

G, JETr(ir(f)*ir(f))dp(ir) measures the 'amount' of the Fourier transform that

'lives' on E. The measure p is called the Plancherel measure for G (associated with

the given Haar measure on G). If the Haar measure is multiplied by a positive scalar

fc, then the Plancherel measure is multiplied by fc-1. Implicit in the statement of the

above theorem is the fact that ir(f) (for / E Ll(G) D L2(G)) is of Hilbert-Schmidt

class for p.-almost all ir (ir EG).

Let K denote the dual of the compact group K. (Here G, K are as in (a) or (b)

in the first paragraph.) Then by a theorem of Harish-Chandra for semisimple G

and a theorem of Godement for general motion groups [14, vol. I, p. 314 and p.

319] one has:

2.3 THEOREM. A given 8 E K occurs no more thand(8) times in the restriction

to K of any irreducible unitary representation ir of G. (Here d(6) denotes the

dimension of 8.)

Next we introduce a class of right if-finite functions on G. For 8 E K, let Rs be

the linear subspace of C(K) consisting of representative functions of type 8, that

is, the linear span of the matrix elements corresponding to 8. Let F be a finite

subset of K. We say a function / E LP(G) is right K-finite of type F (or simply

of type F) if there exist finitely many functions qby,..., qbi in LV(G) and ai,..., oj

m 0Hs€FR&' (orthogonal direct sum) such that fk = ay(k)qby + ■ ■ ■ + ai(k)qbi,

for all k E K. Here /* denotes the right translate of / by the element fc, that

is, fk(x) = f(xk), x E G, and 8* denotes the representation contragredient to 8.

Denote by LPF(G) the subspace of LP(G) consisting of functions of type F. For use

in §3 we record the following two lemmas—the proofs are quite easy and so we omit

them.

2.4 LEMMA. If g is a bounded measurable function which is right K-invariant

and f E LPF(G), then fg E L"F(G).

2.5 LEMMA. Let (ir,H) be an irreducible unitary representation of G. For

each 8 E K, let Hs be the linear subspace of H of vectors transforming according

to 8 for the representation (it\k,H) of K. [Then one knows that dim Hs < d(8)2

(see Theorem 2.3) and H = ©X)6e/f #«•] If f E LF(G) then ir(f) is zero on

(EseFHs^-
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Let N(F) = ^eF d(6)2- By Theorem 2.3 one knows that dim(0 £6€F He) <

N(F). Combining this with the above lemma one has for / E LF(G):

N N

Tr(7r(/)*7r(/)) = £>(/)•*(/)*>*> = E<7r(/)e«'7r(/)e')'

i=l »=1

where ey,...,e^ is an orthonormal basis for 0 J2seFH&- ^s observed above N <

N(F) and so we easily get the following.

2.6 LEMMA.   For f E LF(G) and irEG, Tr (ir (f )* it (f)) < JV(F)||/||?.

We will now introduce the notion of a "norm" on G which in some sense will tell

us how far an element is from e or more precisely from K, the maximal compact

subgroup.

Case 1. G semisimple. For what follows a good reference is [6]. Let a be the Lie

algebra of G and g = t © p the Cartan decomposition of q (t is the Lie algebra of

K). Then one knows that the Killing form B restricted to p is positive definite. Let

P = exp p. Then P is diffeomorphic to p under the exponential map. Also G = PK

and G is diffeomorphic to P x K under (u, fc) h-> uk, uE P, k E K. So each g EG

can be uniquely written as g = gpga with gp E P and gx E K. From what we

said above gp = expX for a unique element X Ep. Define ||o|| = (B(X,X)Y^2.

Then || • || gives a continuous (in fact smooth) map from G into R+ U {0} with the

property that ||o|| —► oo if g —► oo in G and ||o|| —> 0 if g —* e (or even if "a —► K")

inG.

Case 2. G a euclidean motion group. In this case G = Rn • K and is home-

omorphic to R" x K. Every g E G can be uniquely written as g = gtgx where

gt E R" and gx E K. Define ||a|| = ||gt|| = euclidean norm of gt. Here again || • || is

a continuous map from G into R+ U {0} and ||a|| —+ oo if o —► oo in G and ||o|| —► 0

if g —► e (or even if "a —♦ K") in G.

Finally we will introduce a function which will help us measure the concentration

of a function around K. Let A be the function on R+ U {0} defined by: A(r) =

mo{g E G: \[g\[ < r}. Here mo denotes Haar measure on G. Then A is a continuous

strictly increasing function of r and A(r) —* 0+ as r —* 0+ and A(r) —► oo as r —> oo.

Note that A(0) = mG(K) = 0.

2.7 REMARK. In the case when G is semisimple, consider the symmetric space

X = G/K equipped with its canonical riemannian structure and the canonical G-

invariant riemannian measure. Then A(r) is just the volume of the geodesic ball in

X of radius r around eK.

3. Local uncertainty inequalities. The purpose of this section is to prove

a local uncertainty principle for K-finite functions on G which is analogous to the

local uncertainty principle for functions on R" proved in §1. Roughly speaking it

says that the more concentrated a if-finite function is around K, the more spread

out is its Fourier transform on G. Retaining the notation of the previous section

we now state the main result of this section:
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3.1 THEOREM. Let F be a finite subset of K and 0 < 9 < ^. Then there exists

a positive constant Cfj such that

(jETr(ir(f)*ir(f))dp(ir)^      < CF,6p(E)6\\ [A([[ ■ [\)]e f[\2

for all f E LF(G) fl LF(G) and measurable E EG.

PROOF. Let Ba = {gEG: \\g\[ < a} and B'a its complement. Then / = flBa +

flB'a- Let /1b0 = /i and flB'a = f2. Both lpa and lp'a are right if-invariant

functions (because x E Ba if and only if xk E Ba, k E K). Hence by Lemma 2.4, fy

and f2 are also in LF(G) C\L2F(G). Since g ^ (fETr(ir(f)*ir(f))du(ir))1f2 satisfies

the triangle inequality we have

( f Tr(ir(fyir(f))dn(w))

(1) KJE 1/2

< Q^W/OM/iMd/iOr))       + (JETr(ir(f2yir(f2))du(ir)^       .

Now by Lemma 2.6

Tr(7r(/1)*7r(/1))<A/(F)||/1||2.

Hence the first term on the right side of (1) is dominated by /i(F)1/2A^(F)1/2||/i||i.

By the Plancherel theorem the second term on the right side of (1) is dominated

by U/2II2 = |I/1bJ2. Hence

(2) ^j Tr(ir(fYir(f))dn(Tr)\      < N(FY'2u(E)ll2\[flBa\\y + ||/lfl, ||2.

Exactly as in the euclidean case, the first term on the right side of (2) is dominated

by

p(EY'2N(Ffl2[\[A([\-[\)[-6lBa[\2[[[A([\-[\)ff\\2

(by Cauchy-Schwarz). The second term on the right side of (2) is clearly dominated

by A(a)_e|| [A(|| • ||)]   /||2 (because A is an increasing function). Thus:

(f Tr(-K(fY-K (f))du(ir))
(3) XJe J

< m(F)1/27V(F)1/2||A(|| • ||)-91bJ|2||A(|| • ||)9/l|2

+ A(a)-e||A(||.||)V||2.

Now

1 fl

U(\\ ■ ||)-91bJ|2 = (/J A(t)-2edA(t)^      = [A(ay-2e/(l - 29)["2.

Using this, the right side of (3) becomes

[n(EY/2N(F)V2\A(a)l-2e/(l - 29)\^2 + A(a)"fl] ||A(|| • ||)fl/l|2.
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Now, using the facts that A(0) = m(K) = 0 and that A(t) takes all values between

0 and oo, arguing exactly as in the euclidean case (that is, choose a such that

A(a) = constant//x(F)) we finally have

^Tr(7r(/)*7r(/))^w)       < CF,ep(E)e\[ [A(\\ - \\)}9 f\[2.        Q.E.D.

We can restate Theorem 3.1 in a form that is slightly closer to the classical local

uncertainty principle discussed in §1. Before that we introduce some notation. For

8 E K define xs(k) = d(6) Tr(<5(fc)) for fc 6 K. For a function f on G define fs by

fs(x) = (f * xs)(x) = f f(xk)Xs(k~1)dk.
Jk

Then ii f E LP(G), fg is right it-finite of type F where F = {8}. Thus Theorem

3.1 is applicable to fs and in fact we can prove:

3.2 COROLLARY. For each 8 E K and 0 < 9 < |, there exists a positive

constant C$ts such that

(jETr(ir(fs)*ir(fs))dp(ir)^)      < Co,sp(E)$[[A([[ ■ [\)ef[[2

for all f in L1(G) C\ L2(G) and measurable E E G.

PROOF. From the discussion above and Theorem 3.1 we have

^Tr(n(fsY^fsYdp^      < Ce,sp(E)e\\A(\\ ■ \\)ef6\\2.

Now observe that if o is a right if-invariant function, then (gf)s = gfb- Also for

any h, \^hs[\2 < ||n||2 because h = 05Z-.gK"^i *s an orthogonal decomposition.

The proof of the corollary is complete once we combine these observations with the

fact that the function A(|| • ||)9 is a right /{"-invariant function on G.

4. A global uncertainty inequality for symmetric spaces. In this section

we will indicate how the local uncertainty principle for the semisimple Lie group

G leads to a global uncertainty principle—at least for the symmetric space G/K.

Since the details are very similar to the euclidean case, we refer the reader to §1 on

how the local uncertainty principle implies the global one.

Consider X = G/K, a riemannian symmetric space of the noncompact type,

equipped with its canonical riemannian structure. Here G is a noncompact con-

nected semisimple Lie group with finite centre, K a fixed maximal compact sub-

group and G can be identified with the connected component of the group of isome-

tries of X. Let G = KAN be an Iwasawa decomposition of G and a the Lie algebra

of A and a* its dual. Let ||a;|| denote the distance of x E X to eK E X (in the rie-

mannian metric). Let m be the canonical G-invariant measure on X induced by the

riemannian structure. In fact the Haar measure dg on G can be so normalized that

fG f(g)dg = fx f(x)dm(x) for right /{"-invariant functions on G. (On the right side

above we are interpreting a right K-invariant function as a function on X via the

identification f(gK) = f(g).) As before, let A(r) = m{x: [[x[[ < r}. Let {ir\}\ea'

be the class-1 (that is, spherical) principal-series representations of G (see [5]) and
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let p, be the (Harish-Chandra) Plancherel measure on a* normalized so that one

has the equality

/ \f(x)\2dm(x)= f Tr(7rA(/)VA(/))d/i(A)
Jx Ja"

for all / E LX(X) n L2(X) (= L1 n L2(G/K)). (Let W be the Weyl group of the
pair (G,A); then ir\ will be equivalent to irs\ for s € W and these are the only

possible identifications. Thus u will be a W-invariant measure.) Then the local

uncertainty principle of the previous section can be reformulated as:

Given 0 < 9 < \, there exists a constant Cg such that for all f E L1 (X)C\L2(X)

and measurable E C a*, we have

JETr(irx(f)*irx(f))dp(\)        < Cep(E)e ^A([[x[\)2e[f(x)[2dm(x)^j      .

Now let B be the function on R+ u{0} defined by B(t) = p{\ E a* : \\X\\a- < t}.

Here || ■ ||„. denotes the norm on a* induced by the Killing form restricted to a. Then

arguing exactly as in the euclidean case one gets a global uncertainty principle.

Given 0 < 9 < \, there exists a constant Kg such that for all / E Ll(X)C\L2(X)

we have

(j^A([[x\[)2e[f(x)[2dm(x)} ^B(\[\\[a.)2eTr(irx(fyirx(f))dp(\)^ > Ke\\f\\42.

Again from this one can get the usual version of the uncertainty principle exactly

as in the euclidean case, that is, there exists a constant K such that for all / E

L1nL2(X) one has

^A(||x||)2|/(x)|2dm(x))(£B(||A||0.)2Tr(7rA(/)VA(/))dMA))>it||/||^

REMARK. The quantity Tr(7rA(/)*7rA(/)) is just (/* */)~(A) where ^denotes the

spherical Fourier transform—see [5]. In particular, if / is ii-biinvariant

(/* * f)"W = l/(A)|2 and the last inequality becomes

(^A(||x||)2|/(x)|2dm(x)) (^B(||A||B.)3|/(A)|2dMA)) > K\\f[\42,

which reads exactly like the classical Heisenberg uncertainty principle.

5. The Heisenberg groups Hn. The Heisenberg group H„ is just R2n+1

with multiplication defined as follows:

(p,q,t)(p',q',t') = (p + p',q + q',t + t' + ±(p-q'-p'-q))

where p,p',q, q' E R", t, t' E R and ■ denotes the usual inner product in Rn. H„ is

a simply connected (two step) nilpotent Lie group. Its Haar measure is just dp dq dt.

For each A E Rx = R\{0}, one can define an irreducible unitary representation ir\

on L2(Rn) by

(TA(P, 9, t)f)(x) = e*™ix+^p-q+2nihtf(x + Xp)

{7ta}a€R\{o} is a family of inequivalent irreducible representations and in fact the

Plancherel measure is concentrated on this family:   it is given by dp. = |A|ndA.
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Denote the set of these representations by Gr(*-> Rx). Thus the Plancherel theorem

for H„ takes the following concrete form: For / E L1(Hn) n L2(Hn),

|Tr(7rA(/)*7rA(/))|ArdA = ||/||2.

All this is essentially given by the Stone-von Neumann theorem. For the case n = 1,

a discussion can be found in [13]—however the parametrization of the group as well

as the dual is slightly different from ours.

For a function / on H„ (= R2n+1) which is sufficiently nice, for example / E

C£°(Hn), one can easily show from the above that the Fourier transform ir\(f) of

/ at A E Rx is given by the following operator on L2(Rn):

(■^x(f)4>)(x) = / kx(x,w)qb(w)dw,

where

M*.)-,£«./> (=^,S±=,*).

Here F23/ is the ordinary (euclidean) Fourier transform of / in the second and third

(families of) variables. Thus ir\(f) is an integral operator on L2(Rn) with kernel

K\. It will therefore follow from standard facts about integral operators that

Tr(7rA(/)*7rA(/)) = j j[Kx(x,w)[2dxdw.

Thus

Tr(7rA(/)*xA(/)) = j j p^ |f23/ (^, ^, A)]' dxdw,

which after an obvious change of variables reduces to

j j r^[F23f(u,v,X)[2\X[ndudv.

The following is the main result for this section. (In a series of papers, Schempp

has looked at the radar uncertainty principle for the Heisenberg groups. See, for

example, [12].)

5.1 THEOREM. Given 9 E [0, \), for each f E Lx(Yln) n L2(Hn) and E C

Rx(<-> Gr) with Lebesgue measure m(E) < 00,

^Tr(7rA(/)*7rA(/))d/i(A))       < (292)~e(l - 29)e-1m(E)0\\\ ■ |«/||2)

where [ ■ [3 is the function (p,q,t) —> \t[ on H„.

5.2 REMARK. Notice that it is the concentration of / in the ^-variable which

forces the nonlocalization of its (group theoretic) Fourier transform. It would be

interesting to know that this is the best possible. For example, does there exist a

nonzero function / on Hi for which {(p, q, t): f(p, q, t) ^ 0} C [—a, a] x [-b, b] x R

and {A E Rx,7rA(/) ^ 0} C [-c,c] for some a,b,c> d?

The euclidean Fourier transform of / will be denoted by Ff. Also Fjf will

denote the euclidean Fourier transform in the jth (family of) variables and Fjk the

Fourier transform in the jth and fcth (families of) variables.
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PROOF OF 5.1. It suffices to prove the result for / € CC°°(H„). Given 9 and E

as in the statement of the theorem, the discussion in the first part of this section

gives

/ Tr(7rA(/)*7rA(/))dM(A) = f Tr(irx(f)*irx(f))[X[n dX
3E 3 E

= J^lI j~\F23f(U,v,X)\2\X[ndudvyX\ndX

= j j (JE\F3f(u,y,X)\2dx\ dudy

where the last step is just the Parseval identity in the second family of variables

followed by Fubini's theorem. From Theorem 1.1 with fc = 1 this last expression is

majorized by

(292)~2e(l - 29)2^m(E)2° JU \t[2S[f(p, q, t)[2 dpdq dt

giving the required inequality.

We would like to thank G. Folland from whom we learnt the representation

theory of Hn as formulated in this section.
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