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ON SOME CONJECTURES ABOUT THE CHERN NUMBERS OF
FILTRATIONS

MOUSUMI MANDAL, BALWANT SINGH AND J. K. VERMA

Abstract. Let I be an m-primary ideal of a Noetherian local ring (R,m) of positive

dimension. The coefficient e1(A) of the Hilbert polynomial of an I-admissible filtration

A is called the Chern number of A. The Positivity Conjecture of Vasconcelos for the

Chern number of the integral closure filtration {In} is proved for a 2-dimensional

complete local domain and more generally for any analytically unramified local ring

R whose integral closure in its total ring of fractions is Cohen-Macaulay as an R-

module. It is proved that if I is a parameter ideal then the Chern number of the I-adic

filtration is non-negative. Several other results on the Chern number of the integral

closure filtration are established, especially in the case when R is not necessarily Cohen-

Macaulay.

Introduction

For a nonzero polynomial P = P (X) ∈ Q[X ] of degree d such that P (n) ∈ Z for

n ≫ 0, it is customary to write P in the form

P =
d∑

i=0

(−1)iei(P )

(
X + d− i

d− i

)

with ei(P ) integers, called the Hilbert coefficients of P. The top two Hilbert coefficients

have special names: e0(P ) is the multiplicity of P and e1(P ), the subject matter of this

paper, is the Chern number of P.

If I is an m-primary ideal of a Noetherian local ring (R,m) of positive dimension and

PI is the polynomial associated to the function n 7→ λ(R/In+1), where λ denotes length

as R-module, then the Hilbert coefficients ei(PI) are called the Hilbert coefficients of I

and are also denoted by ei(I). In particular, e1(I) is the Chern number of I.

If A = {An}n≥0 and B = {Bn}n≥0 are (decreasing) filtrations of ideals of a ring R

then the admissibility of A over B means that there exists a nonnegative integer k

such that An+k ⊆ Bn ⊆ An for every n ≥ 0. We say that A is I-admissible, where I is

an ideal of R, if A is admissible over the I-adic filtration.

For an ideal I of a ring R, the integral closure of I, denoted I, is the ideal of R

consisting of all elements of R which are integral over I, i.e. elements a ∈ R satisfying
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an equation of the form ar + b1a
r−1 + · · · + br = 0 with r some positive integer and

bi ∈ I i for every i. Applying this construction to the powers In of an m-primary ideal

I in a Noetherian local ring (R,m), we get the filtration {In} on R. If R is analytically

unramified then this filtration is I-admissible by Rees [9]. It follows that the normal

Hilbert function of I, namely the function n 7→ λ(R/In+1), is given, for n ≫ 0, by a

polynomial P I , called the normal Hilbert polynomial of I. The Hilbert coefficients

ei(P I) are called the normal Hilbert coefficients of I and are also denoted by ei(I). In

particular, e1(I) is the normal Chern number of I.

At a conference held in 2008 in Yokohama, Japan, Wolmer Vasconcelos [12] announced

several conjectures about the the Chern number of a parameter ideal and the normal

Chern number of an m-primary ideal in a Noetherian local ring (R,m).

In this paper, we discuss two of these conjectures, namely the Positivity Conjecture

and the Negativity Conjecture. We also provide some general estimates on the Chern

number.

The Positivity Conjecture of Vasconcelos says that if I is an m-primary ideal

of an analytically unramified Noetherian local ring (R,m) of positive dimension then

e1(I) ≥ 0.

We settle this conjecture for an analytically unramified Noetherian local ring (R,m)

whose integral closure in its total ring of fractions is Cohen-Macaulay as an R-module.

This is done in section 1. A consequence is that the Positivity Conjecture holds for a

2-dimensional complete Noetherian local domain. We also settle the conjecture in case

there is a Cohen-Macaulay local ring (S, n) dominating (R,m) such that λ(S/R) is finite.

We show in section 2 that there is a 2-dimensional analytically unramified Noetherian

local ring constructed from a 1-dimensional simplicial complex for which the normal

Chern number is negative. This simplicial complex is non-pure. On the other hand, we

show that the normal Chern number of the maximal homogeneous ideal of the face ring

of a simplicial complex ∆ of dimension d− 1 is dfd−1 − fd−2, where fi is the number of

i-dimensional faces of ∆. This implies that if ∆ is pure then e1(m) ≥ 0. These results

indicate perhaps that for the Positivity Conjecture to hold, the ring needs to be quasi-

unmixed, i.e. its completion R̂ should be equidimensional.

Recall here that R is said to be unmixed if dim R̂/p = dim R̂ for every p ∈ Ass R̂.

The Negativity Conjecture of Vasconcelos says that if J is a parameter ideal of

an unmixed Noetherian local ring R of positive dimension then e1(J) < 0 if and only if

R is not Cohen-Macaulay.

Vasconcelos [12] settled the conjecture for a domain that is essentially of finite type

over a field. It was settled for a universally catenary Noetherian local domain containing
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a field by Ghezzi, Hong and Vasconcelos in [3]. They also proved that if S is a Cohen-

Macaulay local ring and p is a prime ideal of S such that dimS/p ≥ 2 and S/p is

not Cohen-Macaulay then e1(J) < 0 for every parameter ideal J of S/p. Mandal and

Verma [7] settled the Negativity Conjecture for parameter ideals in certain quotients of

a regular local ring. The conjecture has been settled recently by Ghezzi, Goto, Hong,

Ozeki, Phuong and Vasconcelos [2].

In section 3, we discuss the corresponding question for a finite module M (of positive

dimension) over a Noetherian local ring (R,m) with respect to an ideal I such that

λ(M/IM) < ∞. In this case, if PI(M,X) is the polynomial associated to the function

n 7→ λ(M/In+1M), we write ei(I,M) for ei(PI(M,X)). In particular, we have the co-

efficient e1(I,M), which we call the Chern number of I with respect to M. While the

multiplicity e0(I,M) has been studied extensively, the investigation of the Chern num-

ber e1(I,M), especially over non-Cohen-Macaulay rings, has begun only recently. We

show that if J is a parameter ideal with respect to M then e1(J,M) ≤ 0 and, further,

that e1(J,M) < 0 if depthM = dimR − 1. We also show that if R is Cohen-Macaulay

and M is an unmixed R-module with dimM = dimR then M is Cohen-Macaulay if and

only if e1(J,M) = 0, for one (resp. every) parameter ideal J.

In section 4, we determine some bounds for the normal Chern number of an m-primary

ideal in terms of a minimal reduction J of I. Using Serre’s formula for multiplicity of

a parameter ideal in terms of the Euler characteristic of the Koszul homology, we show

that

e1(J) ≤
∑

n≥1

λ(Jn/JJn−1) + e1(J).

This generalizes a formula of Huckaba and Marley [5] for the integral closure filtration

in a Cohen-Macaulay local ring.

In the final section 5, we find some estimates on the Chern number of a prameter ideal

J in a Noetherian local ring (R,m) assuming that there exists a Cohen-Macaulay local

ring (S, n) dominating (R,m) with λ(S/R) < ∞. We show in this case that µR(S/R) ≤

−e1(J) ≤ λ(S/R), and that if the equalities hold for every parameter ideal J then R is

Buchsbaum.

Acknowledgements: We thank Shiro Goto for useful discussions.

1. The Positivity Conjecture of Vasconcelos

Conjecture 1.1 (The Positivity Conjecture of Vasconcelos). Let I be an m-

primary ideal of an analytically unramified Noetherian local ring (R,m) of positive di-

mension. Then e1(I) ≥ 0.
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In this section, we prove that the conjecture holds for a ring R which satisfies any

one of the following conditions: (i) R is Cohen-Macaulay; (ii) the integral closure of R

is Cohen-Macaulay as an R-module; (iii) R is a complete local domain of dimension 2;

(iv) some other technical conditions. See Corollary 1.3 for details.

Let the notation and assumptions be as in the conjecture.

Put An = In, the integral closure of In in R. Then, the filtration A = {An} is the

integral closure filtration of the I-adic filtration and, as noted in the Introduction, the

analytical unramifiedness of R implies by [9] that A is I-admissible. More generally,

let B = {Bn} be any filtration of ideals of R which is I-admissible. Then the function

n 7→ λ(R/Bn+1) is given, for n ≫ 0, by a polynomial PB ∈ Q[X ]. In this situation, we

write ei(B) for ei(PB). In particular, ei(A) = ei(I).

By a finite cover S/R, we mean a ring extension R ⊆ S such that S is a finite

R-module. Then S is a Noetherian semilocal ring. We say that the finite cover S/R

is birational if R is reduced and S is contained in the total quotient ring of R; that

S/R is of finite length if λ(S/R) is finite; and that S/R is Cohen-Macaulay if S is

Cohen-Macaulay as an R-module.

Theorem 1.2. Let (R,m) be a Noetherian local ring of dimension d ≥ 1. Let S/R be

a finite cover such that at least one of the following two conditions holds: (i) S/R is

of finite length; or (ii) S/R is birational. Let I be an m-primary ideal of R, and let B

be a filtration of R such that B is I-admissible and R ∩ InS ⊆ Bn for n ≫ 0. Then

e1(B) ≥ e1(I, S).

Proof. Let C denote the filtration of R given by Cn = R ∩ InS. For our proof, we need

four length functions and their associated polynomials in Q[X ] as listed in the following

table:

Length function Associated polynomial

λ(R/In+1) PI = PI(X)

λ(S/In+1S) PI,S = PI,S(X)

λ(R/Bn+1) PB = PB(X)

λ(R/Cn+1) PC = PC(X)

By the given conditions on B, there exists a nonnegaive integer k such that

Cn+k ⊆ Bn+k ⊆ In ⊆ Cn ⊆ Bn

for n ≥ 0. Therefore

λ(R/Cn+k) ≥ λ(R/Bn+k) ≥ λ(R/In) ≥ λ(R/Cn) ≥ λ(R/Bn)
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for n ≥ 0, from which it follows that

d = degPI = deg PB = degPC and e0(PI) = e0(PB) = e0(PC). (A)

Now, the inequalities λ(R/Cn) ≥ λ(R/Bn) for n ≥ 0 imply that

e1(PB) ≥ e1(PC). (B)

Assume now that (i) holds, i.e. S/R is of finite length (but may not be birational).

Then, for n ≫ 0, we have InS ⊆ R, so Cn = InS. Therefore, for n ≫ 0, we have

λ(R/Cn) = λ(R/InS) = λ(S/InS)− ν,

where ν = λ(S/R). Consequently, PC = PI,S − ν. Now, by (B), we get

e1(PB) ≥ e1(PC) = e1(PI,S − ν). (C)

If d = 1 then e1(PI,S − ν) = e1(PI,S) + ν ≥ e1(PI,S), while if d ≥ 2 then e1(PI,S − ν) =

e1(PI,S). In either case, e1(PI,S − ν) ≥ e1(PI,S). Therefore, by (C), we get

e1(B) = e1(PB) ≥ e1(PI,S) = e1(I, S),

which proves the assertion under condition (i).

Now, drop the assumption (i) and assume (ii), so that S/R is birational (but may not

be of finite length). Then S/R is annihilated by a nonzero divisor of R, so dimS/R ≤

d− 1. Therefore, since degPC = d by (A), the exact sequence

0 → R/Cn → S/InS → S/(R + InS) → 0

shows that deg(PI,S) = degPC and e0(PI,S) = e0(PC). Combining this with the inequal-

ities PI,S(n) ≥ PC(n) for n ≫ 0, which also result from the exact sequence, we get

e1(PC) ≥ e1(PI,S). Thus, using (B) again, we get

e1(B) = e1(PB) ≥ e1(PC) ≥ e1(PI,S) = e1(I, S).

This proves the assertion under condition (ii). �

Corollary 1.3. Let (R,m) be an anlytically unramified Noetherian local ring of positive

dimension. Then the Positivity Conjecture 1.1 holds for R if R satisfies any one of the

following conditions:

(1) R has a finite Cohen-Macaulay cover which is of finite length or is birational.

(2) R is Cohen-Macaulay (cf. [5]).

(3) dimR = 1.

(4) The integral closure of R is Cohen-Macaulay as a an R-module.

(5) dimR = 2 and all maximal ideals of the integral closure of R have the same height.

(6) R is a complete local integral domain of dimension 2.
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Proof. Since a minimal reduction of an m-primary ideal I gives rise to the same integral

closure filtration as I does, it is enough to prove the conjecture (under any of the above

conditions on R) for a parameter ideal of R. So, let I be a parameter ideal of R, and let

A be the integral closure filtration of the I-adic filtration of R. Then, as noted earlier,

A is I-admissible, and we have e1(I) = e1(A). Thus we have to show that e1(A) ≥ 0

under each of the six condtions.

(1) Let S/R be a finite Cohen-Macaulay cover which is of finite length or is birational.

Since S is integral over R, we have R ∩ InS ⊆ An for every n ≥ 0 by Proposition 1.6.1

of [11]. So, by the above theorem applied with A in place of B, we get e1(A) ≥ e1(I, S).

Since S is Cohen-Macaulay as an R-module and I is a parameter ideal of R, we have

e1(I, S) = 0. Thus e1(A) ≥ 0.

(2) Apply (1) to the trivial cover R/R.

(3) Since R is reduced and one dimensional, it is Cohen-Macaulay, so we can use (2).

For the remaining part of the proof, let R′ be the integral closure of R in its total

quotient ring. Then R′/R is a finite birational cover by [9], and dimR′ = dimR.

(4) Since R′/R is a finite birational cover which is Cohen-Macaulay, we are done by

(1).

(5) dimR′ = 2 implies that R′ is Cohen-Macaulay as a ring. Now, it is easy to see

that the assumption that all maximal ideals of R′ have the same height implies that R′

is Cohen-Macaulay as an R-module. So the assertion follows from (4).

(6) In this case, it is well known that R′ is local, so (5) applies. �

2. The Positivity Conjecture for the Maximal Homogeneous Ideal of a

Face Ring

In this section, we show that the Positivity Conjecture holds for the filtration mn

where m is the maximal homogeneous ideal of the face ring of a pure simplicial complex

∆. Let ∆ be a (d − 1)−dimensional simplicial complex. Let fi denote the number of

i-dimensional faces of ∆ for i = −1, 0, . . . , d − 1. Here f−1 = 1. Let ∆ have n vertices

{v1, v2, . . . , vn}. Let x1, x2, . . . , xn be indeterminates over a field k. The ideal I∆ of ∆ is

the ideal generated by the square free monomials xa1xa2 . . . xam where 1 ≤ a1 < a2 <

· · · < am ≤ n and {va1 , va2 , . . . , vam} /∈ ∆. The face ring of ∆ over a field k is defined as

k[∆] = k[x1, x2, . . . , xn]/I∆.

Lemma 2.1. Let R be a Noetherian ring and I be an ideal of R such that the associated

graded ring G(I) =
⊕∞

n=0 I
n/In+1 is reduced. Then In = In for all n.

Proof. Let R(I) = ⊕n∈ZI
ntn denote the extended Rees ring of I. Since G(I) = R(I)/(u)

where u = t−1, and G(I) is reduced, (u) = P1 ∩ P2 ∩ . . . ∩ Pr for some height one prime
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ideals P1, . . . , Pr of R(I). Therefore (u) is integrally closed in R(I). As PiR(I)Pi
=

(u)R(I)Pi
for all i, R(I)Pi

is a DVR for all i. Since u is regular, Ass(R(I)/(un)) =

{P1, P2, . . . , Pr} for all n ≥ 1. Thus (un) = ∩r
i=1P

(n)
i is integrally closed. Hence In =

(un) ∩R is integrally closed for all n. �

Lemma 2.2. Let ∆ be a (d − 1)−dimensional simplicial complex. Let m denote the

maximal homogeneous ideal of the face ring k[∆] over a field k. Then mn = m
n for all

n. and

e1(m) = e1(m) = dfd−1 − fd−2.

Proof. Since k[∆] is standard graded k−algebra, G(m) = k[∆]. Hence G(m) is reduced

and consequently m is a normal ideal. Moreover, λ(mn/mn+1) = dimk k[∆]n. The Hilbert

Series of the face ring is written as

H(k[∆], t) =
h0 + h1t+ · · ·+ hst

s

(1− t)d
.

Put h(t) = h0 + h1t+ · · ·+ hst
s where the face vector (f1, f0, . . . , fd−1) and the h-vector

are related by the equation

s∑

i=0

hit
i =

d∑

i=0

fi−1t
i(1− t)(d−i)

by [1, Lemma 5.1.8]. Then by [1, Proposition 4.1.9] we have

e1(m) = h′(1) = dfd−1 − fd−2.

�

Theorem 2.3. Let ∆ be a pure simplicial complex. Then

e1(m) = e1(m) ≥ 0.

Proof. Let dim∆ = d− 1. We prove that if ∆ is a pure simplicial complex then dfd−1 ≥

fd−2. Let σ be a facet. For any vi ∈ σ = {v1, . . . , vd}, σ \ {vi} is a (d− 2)−dimensional

face and σ \ {vi} are distinct for all i = 1, . . . , d. Therefore each facet gives rise to d,

(d − 2)-dimensional faces. But different facets may produce same faces of dimension

d − 2. Since ∆ is pure each (d − 2)−dimensional face is contained in a facet. Hence

dfd−1 ≥ fd−2. Therefore e1(m) ≥ 0 by Lemma 2.2 �

Example 2.4. The above theorem indicates that the the maximal homogeneous ideal

of the face ring of a non-pure simplicial complexe may have negative Chern number.

Indeed, consider the simplicial complex ∆n on the vertices {v1, v2, . . . vn+2} where n ≥ 2

and

∆n = {{v1, v2}, v3, . . . , vn+2}.
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Then e1(m) = dfd−1 − fd−2 = −n. Hence we need to add the assumption of quasi-

unmixedness on the ring in Vasaconccelos’ Positivity conjecture.

3. The Negativity Conjecture of Vasconcelos

In this section we show that the Chern number of any parameter ideal with respect to

a finite module over a Noetherian local ring is non-negative. For this purpose, we need

to generalize a result of Goto-Nishida [4, Lemma 2.4] to modules.

Proposition 3.1. Let (R,m) be a Noetherian local ring and let M be a finite R-module

with dimM = 1. If a is a parameter for M then

e1((a),M) = −λ(H0
m(M)).

Proof. Let N = H0
m
(M) and M = M/N . Notice that H0

m
(M) = 0 and dimM =

dimM = 1, which implies depthM = 1. Thus M is Cohen-Macaulay R-module. Con-

sider the exact sequence

0 −→ N −→ M −→ M −→ 0.

By taking tensor product with R/(a)n we get the exact sequence for all n ≥ 1

0 −→ ker φn −→ N/anN
φn
−→ M/anM −→ M/anM −→ 0. (1)

By Artin-Rees Lemma, there is a k such that

anM ∩N = an−k(akM ∩N) ⊆ an−kN ⊆ m
n−kN = 0

for large n. Hence ker φn = 0 for all large n. Thus, for all large n, we get the exact

sequence:

0 −→ N −→ M/anM −→ M/anM −→ 0.

Hence we have λ(N) + λ(M/anM) = λ(M/anM). Since M is Cohen-Macaulay,

λ(M/anM) = e0((a
n),M) = e0((a),M)n = e0((a),M)n.

For large n, λ(M/anM) = ne0((a),M)− e1((a),M). Therefore

e1((a),M) = −λ(H0
m
(M)).

�

Corollary 3.2. Let (R,m) be a Noetherian local ring and M be a finite R-module with

dimM = 1. Let a be a parameter for M . Then e1((a),M) = 0 if and only if M is a

Cohen-Macaulay module.
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In order to investigate the Chern number for finite modules of dimension d ≥ 2 we use

induction on dimension. The principal tool for this purpose is the concept of superficial

element of an ideal with respect to a module. The next theorem is found in Nagata [8,

22.6] for Noetherian local rings. It is proved for modules over Noetherian local rings in

[6].

Nagata’s Theorem: Let (A,m) be a Noetherian local ring and M be a finite A-module

with dimM = d ≥ 2. Let I be an ideal of definition of M and let a be a superficial

element for I with respect to M . Set M = M/aM . Then

PI(M,n) = △PI(M,n) + λ(0 :M a).

In particular,

ei(I,M) =

{
ei(I,M) if 0 ≤ i < d− 1.

ed−1(I,M) + (−1)d−1λ(0 :M a) if i = d− 1.

Lemma 3.3. Let (R,m) be a Noetherian local ring and M be a finite R-module with

dimM = d. Let I be an ideal of definition for M generated by x = x1, . . . , xd which is a

superficial sequence for I with respect to M . If M is not Cohen-Macaulay then M/x1M

is not Cohen-Macaulay.

Proof. Suppose M = M/x1M is Cohen-Macaulay. Then x2, . . . , xd is an M-regular

sequence. Thus λ(M/(x2, . . . xd)M) = e0(x2, . . . xd,M). Since x1 is superficial for M ,

e0(x,M) = e0(x2, . . . , xd,M). Hence λ(M/(x)M) = e0(x,M). Therefore M is Cohen-

Macaulay which is a contradiction. �

Proposition 3.4. Let (R,m) be a Noetherian local ring and M be a finite R-module

with dimM = d and depthM = d − 1. Let J be generated by a system of parameters

for M . Then e1(J,M) < 0.

Proof. Apply induction on d. The d = 1 case is already done. Suppose d = 2. Let

J = (a, b). We may assume that (a, b) is a superficial sequence for J with respect to

M and since depthM = 1, a is M-regular. Let M = M/aM . Then dimM = 1. By

Nagata’s Theorem, we have e1(J,M) = e1(J,M). By Lemma 3.3, M is not Cohen-

Macaulay. Thus e1(J,M) < 0. Therefore e1(J,M) < 0.

Next assume that d ≥ 3 and J = (x1, . . . , xd) where x1, . . . , xd is a superficial sequence

with respect to M . Let M = M/x1M then dimM = d−1. By Nagata’s Theorem we get

e1(J,M) = e1(J,M). If M is not Cohen-Macaulay then M is also not Cohen-Macaulay

and hence by induction hypothesis e1(J,M) < 0, which implies e1(J,M) < 0. �

Theorem 3.5. Let (R,m) be a Noetherian local ring and M be a finite R-module with

dimM = d. Let J be an ideal generated by a system of parameters for M . Then

e1(J,M) ≤ 0.
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Proof. Apply induction on d. The d = 1 case is already proved. Suppose d = 2. Let

J = (x, y) where x, y is a superficial sequence for J with respect to M . Consider the

exact sequence

0 −→ M/(0 :M x)
x

−→ M −→ M/xM −→ 0.

Applying H0
m(.) we get

0 −→ H0
m
(M/(0 :M x))

x
−→ H0

m
(M)

g
−→ H0

m
(M/xM) −→ C −→ 0 (2)

where C = coker g. Consider the exact sequence

0 −→ (0 :M x) −→ M −→ M/(0 :M x) −→ 0.

Applying H0
m
(.) on the exact sequence we get

0 −→ H0
m(0 :M x) −→ H0

m(M) −→ H0
m(M/(0 :M x)) −→ 0.

Since H0
m
(0 :M x) = 0 :M x, we have

λ(0 :M x) = λ(H0
m(M))− λ(H0

m(M/(0 :M x))).

Subtracting λ(H0
m
(M/xM)) from both sides of the above equation we get

λ(0 :M x)− λ(H0
m
(M/xM)) = λ(H0

m
(M))− λ(H0

m
(M/xM)) − λ(H0

m
(M/(0 :M x))).

From the exact sequence (2) we get

λ(H0
m
(M/(0 :M x)))− λ(H0

m
(M)) + λ(H0

m
(M/xM) = λ(C).

Therefore we have λ(0 :M x)− λ(H0
m
(M/xM) = −λ(C). By Theorem ??, we get

e1(J,M) = e1(J,M)− λ(0 :M x).

By Proposition 3.1, e1(J,M) = −λ(H0
m
(M/xM)). Therefore

e1(J,M) = λ(0 :M x)− λ(H0
m(M/xM)) = −λ(C) ≤ 0.

Let d ≥ 3 and a ∈ J be a superficial for J with respect to M . Since e1(J,M) =

e1(J/(a),M/aM), we are done by induction. �

Proposition 3.6. Let (R,m) be a Noetherian local ring and M be a finite R-module

with dimM = d ≥ 2. Let J be a parameter for M . If M/H0
m(M) is Cohen-Macaulay

then e1(J,M) = 0.



CHERN NUMBER OF FILTRATIONS 11

Proof. Let W = H0
m
(M) and M = M/W . Since λ(W ) < ∞, for n >> 0, JnM ∩W = 0.

We have for large n,

HJ(M,n) = λ(M/JnM)

= λ(M/JnM +W )

= λ(M/JnM)− λ(JnM +W/JnM)

= λ(M/JnM)− λ(W/JnM ∩W )

= HJ(M,n)− λ(W ).

Therefore

PJ(M,n) = PJ(M,n)− λ(W ).

Hence e1(J,M) = e1(J,M). SinceM is Cohen-Macaulay, e1(J,M) = 0. Thus e1(J,M) =

0. �

Example 3.7. Let S = k[|X, Y, Z|] be a power series ring over a field k and J =

(XZ, Y Z, Z2). Put R = S/J = k[[x, y, z]]. Then dimR = 2 and depthR = 0. Consider

the parameter ideal I = (x, y). We calculate the Hilbert coefficients of I. Let ‘−′ denote

the image in R = R/H0
m
(R) where m is the maximal ideal of R. Notice that for large n,

H0
m(R) =

J : (X, Y, Z)n

J
=

(J : Xn) ∩ (J : Xn−1Y ) ∩ . . . ∩ (J : Y n)

J
=

(Z)

J
.

Therefore R/H0
m(R) = k[|X,Y,Z|]

J
/ (Z)

J
= k[|X, Y |] which is Cohen-Macaulay. Thus e1(x, y) =

e1(x, y) = 0. Notice that e2(I) = e2(I) − λ(H0
m
(R)). Since e2(I) = 0, e2(I) =

λ(H0
m(R)) = 1.

Example 3.8. Let S = Q[[x, y, z, u]], be the power series ring overQ. Let φ : Q[[x, y, z, u]] −→

Q[|x, t|] defined by

φ(x) = x, φ(y) = t2, φ(z) = t5 and φ(u) = t7.

Then

I1 := kerφ = (y6 − uz, z3 − y4u, u− yz)

is a height 2 prime ideal. Let χ : Q[[x, y, z, u]] −→ Q[|u, t|] be defined by

χ(x) = t2, χ(y) = t3, χ(z) = t4 and χ(u) = u.

Then

I2 := kerχ = (y2 − xz, x2 − z)

is also a height 2 prime ideal. Put I = I1 ∩ I2 and R = S/I. Then dimR = 2 and R is

not Cohen-Macaulay. The ideal J = (x, u)R is a parameter ideal in R and e1(J) = −3.

This example has been calculated using Cocoa. We thank M. Rossi for sending this
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CoCoA procedure to find Hilbert polynomial. The code is given below.

Alias P:=$contrib/primary;

Use S ::= Q[x, y, z, u];

I1 := Ideal(y6 − uz, z3 − y4u, u− yz);

I2 :=Ideal(y2 − xz, x2 − z);

I := Intersection(I1, I2);

I;

Ideal(y3z − xyz2 − y2u + xzu, x2yz − yz2 − x2u + zu, x2y3u2 − x2z4 − xyz2u2 + z5 −

y2u3+xzu3, y5u2−y2z4+xz5−yz3u2−xy2u3+ z2u3, y6u−y2z3u−xy3u2−y2z3+xz4+

yz2u2, x2y4u−xy2z2u−x2z3−y3u2+xyzu2+ z4, x2z5−x2y2u3− z6+y2zu3, y7−xyz4−

xy4u+xz3u−y2z2+xz3, x2y6−y2z4−y5u+yz3u−x2zu+z2u, y2z5−xz6−y4u3+xy2zu3)

Q := Ideal(x, u) + I;

Dim(S/Q);

0

J := I1 + I2;

Dim(S/J);

0

PS := P.PrimaryPoincare(I, Q); PS;

(12− 3x)/(1− x)2

Hilbert(S/J);

H(0) = 1, H(1) = 4, H(2) = 7, H(3) = 5, H(t) = 0 for t ≥ 4.

Recently the Negativity Conjecture has been settled in [2] for unmixed local rings.

We generalize this to finite unmixed modules over Cohen-Macaulay local rings.

Definition 3.9. Let (R,m) be a Noetherian local ring of dimension d. A finite R−module

M is called unmixed if for each associated prime P of itsm-adic completion M̂, dimR/P =

d.

We use Nagata’s technique of idealization [8]. Let M be an R−module. Let R∗ =

R⊕M be the direct sum of the R−modules R and M. Define multiplication in R∗ by

(r,m)((s, n) = (rs, rn+ms) for all r, s ∈ R;m,n ∈ M.

In the next lemma we prove that the associated primes of the idealization R∗ come

from those of R and M.

Lemma 3.10. Let (R,m) be a local ring and M be a finite R-module. Let A = R ∗M

be the idealization of M over R. Then

AssA ⊆ {P ∗M | P ∈ AssR ∪ AssR M}.
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Moreover if P ∈ AssR M then P ∗M ∈ AssA.

Proof. Let P ∈ SpecA then P ⊇ 0 ∗M as (0 ∗M)2 = 0. Hence P/(0 ∗M) ∈ Spec(A/0 ∗

M) = SpecR. Therefore there exists a prime P ∈ R such that P/0 ∗M = P ∗M/0 ∗M

which implies P = P ∗M. Thus every prime ideal of A is of the form P ∗M where P is

a prime ideal of R.

Let P ∗ M ∈ AssA then P = (0 : (r,m)), where r ∈ R and m ∈ M . Let a ∈ P

then (a, 0) ∈ P ∗ M which implies that (ar, am) = (0, 0). Thus a ∈ (0 : r) ∩ (0 : m).

Hence P ⊆ (0 : r) ∩ (0 : m). Let b ∈ (0 : r) ∩ (0 : m) then (b, 0)(r,m) = (0, 0) which

implies (b, 0) ∈ P ∗ M . Thus b ∈ P . Hence P = (0 : r) ∩ (0 : m). Therefore either

P = (0 : r) or P = (0 : m). Hence P ∈ AssR ∪ AssR M . Therefore AssA ⊆ {P ∗M |

P ∈ AssR ∪ AssR M}.

Let P ∈ AssR M then P = (0 : m) where m ∈ M . Want to show that P ∗ M =

(0 : (0, m)). Let (a, n) ∈ P ∗ M . Since (a, n)(0, m) = (0, am) = (0, 0) therefore

(a, n) ∈ (0 : (0, m)). Conversely if (b,m′) ∈ (0 : (0, m)) then b ∈ (0 : m). Thus

P ∗M = (0 : (0, m)) and hence P ∗M ∈ AssA. �

Theorem 3.11. Let (R,m) be a Cohen-Macaulay local ring and let M be an unmixed

module with dimR = dimM = d. If e1(J,M) = 0 for some parameter ideal J for M .

Then M is is a Cohen-Macaulay R−module.

Proof. Let A = R ∗ M be the idealization of M over R. Then dimA = dimR. Note

that Â = R̂ ∗M = R̂ ∗ M̂ . If P ∗ M̂ ∈ Ass Â, then P ∈ Ass R̂ ∪ Ass M̂ by Lemma 3.10.

Since R is Cohen-Macaulay and M is unmixed dim R̂/Q = d for all Q ∈ Ass R̂∪Ass M̂.

Therefore dim Â/(P ∗ M̂) = dim R̂/P = d. Hence A is unmixed. Consider the exact

sequence of R-modules

0 −→ M −→ A −→ R −→ 0. (3)

Tensoring the above sequence with R/Jn we get the following exact sequence

0 −→ M/JnM −→ A/JnA −→ R/Jn −→ 0.

Since the length function is additive, we get

λ(A/JnA) = λ(M/JnM) + λ(R/Jn).

Hence PJ(A, n) = PJ(M,n) +PJ(R, n). Equating the coefficients of the Hilbert polyno-

mials we get

e1(J,A) = e1(J,M) + e1(J).

Since R is Cohen-Macaulay e1(J) = 0. Thus e1(J,A) = 0. Hence by [2, Theorem 2.1] A

in Cohen-Macaulay ring. Applying depth lemma on the exact sequence (3) we get that

depthM ≥ min{depthA, depthR + 1}
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which implies depthM = d. Thus M is Cohen-Macaulay. �

4. Some Bounds for the Chern Number

In this section we find an upper bound for the Chern number of an admissible filtration

F . This bound yields the Huckaba-Marley bound in Cohen-Macaulay case. We use Rees

algebra of F and Serre’s multiplicity formula in terms of lengths of Koszul homology

modules.

Let A = ⊕n≥0An be a standard graded algebra with A0 = (R,m) be a local ring.

Let M = ⊕n≥0Mn be a finitely generated graded A−module of dimension d such that

λ(Mn) < ∞ for all n ≥ 0. Let PM(x) be the polynomial corresponding to the function

HM(n) = λ(Mn). Write

PM(x) =
d−1∑

i=0

(−1)iei(M)

(
x+ d− i

d− i

)
.

Lemma 4.1. Let A = ⊕n≥0An be a standard graded algebra with A0 = (R,m) be a local

ring and let M = ⊕n≥0Mn be a finitely generated graded A−module of dimension d such

that λ(Mn) < ∞ for all n ≥ 0. Then

e0(A1,M) = e0(M).

Proof. Let n0 be the largest degree of a homogeneous set of generators of M as an

A-module. Then

Mn0+1 = An0+1M0 + An0
M1 + · · ·+ A1Mn0

.

Since A is standard graded Ar = (A1)
r for all r ≥ 1. Therefore we have

Mn0+1 = (A1)
n0+1M0 + (A1)

n0M1 + . . .+ (A1)Mn0
= A1Mn0

.

Hence for all k ≥ 1, Mn0+k = (A1)
kMn0

. Let H(n) = λ(Mn). Since

M

(A1)nM
=

⊕r≥0Mr

⊕r≥0An
1Mr

= M0 ⊕ · · · ⊕Mn−1 ⊕
Mn

An
1M0

⊕ · · · ⊕
Mn+n0

An
1Mn0

,

we get

λ(M/(A1)
nM) =

n−1∑

i=0

H(i) +

n0∑

j=0

λ

(
Mn+j

An
1Mj

)
.

Since the 2nd sum is a finite sum for large n it is a polynomial function of degree at

most d− 1. Hence λ(M/An
1M) is a polynomial function of degree d since

∑n−1
i=0 H(i) is

a polynomial function of degree d. Thus e0(A1,M) = e0(M). �
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Theorem 4.2. Let (R,m) be a d-dimensional local ring and let J be a parameter ideal

of R. Let F = {Jn} be a J−admissible filtration. Let A = R[Jt] = ⊕n≥0J
ntn and

B = R(F) = ⊕n≥0Jnt
n and M = B/A = ⊕n≥1Jn/J

n. If ht(A :A B) = 1 then

e1(F) ≤ e1(J) +
∑

n≥1

λ(Jn/JJn−1).

Proof. We may assume that R is complete. Since F is an admissible filtration B is a

finitely generated A-module and hence M is also a finitely generated A-module. Since

ht(A :A B) = 1, dimM = d. Note that

λ(Mn) = λ(Jn/J
n)

= λ(R/Jn)− λ(R/Jn)

= [e1(F)− e1(J)]

(
n+ d− 2

d− 1

)
+ lower degree terms.

Therefore λ(Mn) is a polynomial for large n of degree d − 1 with leading coefficient

e1(F)− e1(J). Note that M/JtM = ⊕n≥1Jn/JJn−1 and for large n, Jn = JJn−1. Thus

λ(M/JtM) < ∞. By Lemma 4.1, λ(M/JntnM) is a polynomial for large n of degree d

and e0(Jt,M) = e1(F)− e1(J). By Serre’s Theorem we have

e0(Jt,M) =

d∑

i=0

(−1)iλ(Hi(Jt,M))

where Hi(Jt,M) is the ith Koszul homology of M with respect to Jt. Note that

H0(Jt,M) = M/JtM =
⊕

n≥1

Jn/JJn−1.

Let χ1 =
∑d

i=1(−1)i+1λ(Hi(Jt,M)). By [1, Theorem 4.7.10] χ1 ≥ 0. Hence

e1(F)− e1(J) ≤
∑

n≥1

λ(Jn/JJn−1).

Thus we have

e1(F) ≤ e1(J) +
∑

n≥1

λ(Jn/JJn−1).

�

Corollary 4.3. Let (R,m) be a d-dimensional analytically unramified local ring and let

J be a parameter ideal of R. Let F = {Jn} denote the integral closure filtration. Let

A = R[Jt] = ⊕n≥0J
ntn and B = R(F) = ⊕n≥0Jntn and M = B/A = ⊕n≥1Jn/Jn. If

ht(A :A B) = 1 then

e1(J) ≤
∑

n≥1

λ(Jn/JJn−1) + e1(J).
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Proof. Since R is analytically unramified F = {Jn} is a J-admissible filtration. Hence

by Theorem 4.2, we have

e1(J) ≤
∑

n≥1

λ(Jn/JJn−1) + e1(J).

�

Corollary 4.4 (Huckaba-Marley). [5, Theorem 4.7] Let (R,m) be a Cohen-Macaulay

local ring of dimension d, let J be a parameter ideal of R and let F = {Jn} be a J-

admissible filtration. Then

e1(F) ≤
∑

n≥1

λ(Jn/JJn−1).

Proof. Since R is Cohen-Macaulay e1(J) = 0. Hence by Theorem 4.2, we have

e1(F) ≤
∑

n≥1

λ(Jn/JJn−1).

�

5. Some Further Estimates for the Chern Number

In this section, we provide some estimates for the Chern number in terms of a cover

S/R of finite length such that S is local.

Let (R,m) be a Noetherian local ring of dimension d ≥ 1, and let S/R be a cover of

finite length such that S is local. Let n be the maximal ideal of S, let ρ = [S/n : R/m],

and let ν = λ(S/R). Let J be a parameter ideal of R. Then JS is a parameter ideal of

S.

Let PJ(X) and PJS(X) be the polynomials associated to the functions n 7→ λ(R/Jn+1)

and n 7→ λS(S/J
n+1S), respectively.

For a finitely generated R-module M, let µR(M) denote the minimum number of

generators of M.

Proposition 5.1. (1) For every n ≥ 1 we have

µR(S/R)

(
n+ d− 1

d− 1

)
≤ λ(S/(R + JS))

(
n + d− 1

d− 1

)

≤ λ(JnS/Jn)

≤ λ(S/R)

(
n + d− 1

d− 1

)
.
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(2) The function n 7→ λ(Jn+1S/Jn+1) is of polynomial type with associated polynomial

PJ(X) + ν − ρPJS(X), and further,

PJ(X) + ν − ρPJS(X) = −e1(J)

(
X + d

d− 1

)
+ f(X) with deg f(X) ≤ d− 2.

(3) e0(J) = ρeo(JS).

(4) µR(S/R) ≤ λ(S/(R + JS)) ≤ −e1(J) ≤ λ(S/R).

(5) If µR(S/R) = λ(S/R) (equivalently, if mS ⊆ R) then

e1(J) = −µR(S/R) = −λ(S/R)

and

λ(JnS/Jn) = −e1(J)

(
n + d− 1

d− 1

)
for every n ≥ 1.

Proof. (1) The first inequality holds trivially because

µR(S/R) = µR(S/(R + JS)) ≤ λ(S/(R + JS)).

To prove the second inequality, let m = λ(S/(R+ JS)), and choose y1, . . . , ym ∈ S such

that if Mi = R + JS + (y1, . . . , yi)R then S = Mm and λ(Mi/Mi−1) = 1 for every i.

Let J = (x1, . . . , xd)R. For a fixed n, let s =
(
n+d−1
d−1

)
, and let α1, . . . , αs be all the

monomials of degree n in x1, . . . , xd. Then Jn = (α1, . . . , αs)R. We have to show that

ms ≤ λ(JnS/Jn).

Since S = R + JS + (y1, . . . , ym)R, we have JnS = Jn + Jn+1S + Jn(y1, . . . , ym)R.

Let Ni = Jn + Jn+1S + Jn(y1, . . . , yi)R. Then N0 = Jn + Jn+1S and Nm = JnS, and we

have the sequence N0 ⊆ N1 ⊆ · · · ⊆ Nm. So it is enough to prove that λ(Ni/Ni−1) ≥ s

for every i ≥ 1.

For a fixed i ≥ 1 and for 0 ≤ j ≤ s, let Pj = Ni−1 + (α1, . . . , αj)yi. Then P0 = Ni−1

and Ps = Ni and we have the sequence P0 ⊆ P1 ⊆ · · · ⊆ Ps. So it is enough to prove

that all the inclusions in this sequence are proper.

Suppose, to the contrary, that Pj = Pj+1 for some j ≤ s− 1. Then

αj+1yi ∈ Pj = Jn + Jn+1S + Jn(y1, . . . , yi−1) + (α1, . . . , αj)yi.

So we can write

αj+1yi = β +

s∑

k=1

akαk +

s∑

k=1

bkαk +

j∑

k=1

ckyiαk

with β ∈ Jn+1S, ak, ck ∈ R and bk ∈ (y1, . . . yi−1)R. Since JS is a parameter ideal in the

Cohen-Macaulay local ring S, grJS(S) is a polynomial ring in the images of x1, . . . , xd.

Therefore, since α1, . . . , αs are distinct monomials in x1, . . . , xd, the coefficient of each αk

on the two sides of the above equality are congruent modulo JS. In particular, looking
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at the coefficient of αj+1, we get yi ∈ R + JS + (y1, . . . , yi−1)R. This contradicts the

condition λ(Mi/Mi−1) = 1, so the second inequality of (1) is proved.

To prove the third inequality, choose a sequence

R = M0 /
⊆ M1 /

⊆ · · ·
/
⊆ Mν = S

of R-submodules such that Mi/Mi−1
∼= R/m for every i ≥ 1. Then each Mi = Rzi+Mi−1

for some zi ∈ S such that mzi ⊆ Mi−1. For a fixed n, we have Jn = (α1, . . . , αs)R as

above. Therefore

JnMi = Jnzi + JnMi−1 = (α1zi, . . . , αszi) + JnMi−1.

Further, mαjzi ⊆ Mi−1αj ⊆ JnMi−1. Therefore λ(JnMi/J
nMi−1) ≤ s for every i ≥ 1.

Now, the sequence

Jn = JnM0 ⊆ JnM1 ⊆ · · · ⊆ JnMν = JnS

shows that λ(JnS/Jn) ≤ νs = λ(S/R)
(
n+d−1
d−1

)
.

This completes the proof of (1).

(2) From the commutative diagram

Jn+1S // S

Jn+1 //

OO

R

OO

of inclusions, we get

λ(Jn+1S/Jn+1) = λ(R/Jn+1) + ν − λ(S/Jn+1S)

= λ(R/Jn+1) + ν − ρλS(S/J
n+1S).

Therefore the function n 7→ λ(Jn+1S/Jn+1) is of polynomial type with associated

polynomial

Q(X) := PJ(X) + ν − ρPJS(X).

Since this function is squeezed between two polynomial functions of the same degree

d− 1 appearing in (1), we get

Q(X) = e

(
X + d− 1

d− 1

)
+ f(X) (∗)

with λ(S/(R+JS)) ≤ e ≤ λ(S/R) and deg f(X) ≤ d−2. Since JS is a parameter ideal

in the Cohen-Macaulay local ring S, we have

PJS(X) = e0(JS)

(
X + d

d

)
.
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Substituting the above expressions for PJS(X) and Q(X) in the formula

Q(X) = PJ(X) + ν − ρPJS(X),

we get

Q(X) = −e1(J)

(
X + d− 1

d− 1

)
+ f(X)

with deg f(X) ≤ d− 2, as required.

(3) We have degPJ(X) = d = degPJS(X). Therefore, since deg(PJ(X)−ρPJS(X)) ≤

d− 1 by (2), we get e0(J) = ρeo(JS).

(4) This is immediate from (1) and (2).

(5) This is immediate from (1) and (4). �

Corollary 5.2. In the above set up, assume further that S is Cohen-Macaulay. If

µR(S/R) = λ(S/R) (equivalently, if mS ⊆ R) then

e1(J) = −µR(S/R) = −λ(S/R)

for every parameter ideal J of R. Further, in this case R is Buchsbaum.

Proof. The first part is immediate from the above proposition. Taking n = 0 in the

commutative square appearing in the above proof, we get

λ(S/R) + λ(R/J) = λ(S/JS) + λ(JS/J).

Since JS is a parameter ideal in the Cohen-Macaulay local ring S, we have λS(S/JS) =

e0(JS). Therefore λ(S/JS) = ρe0(JS) = e0(J) by the above proposition. Further,

taking n = 1 in part (5) of the above proposition, we get

λ(JS/J) = −e1(J)d = λ(S/R)d = νd.

Substituting these values in the formula displayed above, we get λ(R/J)− e0(J) = (d−

1)ν. Thus λ(R/J)−e0(J) is independent of the parameter ideal J, so R is Buchsbaum. �

Example 5.3. These are examples to show that for d = 2 the Chern number e1(J)

can attain every value in the range given by Proposition (6.1). More precisely, given

any integers r, p with 1 ≤ r ≤ p, there exists a Noetherian local ring R of dimension

2, a Cohen-Macaulay cover S/R of finite length and a parameter ideal J of R such

that µR(S/R) = 1, λ(S/R) = p and e1(J) = −r. In fact, it can be verified by a direct

computation that these equalities hold in the following situation: R = k[[t2, t3, x, txp ]] ⊆

S = k[[t, x]] and J = (t2, xr)R, where k is a field and t and x are indeterminates.
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