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Abstract. In order to give an elementwise characterization of a subintegral extension of
Q-algebras, a family of generic Q-algebras was introduced in [3]. This family is parametrized
by two integral parameters p>0, N > |, the member corresponding to p, N being the
subalgebra R = Q[ {y,|n > N}] of the polynomial algebra Q[x,,..., X,,z] in p+1 variables,

where y, = 2" +Z§’=1<r_l>xl.z"“, This is graded by weight (z) = 1, weight (x) =i, and it is
i

shown in [2] to be finitely generated. So these algebras provide examples of geometric
objects. In this paper we study the structure of these algebras. It is shown first that the ideal
of relations among all the y,’s is generated by quadratic relations. This is used to determine
an explicit monomial basis for each homogeneous component of R, thereby obtaining an
expression for the Poincaré series of R. It is then proved that R has Krull dimension p+1
and embedding dimension N +2p, and thatin a presentation of R as a graded quotient of the
polynomial algebra in N+ 2p variables the ideal of relations is generated minimally by

N+ . L - C
( ) p> elements. Such a minimal presentation is found explicitly. As corollaries, it is shown

that R is always Cohen—Macaulay and that it is Gorenstein if and only if it is a complete
intersection if and only if N + p < 2. It is also shown that R is Hilbertian in the sense that
for every n > 0 the value of its Hilbert function at n coincides with the value of the Hilbert
polynomial corresponding to the congruence class of .

Keywords. Subintegral extensions; subrings of polynomial rings.

Introduction

Let A < B be an extension of commutative rings containing the rational numbers Q.
In [3] an element beB is defined to be subintegral over A if there exist integers p >0,

N2=1and c,,...,c,eB such that g,:=b" + Zf;l(rf)cib""'eA for all integers n > N.
i

With this definition the extension A < B is subintegral in the sense of Swan [7] if
and only if every element of B is subintegral over 4 [3, §4].

In [3] the tuple (0, p, N; 1,¢4,...,c,) with the above properties was called a system
of subintegrality for b over 4. There was an extra parameter s which we can take to
be 0 in the present discussion, and the 1 represents c,. In [3] we assumed that
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2 L Reid et al

N 2= s+ p. Here (as in [4]) we adopt the conventions that for any element b in a ring,

b® =1 and n b""*=01if i > n. Then it suffices to assume that N = 1. By [3, proof
i

of (4.2) {iv)=(i)] (note also [4, (1.1)]) if b has a system of subintegrality for some
N 21, then b has a system of subintegrality with N = 1. Systems with N > 1 are stil]
of interest, however, since freedom in the choice of N may result in a simpler system
of subintegrality.

Let xy,...,x,,z be independent indeterminates over Q, and let xo=1. For n >0 let

VY= ip=0 n xiz"'i and let R(N):r—@[{y,,fn?N}] QS:=@[X1,...,XP,Z]. Then z is
1

subintegral over R™ with system of subintegrality (0, p, N; 1,x,,.. .,X,). Furthermore
this setup is universal for subintegral elements together with their systems of
subintegrality, in the sense that given any extension of commutative Q-algebras A < B
with beB having a system of subintegrality (0,p, N; 1,c,, .. -»€p), the homomorphism
®:S—B given by o(x)=c; and ¢(z) =b satisfies @(y.) =g, and o(R™M)< 4. Such
universal extensions played a crucial role in [3].

The rings R™ have an interesting algebraic structure, which we discuss in the
present paper. First of all R™ and § are graded by weight (x;) =i, weight (z) =1,
which imply that weight (y,) = n. In §1 we find relations (1.2) of degree two (but not
necessarily homogeneous) among the Vn Where degree means deg(y,) =1 for all n > 1,
and is to be distinguished frorn weight. We show in (2.2) that these quadratic relations
generate the ideal of all relations. These quadratic relations include those used in [2]
to prove that R™ is a Q-algebra of finite type, although in [2] we did not find a
complete set of relations. In (2.1) we use the quadratic relations to obtain an explicit
monomial basis for R, the weight k part of R™, from which we obtain in (2.8) the
Poincaré series of R™ for arbitrary p and N (generalizing both [4, (4.4)], which
handles the case N = 1, and [4,(4.7)], which is the case p=1, N arbitrary).

In §3 we use the quadratic relations to eliminate all but a finite number of the Vs
obtaining thereby our main result (3.2) which gives a minimal presentation of R™
as a graded Q-algebra of finite type. Of course, after eliminating these variables, the
relations among the remaining variables are no longer all quadratic. From (3.2) we
derive several corollaries ((3.3)~(3.7)) on the nature of R™: (3.5) says that R™ is
always Cohen—Macaulay, which was a surprise to us; (3.6) says that R™ is Gorenstein
if and only if it is a complete intersection if and onlyif N+p<2.

In §4 we give an alternative proof of the linear independence of our basis for RM.
This method is more complicated but also more precise than the argument of §2.

We conclude the paper by studying in §5 the Hilbert function of R™, We find the
minimal number 4 of Hilbert polynomials needed to express the Hilbert function of
R™, and show that if p>2 then R™ ijs Hilbertian, meaning that the value of its
Hilbert function at n coincides with the value of the Hilbert polynomial corresponding
to the congruence class of n modulo d, for every n> 0 (rather than just for n > 0).

The non-negative integers are denoted by Z*, and |a] is the integral part of the
real number a (i.c. the largest integer < a).

1. The quadratic relations

Let R™ = § be the universal extension as defined above. Let T be an indeterminate
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T .
over S, and let F(T)=1 +Zf’=1( _)x,-z“ (so that y,=z"F(n)). Then we have the
i

following (generalizing [2, (1.2)]).

Theorem 1.1. Let k be an integer >2p, and let 0<d, <d, < --- < d,.; <k/2 be any
p+ 1 distinct integers. Let d be any integer 0 <d < k/2, distinct from the d,. Then
pt+1
YaVk—a= Z aiYa;Yk-a; (1.2)

i=1

for some rational numbers a;.

Proof. Note that we have d; <k —d; (1<i<p), d,,; <k—d,,,, and the p+1 pairs
(d;, k — d;) are distinct (as unordered pairs). First consider the case dpri <k—d, .y
so that each pair (d,, k — d;) consists of two distinct integers. Let [ = {dy,....dprys
k—d,iy,...,k—d;}. For p+2<i<2p+2 define d;=k—d,,,5_; so that I=
{d}1<i<2p+2- The set I contains 2p+2 distinct integers. For 1 <i< 2p+2 let w; be
the interpolating polynomial of degree 2p+ 1, which is 1 at d; and 0 at the remaining
elements of I. Let G(x)=Y?27?n(x)F(d)F(k—d;) and H(x)= F(x)F(k—x). Then
G(c) = H(c) for all cel. The polynomial G(x) is of degree <2p+1 in x, whereas H(x)
is of degree 2p in x. These two polynomials (with coefficients in the integral domain
Q[xy,...,x,,z"1]) agree at 2p+2 values of x, hence are equal. Setting x=d,
a;=m(d) + 5,4 3-4d) (1<i<p+1) and multiplying by z* yields (1.2). .

Now consider the case d,,; =k—d,,,. Let I={d,,...,d, ., k—d,....k—d,}.
For p+2<i<2p+1 define di<k—d,,,,_; 50 that I={d},;<,,4+,- The set I
contains 2p+1 distinct integers. For 1<i<2p+1 let n; be the interpolating
polynomial of degree 2p, which is 1 at d; and 0 at the remaining elements of 1. Let
G(x) = X227 'ny(x) F(d)F(k — d;) and H(x) = F(x)F(k —x). Then G(c) = H(c) for all cel.
The polynomials G(x) and H(x) are both of degree < 2p in x. These two polynomials
(with coefficients in the integral domain Q[xy,...,x, 2z~ 1]) agree at 2p + 1 values of
x, hence are equal. Setting x =d, a; = n,(d) + Top+2-id) (L <i<P), apey =7,.,(d),
and multiplying by z* yields (1.2). [

COROLLARY 1.3.

(@) If k = 2p then the monomials of degree <2 and weight k in the vy, span a vector
space Vi , of dimension p+1, and any set of p+ 1 distinct monomials of degree <2 is
a basis for this vector space.

(b) If k<2p+1 then any set of distinct monomials of degree <2 and weight k is
linearly independent.

(c) In any relation (1.2) all the a; are uniquely determined and nonzero.

Proof. The monomials y,, y,9;—1,...,747x—a(d = min(| k/2], p) are linearly independent
by [4, proof of (4.1)] from which (b) follows. It also follows that if k > 2p then V, ,
is of dimension >p+1, and by (1.2) any p+1 elements span. Thus (for k> 2p)
dim V, , =p +1, and (a) and (c) follow. (Note that (c) is vacuous unless k > 2p+2)

[ |

Examples 1.4. Here are a few examples of the quadratic relations (obtained using
a computer program that we wrote):
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for p=1:

(141)  ya=4y,y,—3y2
(142)  y5=3y,9,— 2,7,
(1.43)  piys =495, — 392

and for p=2:
(1.4.4) Y8 =207,y — 64y,ys + 45?42;

(1.4.5) Yo¥y = 20y3y, — 64y,76 + 45')’§ u

(1.4.6) 10 =1(63/5)y,y5 — (128/5)y3y, + 147,436
These examples illustrate the following.

Theorem 1.5. (1) The quadratic relations are translation-invariant, i.e. if
co p+1

YaVk—a = Z V4, Vx4,

i=1
then also
p+1
Yat+jYu-a+j= z Ai¥a+ jVh—d; +j
i=
Jor any integer j > 0 (with the same ;). (Homogenize by putting in Vo if necessary.)
(2) If the d; are consecutive integers, then the coefficients a; in (1.2) are integers.

Proof. (1) In (1.1) replace d; by di=d;+j(1<i<p+1),4d by d+j and k by k +2j.
Then also d; is replaced by di=d;+j p+2<i<2p+2 or pP+2<i<2p+1
respectively in the two parts of the proof of (1.1)). Formula (1.2) becomes

p+t1

Va+jYk—d+j= Z a§?4i+'j7’k—d,-+j

where a;=r)(d +j)+ Toprs—i(d+Jj) for 1<igp+1 (respectively a;= m(d + j) +
Typs2-i(d+j) for 1<i<p and Ay =7, (d+))), m; being the interpolating
polynomial of degree 2p + 1 (respectively degree 2p) which is 1 at d;, and 0 at the
remaining d;. Obviously (¢ + j) = m,(c) for all real numbers ¢, from which it follows
that a; = g, for all j, proving (1).

(2) If the d; (1<i<2p+2, resp. 1<i<2p+1 in the two cases) are consecutive
integers, then the Lagrange formula for the m; (When evaluated at any integer) is (up

to sign) the product of two binomial coefficients. Thus the n(d) are integers, hence
also the a;, proving (2). [ |

Example (1.4.6) shows that in general the a; need not be integers. We can arrange
to have the d; consecutive by taking ¢ = [ k/2] and {VeVk—e Ve 1Ph—c+15-

R yc—pyk~c+p}
as the set of quadratic monomials on the right-hand side of (1.2).

2. The Poincaré series of R(™V)

Determining the Poincaré series of R™ is essentially the same as determining the
dimension of the Q-vector space R(™, the weight k part of R™, for every k. In fact,

%




The structure of generic subintegrality ' 5

we do more. Namely, using a basis interchange technique, we find in the following
theorem an explicit monomial basis for R,

Theorem 2.1. R™ has Q-basis

d
'@N,k:{yixyiz"'yilegil S Sl Sigly <N4+p if d>1, ijzk}-
et

J

Proof. If p=0 the result is trivial. For then y,=z' for all i and R™ = Q[7|i = N].
If k> N then R{" has basis y, and %, contains only i Since we must have d = 1.
If k=0 then R{" has basis y, =1 and @y, contains only the empty product 1 since
we must have d=0. If 0<k <N then R =0 and %y, is empty. Hence assume
p= 1. First consider the case N=1. In [4, (4.1)] a basis {Z*G|(k)|te T} for RV (there
denoted simply as R,) is obtained. The definition of this basis is quite technical, so we
will not recall its definition completely. It suffices to note that x is a set of integers
indexing all sequences of the form g, = (01, 09 .., ) With O0<a; < - <o, < p,
-1 =0, and 3«; <k Also, in the proof of [4, (4.1)] the above basis is put in
one-to-one correspondence with another basis of R{(") that consists of monomials in
the y’s. Under this bijection, Z*G(k), for a, = (aty, ot ..., o), corresponds to y,, “Vanew 1 Vo
where f, > o, is chosen so as to make the weight oy + -+ 4+ o, _, + B, = k (remember
that some of the «’s can be 0, and that Yo =1). But (omitting the y,’s, renumbering
the remaining y’s and noting that N+p—1= p) this is just the basis &, , claimed for
N =1 1n the statement of the theorem.

Now, for general N, if ¥y is a factor of a monomial in the y’s of weight k, with i
and j both >N + p, then the quadratic relations (1.2) can be used to replace 7,y ; by
a linear combination of

Yitjp INVi+ j—n» IN+1Yi4j-N=10-- s VN+p=1Vitj=N-p+1

(note that i+j—N—p+1>N +p— 12 N) from which it follows that By i spans
RM. Thus it suffices to prove the linear independence of &y ,. This we prove by
induction on N. The idea is to produce a basis for R~V that contains 4y , as a subset.
Hence suppose that N>2 and %y_,, is a basis for RM"D. We have
By-16= {171, i N—1<i; < <y il <N+p—1ifd> L4 =k}
Let ¢ =%y, "By, (=those elements of Zx -1, that do not contain any yy_,’s).
Let &, be the set of those elements of &y -1 Which contain a certain number of
Yn-1S, say e>1 of them, and which have the largest subscript i, satisfying
ig7—ep>= N+ p—1. Let & be obtained (elementwise) from &, by replacing each YN—-1

bY ¥v+ -1 and decreasing the highest subscript accordingly. The theorem follows from
(2.1.1) Claim

(2.1.2) ‘@N,k = (gug

(2.1.3) (By-1,—EH)UE is a basis for RN=1),

Proofof (2.1.2). Obviously € = Py and & < By ;. Furthermore, any element of By
that contains e > 1 YN+p-1'8 (OT One yy, ,_, and one y with subscript >N +p—1)is

obtained uniquely by the above transformation from an element of &,, and any
element of %, that contains at most one Yn+p—1 and has all other subscripts
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<N+p—1isin 4. Thus By, S 4. It is obvious that ¥n & = &, which proves
(2.1.2).

Proof of (2.1.3). Let

d
B = {yhyiz-uy,-d[N—— I<iy <<y g, iy <N +pifd>1, Y ij= k},
i=1
and let &, be the set of those elements of #' which contain a certain number of
Yn-18, say e>1 of them, and which have the largest subscript i, satisfying
ig—ep2N+p—1.Then&y_, ,WBy, S # and &, < &, Let p: EUBy,—EUBy ,
be the map which is identity on @y, and is defined on &, as follows: if yEE&, then
write y =yy_ 8y, with ¢ N + 2p — 1 and & a monomial in YN=1VN>-- VN +p-1, a0d
define p(y) = 6yy+ ,-17.-, Further, for such a y = Yv-107.€& define

S(y) = {5'}’07’c+~—1: OYNYe 15 OVn + 13’:—25---’53’N+p~23’c—p+ 1}-

Put 2, =&,11%, and for i>1 let D, = {p(y)|yeD;_,}. Then each 9, is a subset of
EolI By 1 p is a bijection from P, onto P;_, and 114 = P, for i » 0. Let

9= {veP;|yy_, appears exactly to power j in y}.

Then 2, =11, 0%;;, and for i, j > 1 we have PDi-1) €D, ;- with equality if j > 2.
Let ye2;; with j > 1. We claim that S(y) < Z; ;-1 This is clear for i=0. If i>1 then
y = p(B) with BeP,_, ;,,, and clearly S(y) = {p(@)|xeS(B)}. So the claim follows by
induction on i. Now, the set {y, p(y)} US(y) has p+2 elements, and by (1.1) and
(1.3)(c)any p+ 1 of these elements form a basis for the vector space spanned by this set.
So, as S(y) € Z; ;_,, the sets {y}uP; j~1 and {p(»)}UD,;_, span the same vector
space. Therefore, since &; can be obtained from 9;_, in stages by changing

(Hj>h+ 1P, 1,1))U(H?=ogi— 1,j) to (Hja WD, 1,j)) v (H?;é‘@i— l,j)’

starting with the highest b, it follows that each 2, spans the same space. In particular,

&% and £11¥ = By, span the same space. The former being a part of a basis for
By - 11 (2.1.3) is proved. [ |

COROLLARY 2.2.

The ideal of all relations among the y's is generated by the quadratic relations (1.2).

Proof. Only the relations (1.2) were used to reduce the set of all monomials of weight
k in the y’s to the basis By,. B

COROLLARY 2.3.

Let V, , be the subspace of R™ spanned by monomials of weight k and degree <d in

the y; (degy;=1 for all i> 1) as in [4, § 2]. Then V, ; has Q-basis of those monomials
in By, of degree <d.

Proof. The indicated elements are linearly independent since they are part of the
basis #y . Therefore it suffices to prove that they span V, ,. To do this we may assume
that p > 1. If y,y; is a factor of a monomial in the 7’s of weight k, and degree <d
with i and j both >N +p, then as in the proof of (2.1) the quadratic relations (1.2)

it
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can be used to replace y;; by a linear combination of Vit jp INVi+j=No
PN+1Yitj=N=15- s VN+p-1Yi+j-N-p+1 (DOte that i+j—N—p+1> N +tp—1=N
and that the quadratic replacement does not increase degree), from which it follows
that the claimed elements span V, ,. ]

COROLLARY 24. (cf. [4,(2.1)])

-1 d—1
We have dim V, ;= (p+d ) Jor k>»0. More precisely, dim Via= <p+ ) if
p p

and only if k>m, where m is defined as follows: (1) if p=21 and d>=2 then
m=(N+p—1)d;(2)if d =0thenm = 1;(3) in all other casesm = N or m = 0 accordingly
asN>1lor N=1.

p+d—1
p
degree zero is the empty product which is 1. So assume that d > 1. Then if the y; of
highest weight is removed from each element of the basis of V%.a described in (2.3),
this basis is put in one-to-one correspondence with a subset of the monomials of
degree less than or equal to d—1 in the p variables. YN YN+1s---5VN+p—1. If k is large
enough we obtain in this manner all monomials of degree less than or equal to
p+d—1
b ‘
part is proved. Assume now that we are in case (1), ie. p>1 and d>2. Then a
monomial M of degree <d—11n Yy, Vx4 1+, Yy + p—-1 corresponds to an element of
our basis if and only if k—wz(M) is bigger than or equal to any subscript occurring in
M. The most critical case is 47}, _, which requires k — (d — 1)(N + p— )=>N+p—1,
or k=(N+p—1)d=m, proving case (1). The proof of case (3) is an easy and
straightforward verification. |

Proof. Case (2) is trivial. For, if d = 0 then ( ) =0, and the only product of

d—1 in yy, YN+1s---:PN+p-1- Since there are ( ) such monomials, the first

Example 2.5. Here is an example to illustrate the algorithm in the proof of (2.1).
Let N=p=2. Then dimgR{) =31, dimgR? = 10. Monomials in the s will be
represented by listing the subscripts, thus (1, 1,2, 7) represents y2y,y.. We have
&,=1{(1,10), (1,1,9), (1,2,8), (1, 1,2,7), (1,2,2,6)} and €={(11), (2,9), (2,2,7),
(2,2,2,5), (2,2,2,2, 3)}. To understand the example it is not necessary to list the
clements of 4, ,, — &, explicitly. We have 9, = &,11¢ = D012, 119,, with

Doo={(11), (2,9), (2,2,7), (2,2,2,5), (2,2,2,2,3)},
Doy ={(1,10), (1,2,8), (1,2,2,6)} and D, = {(1,1,9), (1,1,2,7)}.

The following table shows how the transformation proceeds using the linear relation
among 7, p(y) and S(y):

y= Replaced by p(y) = Using S(y) =
1,19 (1,37 (1,10),(1,2,8)
(1,1,2,7) (1,2,3,5) (1,2,8),(1,2,2,6)
1,100  (3,8) (11),2,9)

(1,2,8) (2,3,6) 2,9),(2,2,7)
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(1,2,2,6) (2,2,3,4) - (2,2,7),(2,2,2,5)
(1,3,7) (3,3,5) (3,8),(2,3,6)
(1,2,3,5) (2,3,3,3) (2,3,6),(2,2,3,4)

The first two rows show how 9, is transformed into p(2,,) and the next three rows
show how 9, is transformed into p(2, 1) This gives 9, =9,,119,, with
911 zp(goz)‘: {(19 3: 7)9 (132: 3> 5)} and 910 = p(QOI)HQOO = {(3, S)a (29 3a 6)a (2: 2: 3s 4)5
(11), (2,9), (2,2,7), (2,2,2,5), (2,2,2,2, 3)}. Finally, the last two rows show how D,
is transformed into p(2,,), giving 2, = D0=pD,)12,,={(3,3,5),(2,3,3,3),(3, 8),
(2,3,6),(2,2,3,4),(11),(2,9),(2,2,7), (2,2, 2, 5),(2,2,2,2,3)} =6 1I% = %,.1,. Note that
for fixed i, j the order in which elements of P;; are transformed into those of (D))
is immaterial. '
The basis of ¥V, ,; given by (2.3) is {(11), (2,9), (3,8), (2,2,7), (2,3, 6), (3,3,5)}.
]

The calculation of the Poincaré series is now just a matter of counting By i The
number of partitions of k as sums of integers each >N and <N +p—1 is the coefficient
of t* in :

1
(1 —-IN)(I —IN+1)--~(1 __tN+p—1)'

Allowing one integer > N + p — 1 is the same as finding the partitions of the integers
from 0 to k — N — p as sums of integers each >N and <N+p—1 (adding one more
integer, which will be greater than N +p—1, to each partition to bring the sum up
to k), and the number of such partitions is the coefficient of ¢* in

tN+p
(=) =tMA =N (1 =N ety
Adding (2.6) and (2.7) yields

2.7)

Theorem 2.8. Let P(t) be the Poincaré series for the ring R™, ie. P(t)= Y=  H(k),
where H(k) = dimg R™. Then

_ 1—t 4 N*p
1=090 =M=+ (1 — N te-1y

By a similar argument, using x to keep track of the number of terms added, we
obtain that dim V, , is the coefficient of x%s* in

P@)

I —t 4 xth*ep
A=) =x)(1 - xtM) (1= xt¥ 1) (1= x¥ -1y’

2.9)

3. Relations ideal and the structure of R™

In this section we determine the structure of R™ by finding a minimal presentation
for it as a graded Q-algebra. We show that R™ has Krull dimension p+1 and

(2.6) '
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embedding dimension N + 2p, and that in a presentation of R™ as a graded quotient
of the polynomial algebra in N +2p variables the ideal of relations is generated

. N ) .
minimally by ( ;p ) elements. As corollaries, we show that R™ is always

Cohen-Macaulay; that R™ is Gorenstein if and only if it is a complete intersection
if and only if N+ p<2 (which happehs exactly in the three cases p=0, N = I; p=0,
N=2; p=1=N); and that R™ is regular if and only if p=0, N=1.

Let B=Q[Ty, Tysys--s Tayyzp-1] be the polynomial ring in N +2p variables
graded by weight (T;) =i, and let ¢: B— R™ be the Q-algebra homomorphism given
by o(T) =1y, for all i. Let A =Q[Ty, Tyi1s---5 Tyypl, let M be the A-submodule of
B generated by 1, Ty 4 ,41,--.» Ton42p-1 and let M’ = @(M). Then M’ is the A’-sub-
module of R™ generated by 1, IN+p+1re-- ; VaN+2p-1, Where A'=Qyy, yyiy, ..., YN+ pd-
(We will see later that M’ = R™)

Lemma 3.1. We have y;eM’ and vi7;€M' for alli,j= N.

Proof. We prove the first part by induction on i Clearly we have y,eM’ for
N<i<2N+2p—1. Leti>2N +2p. Then 1—N—p=N+pso by (1.2) y; belongs
to the Q-span of yyy;_y, IN+1Yi=N=15 s PN+ pYioNpr NOW Vi Ny Vi N g s Yi-n-p€M’
by induction, since i>i—~N>i— N —p = N. Therefore y,e M’, and the first part is
proved. Now, if at least one of i and jis <N + p then y;y;e M’ by the first part. On
the other hand, if both i and j are >N+ptheni+j—N—p+1>N+p—1so by
(1.2) y;7; belongs to the Q-span of Vit p VNVitj-No-- 5PN+ p=1Vitj=N-p+1 (USt P, if
p=0) and these p+ 1 monomials belong to M’ by the first part. So Viy;EM. o

By the Lemma we can write, for i,/ > N+p+ 1 yy,=0o +}:§’=";i‘;111ﬁ;,yh with
o, B,eA’. We may assume that «, B, are homogeneous of appropriate weight so that
the expression is homogeneous of weight i +j. Lift o, 8, to homogeneous elements
o, By, of A of the same weight and let

2N+2p—1

h=N+p+1

Then P;; is homogeneous of weight i + j.

Theorem 3.2. The graded Q-algebra R™ has Krull dimension p+1 and embedding
dimension N + 2p, and has a minimal presentation with N + 2p generators and ( N ;_ p)
relations. A//’:»«f precisely, the Q-algebra homomorphism ¢: B—-)NR_:_N) is surjective and
the ideal ker(p) ,Of B is generated minimally by the ( 5 p) elements P,
N+p+1<i<j<2N+2p—1.

Proof. By [2,(14)], or by (3.1) above, R™ is generated by YNs PN+15++ s VaN+2p—1-
This means that ¢ is surjective, and R™ is a Q-algebra of finite type. Now, since the
quotient field of R™ is Q(x,,...,x,,2) by [4,(5.2)], we get dim(R™) = p+ 1. (That
dim(R"™) = p+1 also follows independently from (3.3) below.)

We show next that the set {P,;|N+p+1<i<j<2N + 2p — 1} generates ker(o)
minimally. To do this, let I be the ideal of B generated by this set.
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Minimality. Since the P;; are homogeneous, it is enough to show that no P, ; belongs
to the ideal generated by the remaining ones. Suppose for some i, J we have
Py=gri »JwsPs With f,_eB. We may assume that each f,_ is homggeneous with
weight (f )=i+ J—r—s (negative weight means the element is zero). Let

Q,s=P,,— T.T, Then
TiTj + Qij = Z frs(TrTs + Qrs)'

(r,8) # (0,)

Since N+p+1g Lj<2N+2p—1 and Q; is of degree at most one in
Tysprises Thy +2p-1; the term T, T} is present on the left hand side. Let us look for
this term on the right hand side. First of all, T;T; cannot appear in any of the terms
Jos T, T, because (r, s) # (i, /) is an unordered pair. It follows that T, T; must come from
one of the terms f,.Q,.. Since N + P+1<i, j<2N+2p—1 and Q,,1s of degree at most
one in TN+I,+1,...,T2N+2P~1, in order for T.T; to appear in the term J1sQ,s 1t is
necessary for f,, to contain a term which is a nonzero rational times T} or T;or I,T,
Accordingly, we would geti+j—r—s=weight (fi)=iorjor I+j whence r+s=j
oriorO. Thisis a contradiction, since r +s>2N +2p+2. This proves the minimality
of the generators.

Generation. By construction, we have I S ker(p). So we have the surjective map
¥:B/I - R™ induced by @. We have to show that Y is an isomorphism. Note that
M is a free A-module of rank N + p, with basis T:= 1, Tyipits..., Ton42,-1 The
module M is graded by weight (T)) =i. Let {: M — BJI be the restriction of the natural
map B— B/I to M. Given any polynomial in B, we can reduce it modulo I to an
element of M. This means that ¢ is surjective. Now, let ¢ = Yo{. Then 6: M — R™ is
an A-linear map which is homogeneous of degree zero and is surjective. Now, denoting
by P,(z) the Poincaré series of a graded 4A-module L and writing R = R™ it ig enough
to prove that Pp(t) = Py(t). For, since ¢ is surjective, this would show that o is an
isomorphism whence also Y is an isomorphism. Now, by (2.8) we have

L—t N+
(I-5(1—M1 - Y1 —Vre-1y

On the other hand, since 4 is the polynomial ring Q[ Ty, Ty, 15+-+5 Tyy ] with weight
(T;) =1i, we have 4

Pg(t)=

1
(1—tN)(1—IN+1)---(1“—tN+p).

Therefore, since M is A-free with basis 1, T, p+1eos Dyyyo o and weight (T) =i,
we get

P,(5)=

2N+2p-1 1+tN+p+1+l.N+p+2_l_“_+t2N+2p"1
Py(t)=P (1) + t'P (1) =
m(®) 4(0) i=N;p+1 41 (l—tN)(I—IN+1)"'(1‘"tN+p)

Now, it is checked readily that Py(t) = P(2). This completes the proof of the equality
I =ker(p).

Finally, we show that the embedding dimension of R™ is N +2p. Recall that for
a finitely generated gradedring C= @ k> 0Cr With C, a field its embedding dimension
emdim(C) is the minimal number of homogeneous Co-algebra generators of C, or
equivalently the minimal number of homogeneous generators of the ideal
Ci+=@,.,C, In our situation we have R™ =BJI with I generated by the P

ijs

A

S
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N+p+1<i<j<2N +2p—1. For such i, j we have i+ j>2N +2p+2. Therefore
in the expression P;;=T,T;,— o — N33 BT, we have ac A2 and each BreA,.
This shows that I < B2. Therefore by (graded) Nakayama the minimal number of
homogeneous generators of the ideal R™ of R™ is the same as that of the ideal B,
of B, which is N + 2p, since B is the polynomial ring in N + 2p variables. This proves
that emdim(R™) = N +2p. |

COROLLARY 3.3.

Thering A= Q[Yw, Y4 15-+-» Yy »J is the polynomial ring in p + 1 variables over Q,
and R™) is a finite free A'-module with basis LNt parse s Vans2p—1-

Proof. The restriction of the isomorphism o:M—-R™ to A is a Q-algebra
isomorphism of A onto A’, sending T; to y; (N<i< N +p). This implies the first
part. The second part follows since o(T;) =y, (=0or N+p+1<i<2N+2p— 1).

|
COROLLARY 34, |
A Q-basis for RN in terms of monomials in y,, PN+1s+-sVaNt2p—1 IS
{7’?»'”77\’”:11 "'yg%v:22§:11 IqN+p+1 tdnipszt o+ don+2p-1 <1}
Consequently, a Q-basis for RM™ is
{V?VN'}’?VT; YNt AN ey F An+pr2t " Fdoyip,- 1 <L,
2N+2p—-1
. N;q;= k}
ji=N
which can also be written, for comparison with (2.1), as
{yhyiz"'yid‘N SIS <o SEK2N+2p—1,
d
-y SN+pifd>1, ) ij=k}.
j=1
Proof. Immediate from (3.3). |

COROLLARY 3.5.

The sequence yy, yy . 1,..., vy, is RM-regular, and the ring R™ is Cohen—Macaulay.
Proof. The regularity of the sequence is immediate from (3.3). Therefore the
localization of R™ at the irrelevant maximal ideal RY of R™ is Cohen-Macaulay.

It is well known that this implies that R™ is Cohen-Macaulay (e.g. [1,(33.27)]).
]

COROLLARY 3.6.

The following three conditions are equivalent:
(1) R™ is Gorenstein; (2) R™ is q complete intersection; (3) N+ p<2.
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Note that, since N > 1, (3) occurs in exactly the following three cases: p=0,N=1;
p=0,N=2;p=1=N.

Proof. (1)<>(3): Since RW) is graded, it is well known' that R™ i§ Gorenstein' if and
only if its localization at the irrelevant maximal ideal RY is Gorenstein (e.g.
[1,(33.27)]). Let C denote this localization and put D= C/(yy, Iy +15-- ., Yn+p)- Then,
since C is Cohen—Macaulay and yy, yy+15---,Yn+ » 18 a regular C-sequence by (3.9),
C is Gorenstein if and only if D is Gorenstein. Let m be the maximal ideal of D.
Then, since dim(D) =0, D is Gorenstein if and only if ann(m), the annihilator of m,
is a 1-dimensional space over D/m. Now, it follows from (3.2) that m is gene.rated
minimally by Sy, ,,y,-.-,0,y45,- » Where §; denotes the natural image of y; in D.
Consider two cases:

Case 1: m=0. In this case D is Gorenstein, and this case occurs <= {dy, P12t
52N+2p-1}=@¢2N+2PSN+p+1¢N+pg1,

Case2: m+#0. Then ann(m)cm. If N+p+1<i, J<2N +2p—1 then, as noted
in the proof of (3.2), we have P;;=T,T; -« — X BT, with €A% and each
ByeA,. It follows that m?=0. Thus mc ann(m) whence ann(m)=m. So D is
Gorenstein <>m is generated by one element <>2N + 2p—1=N+p+1<N+p=2.
(2)<(3): Since dim(R™)=p+1 and R™ = B/I with ] minimally generated by

N; p) homogeneous elements, R™ is a complete intersection if and only if
N+p . . . oy .
N+2p=p+1+ ) ) The solutions of this equation with Integers p>0, N > 1
are exactly those given by N + p<2. : ‘ [ |
COROLLARY 3.7.

The ring R™ is regular if and only if p=0,N=1.

Proof. R™ is regular <>emdim(R®) = dim(R™) <N +2p=p+1<N+ p=1<p=0,
N=1. |

Example 3.8. We illustrate the structure theorem (3.2) by computing P;; explicitly
in the cases p=1=N and p=1, N=2, ,

- First, let p=1=N. In this case B = Q[T,,T,,T,], A= Q[T,,T;], A’ = Qly, 721,
M’ is the A’-module generated by 1,y,, and there is only one relation P,,. To find
it we have to express v% as an A'-linear combination of 1,y,. We do this by eliminating
74, ¥s among the relations (L4.1), (14.2), (1.4.3) obtaining

Vs =313 — 43 —dydy, + 617,75

as the desired linear combination. So Pyy=T3—3T3T2 4473 + ATIT,—6T,T,T,
and Rﬂ‘”.g Q[T,T,, T,]/T? - 3T T2 4 4T3 + 4T3T, - 6T, T,T,).
A similar computation for the case p=1, N=2 gives
R® Q[T,T,,T,, Ts1/(Pys, Pys, Pss)

With Py =TS~ /37,3 + 3T2T, - ) T,T. p..— T T 3
4 3ds, = +12T3 16T, T.T, +
s and Py = T3 T34 36737, 4913, S a0 e e
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4. The independence of %, ,

In this section we give a new proof of the linear independence of 4, ,, which does
not depend upon the proof of (2.1). The matrix approach used here gives additional
insight into the nature of .R™. In particular, we obtain a sharpening of the
independence part of (2.1), in that we prove that a specific minor of a certain matrix
is nonzero. Our matrix theoretic techniques are perhaps of interest in their own right.

Before stating our result precisely (Theorem (4.1)) we would like to describe more
carefully the relationship between the two bases 8, , and ¥,.= {*Gi(K)|te T, } of RV
In §2 we noted that 7, is a set of integers indexing (as ¢ ranges over 7,) all sequences
of the form a, = (;,a,,...,0,) with 0< o, <o, < --- SGSP, oy =0, 2o; <k In
[4, §3] we also introduced monomials b, = Xy Xq, " Xy, (With x,=1). If we wish to
writc an element M of #,, (or more generally, any monomial M of
weight k in the y,) as a linear combination of Y, we just expand M in terms of
monomials b,. Then the coefficient of Z*G(k) in M is the rational coefficient of b,
(ignoring the power of z). See [4, (3.7) (5)1, and for some explicit examples [4, (4.3)].
We shall think of the basis element Z*G/(k) as also being indexed by the monomial b,.

Put By, = {x'x3x10<q<p, 4,22, T9_ (i+N—1)a, < k}. Then &y, has
the same cardinality as %y An explicit bijection between Py, and By, is given
by Xx{'X5% - x0r >y R2, “YNie-2Vail_1v, where e N + g —1 is chosen to yield
weight k. Give the set {x2x% X0 < g < p,a,>2} the reverse lexicographic order
and let #) , have the induced order. Let &, be given the order corresponding to.
that of %y , under the above-mentioned bijection between #n i and B, . This done,
let { be the matrix over @ whose ij entry is the coefficient of the jth element of G,
in the expression of the ith element of By i written as a Q-linear combination of Y
The linear independence of By x follows immediately from the following theorem.

Theorem 4.1. Let p> 0 and let { be the matrix (with entries in Q) defined above. Let
n be the submatrix of { consisting of the columns corresponding to A, . Then det(n) # 0.

Our first attempt to prove the linear independence of the By Was by proving
(4.1), but this turned out to be somewhat elusive. So we ended up proving (2.1) using
the basis interchange technique given in §2. However, we were still intrigued
by the equality card (# w) = card(#y, ,), and we were finally able to prove (4.1), showing
that this equality is not a coincidence. This gives an independent, but more difficult,
proof of (the linear independence part of) (2.1). In the proof of [4,(4.1)] (the case
N = 1)'the matrix { (=7 in this case) was triangular with nonzero entries down the
diagonal so non-singularity was easy to establish. We have not been able to find
such a simple argument in the case N > 1.

The following example will help explain the meaning of (4.1), as well as illustrate (2.3).

Example 42. Let N=p=2, k=10. Then &, ,, = {1,x2, x5, X1 x5, x2, %, x2, x2x2, x3}
and in the corresponding order &, o = {7,0,7,75, Y206, V3740 Y30 3T Va¥ 3V 1272 727 ).
Then Vi, has basis {y,}, V;0,,/V,o.; has basis {7278:7377}> Vi0.,3/V10,2 has basis

(26727375 ¥374)» Vio.4/V10,5 has basis {y3y,, y3y3} and V10,5/V10,4 has basis {y3}.
The complete list of monomials corresponding to %, is {1,x3,x3, x3, x3, x§,x], x8, x5,
X1, L 6 XE, 3, e X X8t x5, X, 02 X, b ok r e )
so the matrix { is 9 by 26. Monomials of degree greater than 5 can be omitted since
all entries in their columns will be 0. This leaves {1, xZ x3, X%, %3, %, x3, x2x2, x3x2,
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X3 Xy %3, x2x3, x4, X;X3, %3} s0 the non-trivial part of {'is 9 by 15. We shall not write
this matrix down, but the possibly nonzero entries by degree considerations (a row }
of degree d can have nonzero entries only in a column of degree <d) are indicated r*
by *'s, and only the subscript digits are indjcated for the row indices (x being 10).

The column indices of #,10 (ie. the columns of 1) are underlined.

1, x3, x3, x%, x3, x3, X, x2, x2x2, x3x3, x3, x,%3, x3x3, x%, X, X5, x3
x *
28 * ok *
226 * % % * * *
2224 * % * * * *
22222 * % *k * * %k * * * % *
37 * ok *
235 ® ok * * * *
2233 ® ok * %* * %k * * *
334 k3 % % 1
Theorem (4.1) in this case is sharper than (2.1) in that there are several other ¢
maximal minors that could be nonzero.
The proof of (4.1) will now occupy the rest of this section. The various constructions
involved are illustrated by Example (4.12) below, to which the reader might refer
while working through the proof, Suppose p=0. Then %, ={z"} and A ={1}.
Further, #y = & if O<k<N and %y, = {y,} otherwise. So { is either the 0 x 1
empty matrix or the 1x1 identity matrix, and (4.1) holds trivially in either case.
Similarly, (4.1) is trivial in case k=0. Assume therefore that p>1 and k> 1. The
integers p,k and N > 1 are fixed in what follows. Let d=[(k/N)]. In the notation of
[4,(3.5)] let o’ = {(ocl,...,ocd)eZd]Osoz1 S S =0,<p). Fori>1 let a; be the
number of times i occurs in (%1,...,2,). Then the correspondence («;, ..., 0,)«
(a,...,a,) identifies o2’ with the following subset U of (Z*)
p &,
U= {(0,...,0)}u{(a1,...,ap) > a;<d, 3jwith a,>2 and ai=0\7’i>j}. =
i=1 ’
Fora= (ay,-..,a,)e(Z*) define the weight of a to be wi(@)=>"?_ (N +i— 1)a;. Let
V={aeU|wt(a)<k). Define Vo=W,= {0,...,0)} and for 1 <j<p define
V= {(al,...,ap)eV[aj>2 and a;=0vi>j} and sz{(al,...,aj_l,aj— L,0,...,0)|
(al,...,aj_l,aj, O,...,O)er}. Put W= Hf=0WJ..
We use the reverse lexicographic order on 1/ - Namely, (al,...,ap) <(by,. -+»b,) (or
(ay,...,a,) “precedes” (by,...,b,)) if the last nonzero entry of @y...,a,)— (by,-..,b,)
is negative. Let V and W’ have the induced order. This order is such that the elements
of V;_, (resp. W;_1) precede those of V; (resp. W)).
LetS= @[xl,...,xp, T] and let F(T) =}:f=o(?)xi (where x, = 1. If (al,...,ap) is
the ith element of W define %,
F(T)=F(N*F(N + % F(N+p—1)»
x F(T—alN-—az(N+ 1) —... —a(N+p-1)).

Note that F(n)=(y,),~,, and that F i(k) is the ith element of By x (with z set equal to
1). The reason for decreasing the last index in defining the elements of W is to take
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into account the adjustment of the last index to obtain weight k when defining the
elements of &y ,. If (b1s...,b,) is the jth element of V then x’;‘xgz-~-xzp is the jth
element of 4%, , (where the latter has the same order as before). Let
r=card(V)=card(W). Let M(T) be the rxr matrix (M;(T)), <<, With
M;(T)eQ[T] the coefficient of x‘{‘xgz---xﬁp in F(T), where (b1,-..,b,) is the jth
element of V. (Note that the rows of M are indexed by W and that the columns are
indexed by V.) By the discussion preceding Theorem (4.1), M ;j(k) is the coefficient of
Z*Gi(k) (¢ corresponding to the jth element of %y 1) in the expansion of the ith element
of &y Therefore n = M(k), so (4.1) is equivalent to M(k) being invertible. If p=1
then M(k) is lower triangular with nonzero entries down the diagonal, hence trivially
invertible. The argument that follows is needed only for p>2.
Note that if j corresponds to an element of V, then

degrM(T)< h. (4.3)

Therefore
p p
degrdet(M(T))< 6:= Z h-card(V,) = Z h-card(W,). (4.4)
h=1 h=1

Our intention is to show that M(k) is invertible by finding 6 roots for det(M(T)),
each less than k, and then showing that the coefficient of T in det(M(T)) is not
identically zero. The & roots will be found by obtaining coincidences of the rows of
the matrix M(s), as s ranges between N and k — 1.

We begin by proving a few lemmas.

Lemma 4.5, Let 1\71(T) be an r x r matrix with entries in Q[T]. Let ueQ. Let # be
the set of rows of M(T) and let & be the set of all nonempty subsets of %. Suppose
there exists a subset & of & such that

(1) The sets in & are disjoint.

(2) For each Ecé&, all the rows in E coincide when T is specialized to U

Let c=c(&) =3y 4(card(E) — 1). Then (T — uf divides det(M(T)).

Proof. It is clear that rank (M (W) <r—c. By elementary row and column operations
over Q[T] the matrix M(T ) can be reduced to a diagonal matrix D(T) with diagonal
entries { f(T),..., SAT)}. (This is well known, and easily proved using that Q[T is
an Buclidean domain.) Then (since the same operations can be carried out with T
set equal to u) we have rank(ﬁ(y)) = rank(]VI(u)) <r—c. Thus (T — ) divides at least
c of the f;. Since (up to a nonzero scalar) det (M (T)) = det(ﬁ( T))=1I._, f, the lemma
follows. [ |

Before stating the next lemma we introduce some notation. For a=(a,,..., a,)e(Z*yr
Put y*=9y¥ V1 ¥¥% -1~ Then Zxx = {YVe-wiw)| a€W). Since the rows of M(T)
correspond to By, those of M(s) correspond to BN 1(8):= {V*Vs_ sl a€W}. Here the
elements y%,_ .., are treated as symbolic monomials with s—wt(a) allowed to be
negative. Given symbolic monomials %Y, ¥y, With a,be(Z*) and t, ueZ, we say
they are formally equal if at least one of the following two conditions holds: (1)
(a,t) = (b,u); (2) both t and u belong to the set {0} U[N,N + p— 1] and y%y, and y?y,
coincide as formal monomials in VN> PN+p-1 OR Teplacing y, by 1. We say that a
T0w R of M(s) is labeled by a symbolic monomial ¥*, if the symbolic monomial in




16 L Reid et al

%y .(5) corresponding to R formally equals y%y,. Clearly two rows of M(s) labeled by
the same symbolic monomial are equal.

Let @;={(by,...,b;0,...,0)e(Z*)?|b; # 0}. For beQ;put Eb)=Wn{b—¢|0<
i<j}, where ey =(0,...,0) and for 1 <i<p, ¢=(0,...,1,...,0) is the standard basis
vector with 1 in the ith place.

Lemma 4.6. Let beQ;. Then the rows of M(wt(b)) which are labeled by y°(=y%y,)
are precisely those indexed by E(b). Moreover, if b, ceQ; with b # ¢ and wt(b) = wt(c)
then E(b)nE(c) = .

Proof. Tt is clear that the rows of M(wt(b)) indexed by E(b) are labeled by yb. Let R
be a row of M(wt(b)) which is labeled by y°. Let a be the element of W corresponding
to R. Then the symbolic monomial of Ay (wt(b)) corresponding to R is V™Y vors) - witay
Comparing the subscripts and exponents of this symbolic monomial with those of
y* we conclude that acE(b). This proves the first part. Now, let b, ceQ; with
wt(b) = wt(c) = s, say. Suppose E(b) and E(c) have a common element, say a. Let R
be the row of M(s) indexed by a. Then R is labeled by y* as well as by y* whence
we get b=c. [ |

Lemma 4.7. For an element b of Q ; the following three conditions are equivalent:

(1) card(E(b))>2; (2) b—e;eW for some i, 0<i <Jj;(3)b—e;eW and b—e;eW for
some i, 0 <i<].

Moreover, if any of these conditions holds then wi(b) < k.

Proof. Assume (2). Then b—e;eQ, for some h, i<h<j. Since b— e;eW; we have
wilb—e)) <wtb—e) <k—(N+j—1)<k— (N +h—1) whence b—e;eW,. This proves
(2)=(3). Also, the inequality wilb—e;) <k—(N+j—1) gives wt(b)<k. The
implications (1)=>(2) and (3)=>(1) are trivial. [ |

Put 0 = {bell?_, 0;|card (E(b)) > 2}.
Lemma 48. The product Iyeg (T— wi(b))™*E=®)~* divides det(M(T).

Proof. Writing Q(s)= {beQ|wt(b)=s}, it is enough to prove that II,,GQ(S)

(T — wi(b))***EEN=1 divides det(M(T)) for every s. But this is immediate from (4.6)

and (4.5), since rows labeled by the same symbolic monomial are equal. |
¥

Lemma 4.9. 2beo (Card(E(b))—1) = 4.

Proof. For beQnQ; put E'(b) = {(b,b—e)|0<i<j,b—ee W}. 1t follows from (4.7)
that card(E'(b)) = card(E(b)) — 1. Let & =11 »eoE'(b). The second projection induces a
map 7: & - W. Let ae W, and let i be an integer with 0 < < Jj- Then a + ¢,€Q by (4.7).
It follows that ™~ !(q) = {late,a)|0<i<j }. Thus there are exactly j elements in the
fibre of # over each element of W, Therefore we get 2seglcard(E(b)) — 1) =
2 segCard(E'(b)) = card(€) = 25 jrcard(W)) =4. |

Now, since deg, det(M(T)) < § by (4.4), and since (4.7)-(4.9) taken together exhibit &
roots of det(M(T)) each less than k, it remains only to show that det(M(T)) is not
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identically zero. We do this by showing that the coefficient of T? is not zero. Let 0y
be the coefficient in M;{T) of T" if j corresponds to an index in ¥V, (by (4.3) h is
highest power of T with a potentially nonzero coefficient in M;(T)). It then suffices
to show that det((o;)) #0. For 1<i, j<r (where as before M is rxr) let
H{(T)=F(T)"F(T + 1)*>---F(T + p— 1)"P where (a,,...,a,) is the ith element of W,
and let 7;; be the coefficient of x}'x3..-x%» in H(N), where (bl, .,b,) is the jth
element of W. Let h be the 1ndex for which (bys...,b)eW,. Then, since
(by,...,1+b,,0,...,0) is the corresponding element of V,l and since F(T)=
H{(N)F(T — c) for some integer ¢, we get o;;=(1/h!)z;;. So it suffices to prove that
det(z) # 0 (where t = (1;;)). Rearrange the rows and columns of 1 by reordering W by
degree (where degree (a,,...,a,) = > a;). Then 7 is lower-block triangular with degree
blocks down the diagonal. It suffices to show that each of these blocks has a nonzero
determinant. Therefore for u (0 <u<d—1) let S, be the submatrix of t with rows
and columns indexed by elements of W and V of degree u. It suffices to show that
det(S,) #0.

The matrix S, is obtained as follows: Let W(u) be the elements of W of degree u,
and let r(u) = card(W(u)). For 1 <1, j < r(u) let (a,,... ,a,) be the ith element of W(u)
andlet(by,...,b,) be the jth element of W (u). Define an r, x r, matrix L,(T) by setting
the (i, j) entry to be the coefficient of x}'x3?--- x» in H(T). Then S, = L,(N). Thus it
suffices to show that N is not a root of det(L,(T)). Since we are now dealing with

T
the homogeneous case we can replace F(T) by F(T)= b 1( )x- and H{(T) by
i

,(T) F(TYF(T + 1)%=... F(T + p — 1)*» without changing L, (T). We now note that
H {(T) is divisible by T*(T + 1)*2---(T + p — 1), or equivalently, the ith row of L, is
divisible by T*/(T + 1)**---(T + p — 1)*». Factoring out these entries from the rows of
L(T) we obtain a matrix K,(T) which can be defined directly as follows: let

G(T)=37_, (1/i) ( T ”11 ) x; (so that TG(T) = F(T)) and define L(T) = G(T)*G(T +
i

1) ---G(T + p — 1)°. Then the (i, j) entry of K,(T) is the coefficient of x21x2: .- xbr
in L(T). Noting that the roots of the factors (T + i)* are all <0, it sufﬁces to prove
that N is not a root of det(K,(T)). In fact, det(K(T)) is a nonzero constant, as we
show next. :

For a=(ay,...,a;,0,...,0)eQ; define aw(a), the augmented weight of a, to be
N +j—1+4+3_,(N+i—1)a;. Also define aw(0) = 0. If ac W then aw(a) is the weight
of the corresponding element of ¥, and aw(a) < k for all aeW. Now, order the
elements of W(u) by augmented weight with small weights coming first, and order
elements of the same weight by reverse lexicographic order as was done previously.
This ordermg is such that

(4.10) if for j <i we decrease a; by one and increase a; by one then we get an earlier
element in the ordering.

Furthermore W(u) is a leading segment in the set W(u) of all elements of degree u
in (Z*) (where W(u) is ordered in the same manner). The matrix K (7T) can be
constructed with W(u) ordered in this way without changing the value of det(K (T)).

Now we shall work with W(u). Let #(u)= card(W(u)) and let K,(T) be the F, X F,
matrix whose (i, j) entry is the coefficient of x5:x3? ”P inL {T)=G(T)"*G(T + 1)*=..
G(T + p— 1)*» where (a,.. »a,) and (by,...,b,) are respectlvely the ith and the jth




18 L Reid et al

elements of W(u) (for convenience of notation we are changing the'meaning of L,
rather than introducing a new symbol). Let u = 1. If we take out the factors 1/i from

~ T+i—-2
the columns then K,(7T) is reduced to the matrix J = [( -‘H { )] . If we
J= 1<ij<p
subtract each row of J from the next (performing the operations in the order replace
pth row by pth — (p — 1)st, replace (p—1)st by (p—1)st —(p—2)nd etc.) and use the

-~ 1 4 - — ._,_2
binomial identities (T-'H 1 )-— (T—.H . 2) = <T+ l 5 ) then J row reduces to
J—= J— J—

" .
(1 ) where J’=[(T+l_2>jl . (Performing row operations in this
o j—1 1<ii<p-1
manner was suggested to us by Sue Geller.) Continued row reduction of this type
(subtracting from a row Q-linear combinations of previous rows) will reduce K,(T)
to an upper triangular matrix with ones down the diagonal. We conclude that
det(J) =1 whence det(Iz {(T))=1/p!, a nonzero constant. Now, let E = (E;;) by any
p x p matrix with entries in Q[T]. If R, is the ith row of E let us identify R, with
the element E;;x; + E;;x; + - + E; x, of Q[T,x,,...,x,]. Let f(E) be the 7, x 7,
matrix whose (i, j) entry is the coefficient of x§'x3:...x% in R{'R%---R%, where as
before (ay,...,a,) and (by,...,b,) are respectively the ith and the jth elements of W(u).
This construction is such that f,(K,(T))= K,(T). Furthermore if we change E into
a matrix E’ by row operations of the above type (i.e. subtracting from a row Q-linear
combinations of previous rows) then because of (4.10) f,(E) is changed into f,(E’)
by row operations of the same type. We have that f, of an upper triangular matrix
is upper triangular, so K,(T) can be converted to an upper triangular matrix with
nonzero constant entries down the diagonal by a succession of row operations in
which from a given row we subtract a Q-linear combination of previous rows. These
row operations leave invariant the subspaces spanned by the first i rows (1 <i<F).

Since W(u) is an initial segment of W(u) we conclude that detK,(T) is a nonzero
constant, completing the proof of (4.1). |

Example 4.11. If N=3, p=4, then in reverse lexicographic order we have
(1,0,2,0)<(0,1,2,0)<(0,0,3,0) < (2,0,0, 1) with augmented weights respectively 18,
19, 20, 18. Therefore if we order reverse lexicographically instead of by augmented

weights the argument above will fail for k = 18 since then W(3) will not be an initial
segment of W(3).

Example 4.12. Let us return to (4.2), where N=p=2, k=10. Here we have
VO = {(Oa 0)}3 Vl = {(23 0)> (350): (4: 0), (59 0) }’ V,= {(0’ 2)7 (192)7 (23 2): (0: 3)}’ WO =
{00,0)}, W, = {(1,0), (2,0), (3,0), (4, 0)} and W, = {(0,1), (1,1), (2, 1), (0, 2)}. The rows

05 Z;/I(IZO) are indexed by the monomials By 10={V10 V278 Yo y§y4,y§, V3P VoYV ss

Y3Y3¥3V4} as noted in (4.2). Thus the rows of M(s) are indexed by By 10(8)=
(e 12052 V3%— 0 V30sm 0 V3Ve— g0 Va¥em 3 V27375 55 T33%s— 7 927, g)- The polynomial
det(M(T)) is of degree card(V,) + 2card(V,)=4+2-4=12, and we have 0={(1,0),
(2,0), (3,0, (4,0, (0,1), (1,1), (2,1), 3,1), (0,2), (1,2)}. Taking b=(1,0) we get
E(b)={(0,0), (1,0)}. This corresponds to the pair Yo V2¥s— > indexing the first two
rows, which become equal when we set s=2. The complete set of row coincidences is
obtained similarly and is given by the following table:

L
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roots of

b E(b) elts of &, ;,(s) TOWS det(M(T))
(1,0) (0,0), (1,0) Vo Va¥s—2 1,2 2

(2,0 (1,0), (2,0) V2¥s—20 V3Vs-a 2,3 4

(3,00 (2,0),(3,0) V3Vsma VaVss 3,4 6

(4,0) 3,0), (4,0) V3V VaVe—g 4,5 8

0,1) (0,0), (0,1) Vo YaVs-3 1,6 3

(1,1) (1,0), (0,1), (1,1) Vo¥s—2> V3¥s—3> P2P3Vs—5 2,6,7 5,5
(2,1) (2,0), (1,1), (2, 1) 'J’%')’s—m V2V3Vs—5s V%Vs)’s—7 3,78 7,7

3,1 (30,21 V3Vs—6 V2¥sVsmr 4,8 9

0,2) (0,1), (0,2) V3Vs—3 V3Vs—6 6,9 6

(1,2) (1,1),(0,2) VaV3Vs— 55 V3¥s—6 7,9 8

By direct computation det(M(T)) turns out to be
243%(T — 9)(T — 8)(T — 7)*(T — 6)*(T — 5)*(T — 4)(T — 3)(T — 2),

which is in agreement with the roots (together with multiplicities) obtained from the
above table. We have that det(M(T)) does not vanish at T = 10, as claimed.

Now we shall illustrate some features of the last part of the proof. Here
G(T)=x; +((T—1)/2)x5, and G(T+1l)=x,+(T/2)x,, so K (T)=K,(T)=
(: (];T/;;Q)' We have W(3)={(3,0), 2,1)} and W(3)={(3,0), (2,1), (1,2), (0,3)}.
The respective augmented weights of the elements of W(3) are 8 (=4-2),
10 (=2-2+2-3), 11 (=1-2+43-3) and 12 (=4-3). The last two have weights greater
than 10 and so are not included in W(3). If p = 2 the reverse lexicographic ordering is
also an ordering by weight, but this need not be the case for larger p, as we saw in
(4.11). Set R, =G(T) and R, = G(T + 1). Then the matrix 123 has rows {R3, R?R,,
R,RZ, R3}, (or more precisely the 4 x 4 matrix obtained by taking the coefficients of
{x3,x3x,,x,x2,x3} in these polynomials). The rows of K; will be denoted as
{ry,r2,73,74}. The row operation that reduces K ((T) to upper triangular form is to
replace {Ry,R,} by {Ry,R;, — R;}. Then f3({R,,R, — R,}) has row corresponding
to {R},R}(R,—R)), Ri(R, — Ry)? (R,—R,)*} ={R},R}R, — R}, R,R2—2R?R, +
R}, R3 — 3R, R2+ 3R?R, — R3} 5o the row operation to reduce K , to upper triangular
form (with nonzero diagonal entries) replaces {ry,r,, 73,74} by (ry, v, — 71,75 — 2r, +
ri,T4 — 3r3 + 3r, +r,}. The matrix K, is the upper left 2 x2 submatrix of K, to
which these row operations restrict, so det K, is also a nonzero constant. If we had
used weight 11 rather than 10, then K, would have been the upper left 3 x 3 block
of K, which also has determinant a nonzero constant, for the same reason.

5. Hilberty polynomials

The graded ring R™ has Hilbert function H given by H(n) = dimgR®™. We consider
the problem of expressing H(n) as one or more polynomials in n. The Hilbert function
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of a graded ring which is standard (i.e. finitely generated over a field by elements of
weight 1) is given for n > 0 by its Hilbert polynomial. Our ring R™ is finitely generated
but is not standard except in the trivial case p=0, N=1. For such a ring there exist,
by [5, Corollary 2], a positive integer d and polynomials H o Hy,...,Hy_; suchthat

Hn)=H{n) if n»0and n=i(mod d). (%)

In general, it is of interest to quantify precisely the condition “n> 0”. In particular,
in the standard case, if the Hilbert function coincides with the Hilbert polynomial
for all n > 0 then the ring is called a Hilbertian ring. So we may call a general finitely
generated graded ring Hilbertian if (x) holds for all n>0. In our first result (5.1) we
show that R is Hilbertian if p > 2, and determine the minimal d satisfying (*).

If p=0then Hn)=1if n=0 or n> N, so in this case (*) holds with d=1, H,=1,
and R™ is Hilbertian if and only if N=1.

Now, in general, to say that R™ is Hilbertian is the same as saying that its Hilbert

function H is a quasi-polynomial in the language of [6,(4.4)]. The integer d appearing
in (*) is then a quasi-period of H.

Theorem 5.1. Let d=lem(N,N+1,...,N+p—1). If p>2 then H is a quasi-
polynomial with minimum quasi-period d, and in particular R™ is Hilbertian. Ifp=1
then the function H given by ﬁ(n)=H(n) for n=1 and ﬁ(O)zH(O)—l:O is a
quasi-polynomial with minimum quasi-period d.

Proof. Let P(t)=3= H(n)t" and P(f) = :‘;Oﬁ(n)t”, where we put H = H if p=2.
Then by (2.8) we have
1—t4N*e

PO =Pt = (I=A—tM1—"*Y . (1 — VoY

ifp>2,

and P(t)=P()— 1 = /(1 —1)(1 —tM) if p=1. In either case write P@®) = f)/g(t)
with f(t), g(t) polynomials without a common factor. Then deg f(z) < degg(t) and the
zeros of g(t) are the dth roots of 1. So by [6, (441)]Hisa quasi-polynomial with quasi-
period 4.

To prove the minimality of d, we claim first that d is the Icm of the orders of the
roots of unity which occur as zeros of g(t). This is clear if p=1. Hence assume that
p>2.1f Jis a root of unity as well as a zero of 1 —z+t¥*? then 1, —Aand AN*7 are
three roots of unity whose sum is zero. This is the case if and only if {1, — 4, AN*7}
are the three cube roots of unity. Thus —4 is a primitive cube root of unity, so 4 is
a primitive sixth root of unity and A¥*? = (— 1)? is the other primitive cube root of
unity, whence N + p =2 (mod 6). Obviously 1—t+t¥*? has no repeated factors, so
if N+p=2 (mod 6) then we can cancel the cyclotomic polynomial 1—t+12 of
primitive sixth roots of unity once, otherwise there is no cancellation. The cancellation
still leaves us with roots of unity of order 2and 3 as zeros of g(t), proving our claim.
_Now let D be the minimum quasi-period. Then we can write P(t) in the form
Pt)=X7"4 i>oH;(j+ Di)t’*P' for some polynomials H ;- Multiplying by 1—1t?
amounts to differencing the coefficients (except in low degrees) so (1—tP)¢P(t) is a
polynomial in ¢ for some positive integer e. Therefore the roots of unity that occur

as zeros of g(t) must have orders which divide D. Thus 4 divides D, proving the
minimality of 4. |

ey
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Theorem 5.2. The polynomials H; in (5.1) are all of degree p.

Proof. This is seen by examining the partial fraction expansion of P(t). We have that
1 is a root of the denominator of P(f) of multiplicity p+ 1, and that all other roots
are of smaller multiplicity. Setting X =AT in the well-known expansion

1 -1 . . . .
El X7 =35 0( nr : )X " (in which the coefficient of X™ is a polynomial in n of
— r —

degree r—1), we see that a root A of multiplicity m of the denominator contributes
a polynomial of degree m—1 to each of the H;. Thus 1 contributes degree p to each
Hj and the other roots contribute a lower degree, so the highest degree terms cannot
cancel leaving all the H; of degree p. [ ]

Now, we give an example to show that the various H ; need not be distinct.
Consider the case N =2, p = 3, where our Poincaré series

l—t+¢°
1-01 =) =31 —tH
has partial fraction expansion
a b 1/8 2/9
+ + +
(I—=0* (1+0? 1422 1+4t+12

with a of degree 3 and b of degree 1 which need not be stated explicitly. The power
series expansions of 1/(1+ %) and 1/(1 4t +1t2?) are

1=+t — 58— ...

I—t+t3—t* 45— ...
of periods 4 and 3 respectively, with coefficients in each period being 1,0, —1,0 and
1, —1, 0 respectively. The “non-polynomial” contribution to the various H (i) are given

by the following table (with rows corresponding to ¢ for i=0,1,2,... and columns
corresponding respectively to the roots of order 1,2, 4, 3):

i

0 1 1 1 1
1 1 —1 0 -1
2 1 1 -1 0
3 1 -1 0 1
4 1 1 1 -1
5 1 —1 0 0
6 1 1 -1 1
7 1 -1 0 -1
8 1 1 1 0
9 1 -1 0 1
10 1 1 -1 -1
11 1 -1 0

12 1 1 1 1

The polynomials coincide if and only if the rows are the same. By inspection of the
table we see that the period is indeed 12, as given by (5.1), and that H 1=H;,Hy=H,,
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and Hs=H,,, with the polynomials H; (0 <j<11) being otherwise distinct. The
equality of the Hs here comes from the O’s in the power series expansion of the
cyclotomic polynomial of primitive fourth roots of unity. Note that the possibilities
are determined only by the columns corresponding to roots of order 4 and 3. Obviously
the first column plays no role in deciding on the cases, and the second does not either
since whenever entries in columns three and four are equal, so are the entries in
column two.

t 2 P 19
By explicit computation we obtain Hy(t)=1+-+—+— H,=H,= — —+
y exphat comp o) =145+ gt H=tH=—1
5t 2 . . .
% + Zg + —144 , etc. with the polynomials all of degree 3 as claimed by our theorem, and

with polynomials equal and distinct as claimed above. The coefficients of 2 and ¢
are the same in all polynomials, which can be explained by the fact that only the
root 1 has multiplicity greater than two, and the coefficient of ¢ is periodic with period
2 since only the root —1 has multiplicity 2.

In another example that we have worked out, equality of the various H ; arose in
a seemingly accidental way from primitive roots of unity of order other than powers
of two. The general situation seems to be quite complicated.

References

(1] Herrmann M, Ikeda S and Orbanz U, Equimultiplicity and Blowing up (New York: Springer-Verlag)
1988

[2] Reid Les, Roberts Leslie G and Singh Balwant, Finiteness of subintegrality, in Algebraic K-Theory
and Algebraic Topology, P Goerss and JF Jardine (eds) (Kluwer) 1993, pp. 223-227

[3] Roberts Leslie G and Singh Balwant, Subintegrality, invertible modules and the Picard Group, Compos.
Math. 85 (1993) 249-279

[4] Roberts Leslie G and Singh Balwant, Invertible modules and generic subintegrality, J. Pure Appl.
Algebra 95 (1994) 331-351

(5] Shukla PK, On Hilbert functions of graded modules, Math. Nachr. 96 (1980) 301-309

[6] Stanley Richard P, Enumerative Combinatorics, Volume I, (Wadsworth and Brooks/Cole) 1986

[7] Swan RG, On seminormality, J. Algebra 67 (1980) 210-229

Y




