

On infinitesimal σ -fields generated by random processes

VIVEK S BORKAR

Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India

MS received 18 October 1992; revised 11 June 1993

Abstract. It is proved that the infinitesimal look-ahead and look-back σ -fields of a random process disagree at atmost countably many time instants.

Keywords. Random processes; look-ahead σ -field; look-back σ -field; Markov processes.

Let $X(t), t \geq 0$, be a Polish space-valued random process defined on a probability space (Ω, \mathcal{F}, P) , where \mathcal{F} is the P -completion of a countably generated σ -field \mathcal{F}_0 . Let $\xi(t+)$ (the 'look-ahead' σ -field at t) and $\xi(t-)$ (the 'look-back' σ -field at t) denote the P -completions of $\cap_{s>t} \sigma(X(y), t \leq y \leq s)$ and $\cap_{s<t} \sigma(X(y), s \leq y \leq t)$ respectively. The aim of this note is to prove the following fact:

Theorem 1. $\xi(t+) = \xi(t-)$ for all but at most countably many $t \geq 0$.

We shall prove this through a sequence of lemmas. Let $\{A_n, n \geq 1\}$ be a dense collection of sets in \mathcal{F}_0 which generates \mathcal{F}_0 .

Lemma 1. The space of all P -complete sub- σ -fields of \mathcal{F} forms a metric space under the metric

$$d(\mathcal{G}_1, \mathcal{G}_2) = \sum_n 2^{-n} E[|P(A_n/\mathcal{G}_1) - P(A_n/\mathcal{G}_2)|].$$

The proof is easy.

Remark. This topology was first introduced in Cotter [3].

For $t \geq 0$, let

$$\mathcal{F}(t) = \sigma(X(s), 0 \leq s \leq t), \quad \mathcal{F}(t+) = \bigcap_{s>t} \mathcal{F}(s), \quad \mathcal{F}(t-) = \bigvee_{s<t} \mathcal{F}(s),$$

all completed with respect to P . For $n \geq 1, t \geq 0$, define

$$h_n(t) = E[(E[I_{A_n}/\mathcal{F}(t)])^2].$$

Lemma 2. (i) $t \rightarrow h_n(t)$ is bounded nondecreasing for all n .

(ii) $\lim_{s \downarrow t} h_n(s) = E[(E[I_{A_n}/\mathcal{F}(t+)])^2]$.

(iii) $\lim_{s \uparrow t} h_n(s) = E[(E[I_{A_n}/\mathcal{F}(t-)])^2]$.

Proof. (i) follows from the conditional Jensen's inequality and (ii), (iii) follow from the convergence theorems for regular martingales and reversed martingales [2]. \square

From (i) above, it follows that each $h_n(\cdot)$ has at most a countable set of points of discontinuity. Let $D \subset [0, \infty)$ be the at most countable set of points where one or more of the $h_n(\cdot)$'s is discontinuous.

Lemma 3. For $t \notin D$, $\mathcal{F}(t+) = \mathcal{F}(t-)$.

Proof. For $t \notin D$, Lemma 2 (ii), (iii) imply that

$$E[(E[I_{A_n}/\mathcal{F}(t+)])^2] = E[(E[I_{A_n}/\mathcal{F}(t-)])^2], \quad n \geq 1.$$

Thus

$$E[(E[I_{A_n}/\mathcal{F}(t+)] - E[(E[I_{A_n}/\mathcal{F}(t-)])^2])^2] = 0, \quad n \geq 1,$$

implying $E[I_{A_n}/\mathcal{F}(t+)] = E[I_{A_n}/\mathcal{F}(t-)]$ a.s., $n \geq 1$. The claim follows from Lemma 1. \square

COROLLARY 1

$\xi(t+) \subset \xi(t-)$ for all but at most countably many t .

Proof. Let $\{r_m\}$ be an enumeration of rationals in $[0, \infty)$. Define $\mathcal{F}^m(t)$, $\mathcal{F}^m(t+)$, $\mathcal{F}^m(t-)$, $h_n^m(t)$ as in (1)–(4) resp. with $X(r_m + \cdot)$ replacing $X(\cdot)$, $m \geq 1$. The foregoing results hold for each $X(r_m + \cdot)$ as well. For every rational $r \geq 0$, let

$$D_r = \{t > r \mid P\text{-completion of } \bigvee_{\varepsilon > 0} \sigma(X_s, r \leq s \leq t - \varepsilon) \neq$$

$$P\text{-completion of } \bigcap_{\varepsilon > 0} \sigma(X_s, r \leq s \leq t + \varepsilon)\},$$

$$\bar{D} = \cup D_r.$$

Then by Lemma 3, D_r and therefore \bar{D} is at most countable. Fix $t \notin \bar{D}$ and let $\{r_{m(i)}\}$ be a collection of rationals increasing to t . Then for $i \geq 1$,

$$\bigvee_{\varepsilon > 0} \sigma(X_s, r_{m(i)} \leq s \leq t - \varepsilon) = \bigcap_{\varepsilon > 0} \sigma(X_s, r_{m(i)} \leq s \leq t + \varepsilon)$$

on P -completion. Thus

$$\xi(t+) \subset P\text{-completion of } \bigvee_{\varepsilon > 0} \sigma(X_i, r_{m(i)} \leq s \leq t - \varepsilon), \quad i \geq 1,$$

and hence

$$\xi(t+) \subset P\text{-completion of } \bigcap_i \bigvee_{\varepsilon > 0} \sigma(X_s, r_{m(i)} \leq s \leq t - \varepsilon) \subset \xi(t-).$$

The claim follows. \square

Proof of Theorem 1. It suffices to consider $t \in [0, T]$ for some finite $T > 0$. Applying the above corollary to the process $X(T-t)$, $t \in [0, T]$, we conclude that $\xi(t-) \subset \xi(t+)$ except at most countably many t . Combine this with the corollary to conclude. \square

COROLLARY 2

If $X(\cdot)$ is a Markov process, then $\xi(t+) = \xi(t-) = \xi(t)$ (\triangleq the P -completion of $\sigma(X(t))$), at all but at most countably many t .

Proof. Note that $\xi(t) \subset \xi(t+) \cap \xi(t-)$ for all $t \geq 0$. Let $t \geq 0$ be such that $\xi(t+) = \xi(t-)$. Since $X(\cdot)$ is Markov, $\xi(t+)$, $\xi(t-)$ are conditionally independent given $X(t)$. Thus $\xi(t+)$ is conditionally independent of itself given $X(t)$, implying $\xi(t+) \subset \xi(t)$. Similarly $\xi(t-) \subset \xi(t)$. \square

It is conjectured that the conclusions of Corollary 2 hold even in absence of the Markov property. If true, this result will have important implications in stochastic control theory [1]. We conclude with an example to show that one cannot improve on Theorem 1 in general.

Example Let $\Omega = [0, 1]^\infty$, \mathcal{F}_0 = the product Borel σ -field, P = the product Lebesgue measure and \mathcal{F} the product σ -field completed with respect to P . Let $w = (w_1, w_2, \dots)$ denote a typical element of Ω . Let $\{r_n\}$ be an enumeration of rationals in $(0, 1)$. Define an R^∞ -valued process $X(t) = [X_1(t), X_2(t), \dots]$, $t \in [0, 1]$ as follows: $[X_1(t), X_2(t), \dots]$ evaluated at the sample point $[w_1, w_2, \dots]$ is given by

$$X_{2i}(t) = w_{2i}[(t - r_i)^+], i \geq 1,$$

$$X_{2i-1}(t) = w_{2i-1}[(t - r_i)^-], i \geq 1,$$

for $t \in [0, 1]$. Then it is easy to see that $\xi(t+)$, $\xi(t-)$, $\xi(t)$ are the P -completions of $\Pi_n G_n^+(t)$, $\Pi_n G_n^-(t)$, $\Pi_n G_n^0(t)$ respectively, where $G_n^+(t)$, $G_n^-(t)$, $G_n^0(t)$ are as described below. Let \mathfrak{B} = the Borel σ -field of $[0, 1]$, β = the trivial σ -field $\{\phi, [0, 1]\}$ on $[0, 1]$. Then for $n \geq 1$,

$$G_{2n}^+(t) = \mathfrak{B} \text{ if } t \geq r_n, = \beta \text{ otherwise,}$$

$$G_{2n-1}^+(t) = \mathfrak{B} \text{ if } t < r_n, = \beta \text{ otherwise,}$$

$$G_{2n}^-(t) = \mathfrak{B} \text{ if } t > r_n, = \beta \text{ otherwise,}$$

$$G_{2n-1}^-(t) = \mathfrak{B} \text{ if } t \leq r_n, = \beta \text{ otherwise,}$$

$$G_{2n}^0(t) = \mathfrak{B} \text{ if } t > r_n, = \beta \text{ otherwise,}$$

$$G_{2n-1}^0(t) = \mathfrak{B} \text{ if } t < r_n, = \beta \text{ otherwise.}$$

It follows that $\xi(t+) = \xi(t-) = \xi(t)$ for t irrational in $[0, 1]$ whereas $\xi(t+) \neq \xi(t-) \neq \xi(t)$ for $t \in \{r_n, n \geq 1\}$.

Remark: One may replace $X(\cdot)$ above by a real valued process without altering the conclusions by virtue of the isomorphism theorem for Polish spaces (Theorem 2.12, p. 14, of [4]).

Acknowledgements

This work is supported by grant No. 26/01/92-G from the Department of Atomic Energy, Government of India.

References

- [1] Borkar V S, On extremal solutions to stochastic control problems II. *Appl. Math. Optim.* **28** (1993) 49–56
- [2] Chow Y S and Teicher H, *Probability theory – independence, interchangeability, martingales* (New York: Springer Verlag) (1978)
- [3] Cotter K D, Similarity of information and behaviour with a pointwise convergence topology, *J. Math. Econ.* **15** (1986) 25–38
- [4] Parthasarathy K R, *Probability measures on metric spaces* (New York: Academic Press) (1967)