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SUMMARY. We give a simpler proof of an earlier result giving an asymptotic estimate for the
number of integral matrices in large balls whose characteristic polynomial is a given monic integral
irreducible polynomial. The proof uses a result on equidistributions of multi-dimensional polyno-
mial trajectories on SLn(R)/SLn(Z) which is a generalization of Ratner’s theorem on equidistri-
butions of unipotent trajectories.

We also compute the exact constants appearing in the above mentioned asymptotic estimates.

1. Introduction

Let P be a monic polynomial of degree n (n ≥ 2) with integral coefficients which
is irreducible over Q. Let

VP = {X ∈ Mn(R) : det(λI −X) = P (λ)}.

Since P has n distinct roots, VP is the set of real n × n-matrices X such that the
roots of P are the eigenvalues of X. Let VP (Z) denote that set of matrices in VP

with integral entries. Let BT denote the ball in Mn(R) centred at 0 and of radius
T with respect to the Euclidean norm: ‖(xij)‖ = (

∑
i,j x2

ij)
1/2. We are interested

in estimating, for large T , the number of integer matrices in BT with characteristic
polynomial P .

Theorem 1.1 (Eskin, Mozes and Shah (1996)). There exists a constant CP > 0
such that

lim
T→∞

#(VP (Z) ∩BT )
Tn(n−1)/2

= CP .

A formula for CP , in the general case, is given in Theorem 5.1. Under an
additional hypothesis, the formula for CP is simpler and it can be given as follows
(Cf. Eskin, Mozes and Shah (1996)):
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Theorem 1.2. Let α be a root of P and K = Q(α). Suppose that Z[α] is the
integral closure of Z in K. Then

CP =
2r1(2π)r2hR

wD1/2
· πm/2/Γ(1 + (m/2))∏n

s=2 π−s/2Γ(s/2)ζ(s)
,

where h = ideal class number of K, R = regulator of K, w = order of the group of
roots of unity in K, D = discriminant of K, r1 (resp. r2) = number of real (resp.
complex) places of K, and m = n(n− 1)/2.

Remark 1.1. The three components of the above formula for CP are volumes
of certain standard entities in geometry of numbers (with respect to the canonical
volume forms on the respective spaces):

Vol(J0(K)/K×) =
2r1(2π)r2hR

wD1/2
,

Vol(Bm) = πm/2/Γ(1 + (m/2)),

Vol(SMn) =
n∏

s=2

π−s/2Γ(s/2)ζ(s).

Here J0(K)/K× = the group of principal ideals of K modulo K× (see Koch (1997),
Chap. 1, §5.4), Bm = the unit ball in Rm, and SMn = the determinant one surface in
the Minkowski fundamental domain Mn in the space of n×n real positive symmetric
matrices with respect to the action of GLn(Z) (see Terras (1988, Sect. 4.4.4)).

Remark 1.2. The hypothesis of Theorem 1.2 is satisfied if α is a root of unity
(see Koch (1997), Theorem 1.61).

The conclusion of Theorem 1.2 was obtained in Eskin, Mozes and Shah (1996)
under a further hypothesis that all roots of P are real.

In Eskin, Mozes and Shah (1996), the proof of Theorem 1.1 is based on the fol-
lowing: (1) the existence of limits of large translates of certain algebraic measures
as proved in Eskin, Mozes and Shah (1997); (2) showing that such limiting distribu-
tions are actually algebraic measures, using Ratner’s description of ergodic invariant
measures of unipotent flows Ratner (1991a); and (3) the verification that a certain
condition, called the non-focusing condition, holds in the case of Theorem 1.1 (See
Ratner, 1995).

A main purpose of this article is to provide a simple and direct proof of this the-
orem using the following result on equidistributions of ‘polynomial like’ trajectories
on SLn(R)/SLn(Z):

Theorem 1.3. Let Γ be a lattice in SLn(R), µ the SLn(R)-invariant probability
measure on SLn(R)/Γ, and x ∈ SLn(R)/Γ. Let

Θ = (Θij)n
i,j=1 : Rm → SLn(R)

be a map such that each Θij is a real valued polynomial in m variables, and Θ(0) = I,
the identity matrix. Suppose that Θ(Rm) is not contained in any proper closed sub-
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group L of SLn(R) such that the orbit Lx is closed. Then for any f ∈ Cc(SLn(R)/Γ),

lim
T→∞

1
Vol(B(T ))

∫

B(T )

f(Θ(s)x) ds =
∫

f dµ,

where B(T ) denotes the ball of radius T in Rm centered at 0.
Take 0 ≤ r ≤ m. Put B+(T ) = B(T ) ∩ (R+)r×Rm−r. Then

lim
T→∞

1
Vol(B+

T )

∫

B+
T

f(Θ̃(s)x) ds =
∫

f dµ, ∀ f ∈ Cc(SLn(R)/Γ),

where Θ̃(s) := Θ(s1/2
1 , . . . , s

1/2
r , sr+1, . . . , sm), ∀ s ∈ (R+)r × Rm−r.

The first part of the theorem is a particular case of Corollary 1.1 of Shah (1994),
whose proof can be readily modified to prove the second part. This result is a
generalization of Ratner’s theorem on equidistribution of orbits of one-dimensional
unipotent flows Ratner (1991b). The main ingredient in its proof is, just as in
Ratner (1991b), the classification of ergodic invariant measures for unipotent flows.

As in Eskin, Mozes and Shah (1996), the first step in the proof of Theorem 1.1
is its reformulation to a question in ergodic theory of subgroup actions on homoge-
neous spaces of Lie groups; we follow the approach of Duke, Rudnick and Sarnak
(1993). The second step is to reduce this question to one about equidistribution of
polynomial trajectories, so that Theorem 1.3 can be applied.

Another purpose of this article is to obtain an expression for CP in terms of
algebraic number theoretic constants associated with P ; this is carried out in Sec-
tion 5.

2. Reduction to a Question in Ergodic Theory

We write

gX := gXg−1, ∀ g ∈ GLn(R), ∀ X ∈ Mn(R).

Put
Γ = GLn(Z) = {X ∈ Mn(Z) : det(X) = ±1}.

If X ∈ VP (Z) and γ ∈ Γ, then γX ∈ VP (Z); and we denote the Γ-orbit through X
by

ΓX := { γX : γ ∈ Γ}.

2.1 Finitely many Γ-orbits in VP (Z). Using a correspondence between Γ-orbits
and ideal classes due to Latimer and MacDuffee (1933) and the finiteness of class
numbers of orders, one has the following (see Proposition 5.3).

Proposition 2.1 (Latimer and MacDuffee). There are only finitely many dis-
tinct Γ-orbits in VP (Z).
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Remark 2.1. The above proposition is a particular case of a general ‘finiteness
theorem’ due to Borel and Harish-Chandra (1962).

By Proposition 2.1, to prove Theorem 1.1 it is enough to prove the following.
Theorem 2.2. Let X ∈ VP (Z). Then there exists cX > 0 such that

lim
T→∞

#( ΓX ∩BT )
Tn(n−1)/2

= cX .

2.2 Considering a fixed Γ-orbit. Put G = {g ∈ GLn(R) : det g = ±1}. Since the
conjugation action of GLn(R) on VP is transitive, the same holds for the action of
G on VP . Note that Γ = GLn(Z) is a lattice in G. Fix any X0 ∈ VP (Z). Put

H = {g ∈ G : gX0 = X0}.
Since all the eigenvalues of X0 are distinct, H is an abelian group consisting of
elements diagonalizable over C. In fact, H is a real algebraic torus defined over Q.
Using Dirichlet’s unit theorem we will show the following (Theorem 5.4):

Proposition 2.3. H/H ∩ Γ is compact.
Define

RT = {g ∈ G : gX0 ∈ BT }/H ⊂ G/H,

and χT denote its characteristic function. Then

#( ΓX0 ∩BT ) = #(Γ[H] ∩RT ) =
∑

γ̇∈Γ/Γ∩H

χT (γ[H]). (1)

2.3 Choosing Haar measures on G and H. We choose Haar measures µ̃ (resp.
ν̃) on G (resp. H). Let µ (resp. ν) denote the left invariant measure on G/Γ (resp.
H/H ∩ Γ) corresponding to the measure µ̃ (resp. ν̃). Let η be the corresponding
left G-invariant measure on G/H (see Raghunathan (1972), Lemma 1.4); that is,
∀ f ∈ Cc(G),

∫

G

f dµ̃ =
∫

gH∈G/H

(∫

H

f(gh) dν̃(h)
)

dη(gH). (2)

In Section 3.8 we show that there exists a constant cη > 0 (see (45)) depending
on X0 such that

lim
T→∞

η(RT )/Tn(n−1)/2 = cη. (3)

2.4 Introducing an auxiliary counting function. For all T > 0 and g ∈ G, let

FT (gΓ) := #(gΓ[H] ∩RT ) =
∑

γ̇∈Γ/(Γ∩H)

χT (gγH). (4)

Note that FT is bounded, measurable, and vanishes outside a compact set in G/Γ.
By (1) and (3), in order to prove Theorem 2.2, it is enough to prove the following:
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Theorem 2.4.

lim
T→∞

FT (eΓ)
η(RT )

=
ν(H/H ∩ Γ)

µ(G/Γ)
.

Although the precise constant, given by a volume ratio, on the right hand side
of the above equation is not needed for proving Theorem 2.2, it will be used in the
computation of CP .

2.5 Weak convergence is enough. From the computations in Sections 3.5 and
3.6, one can deduce the following: Given any κ > 1 there exists a neighbourhood Ω
of e in G such that

Rκ−1T ⊂ ΩRT ⊂ RκT . (5)

Now by (3),
lim
κ→1

lim
T→∞

η(RκT )/η(RT ) = 1 (6)

By (5) and (6), in order to prove Theorem 2.4, it is enough to prove the following
weak convergence (see Eskin and McMullen, 1993):

Theorem 2.5. For any f ∈ Cc(G/Γ),

lim
T→∞

〈f, FT 〉
η(RT )

=
ν(H/H ∩ Γ)

µ(G/Γ)
· 〈f, 1〉.

Using Fubini’s theorem (Raghunathan (1972), Lemma 1.6), we have the follow-
ing (Duke, Rudnick and Sarnak (1993), Eskin and McMullen (1993)):

Proposition 2.6. For any f ∈ Cc(G/Γ),

〈f, FT 〉 =
∫

G/Γ
f(gΓ)

(∑
γ̇∈Γ/(H∩Γ) χT (gγH)

)
dµ(ġ)

=
∫

G/H∩Γ
f(gΓ)χT (gH) dµ̄(ġ)

=
∫

G/H
χT (gH)

(∫
H/H∩Γ

f(ghΓ) dν(ḣ)
)

dη(gH)

=
∫

RT

(∫
H/H∩Γ

f(ghΓ) dν(ḣ)
)

dη(gH),

(7)

where µ̄ is the left G-invariant measure on G/(H ∩ Γ) corresponding to µ̃, and ẋ
denotes the coset x(H ∩ Γ).

In Eskin, Mozes and Shah (1996) further analysis of the limit was carried out
by showing that, as Ti → ∞, for ‘almost all’ sequences giH → ∞ in G/H, where
giH ∈ RTi ,

∫

H/H∩Γ

f(gihΓ) dν(ḣ) → ν(H/H ∩ Γ)
µ(G/Γ)

〈f, 1〉 as i →∞.

In view of (7), this implies Theorem 2.5.
In this article, our approach is to change the order of integration in the final

expression in (7), and then apply Theorem 1.3 to find the limit. For this purpose,
we need an explicit description of RT , and of the measure η. We will show that
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RT is a ‘polynomial like’ image of a ball, and η is the push forward of a Lebesgue
measure under this map.

3. Integration on RT

Notation 3.1. Let r1 be the number of real roots of P and r2 be the number
of pairs of complex conjugate roots of P . Since P is irreducible, all roots of P
are distinct, and n = r1 + 2r2. Fix a root α of P . Let σ1, . . . , σr1 be the distinct
real embeddings of Q(α). Let σr1+1, . . . , σr1+2r2 be the distinct non-real complex
embeddings of Q(α), such that

σr1+r2+i = σr1+i, 1 ≤ i ≤ r2. (8)

Put

di =





σi(α) if 1 ≤ i ≤ r1(
ai−r1 −bi−r1

bi−r1 ai−r1

)
if r1 < i ≤ r1 + r2,

(9)

where ai + bi

√−1 := σr1+i(α), i = 1, . . . , r2.
3.1 Diagonalization of X and H. Let

X1 = diag(d1, . . . , dr1+r2)
H1 = {g ∈ G : gX1 = X1}
R1

T = {g ∈ G : gX1 ∈ BT }/H1.

Since the eigenvalues of X1 are same as the roots of P , X1 ∈ VP . Let g0 ∈ G be
such that g0X0 = X1.

Define ψ : G → G as ψ(g) = g0gg0
−1, ∀ g ∈ G. Then H1 = ψ(H) and ψ∗(µ̃) = µ̃.

We choose a Haar measure ν̃1 on H1 defined by

ν̃1 := ψ∗(ν̃). (10)

Define φ̄ : G/H → G/H1 as φ̄(gH) = gg0
−1H1, ∀ g ∈ G. Let η1 := φ̄∗(η). Then

by (2), ∀ f ∈ Cc(G),
∫

G

f dµ̃ =
∫

G/H1

(∫

H1

f(gh1) ν̃1(h1)
)

dη1(gH1). (11)

Also
R1

T = φ̄(RT ) and η1(R1
T ) = η(RT ). (12)

Put Γ1 = ψ(Γ). Define ψ̄ : G/Γ → G/Γ1 as ψ̄(gΓ) = ψ(g)Γ1, ∀ g ∈ G.
Let µ1 := ψ̄∗(µ) and ν1 := ψ̄∗(ν). Then µ1 is the G-invariant measure on G/Γ1

associated to µ̃. Also ν1 is the H1-invariant measure on

H1/(H1 ∩ Γ1) ∼= H1Γ1/Γ1 = ψ̄(HΓ/Γ)
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associated to ν̃1, and

ν1(H1/H1 ∩ Γ1) = ν(H/H ∩ Γ). (13)

Now we can rewrite Proposition 2.6 as follows:

Proposition 3.1. ∀ f ∈ Cc(G/Γ), and f1 := f ◦ ψ̄−1 ∈ Cc(G/Γ1),

〈f, FT 〉 =
∫

RT

(∫

H/H∩Γ

f(ghΓ) dν(ḣ)

)
dη(gH)

=
∫

R1
T

(∫

H1/H1∩Γ1

f1(ghΓ1) dν1(ḣ)

)
dη1(gH1).

Due to this proposition, instead of integrating on RT , it suffices to integrate on
R1

T . Therefore we describe the measure η1 on G/H1. For this purpose we want to
express G as G = Y H1, where Y is a product of certain subgroups and subsemi-
groups of G (see (23)). Later, in Section 3.3 we will decompose the Haar measure of
G into products of appropriate Haar measures on these subgroups. This will allow
us to describe η1 as a product of the chosen Haar measures on the subgroups and
subsemigroups, whose product is Y (Proposition 3.2).

3.2 Product decompositions of G. In view of the above, first we will describe
various subgroups of G, and then obtain different product decompositions of G into
those subgroups and their subsemigroups.

Let O(n) denote the group of orthogonal matrices in GLn(R). Let

N = {n := (nij)n
i,j=1 : nij ∈ R, nij = 0 if i > j, nii = 1} (14)

A = {a := diag(a1, . . . , an) : ai > 0,

n∏

i=1

ai = 1}. (15)

By Iwasawa decomposition, the map

(k, n, a) 7→ kna : O(n)×N ×A → G

is a diffeomorphism.
For i, j = 1, . . . , r1 + r2, let

Mij =

8>>>>><>>>>>:
R if i ≤ r1, j ≤ r1

M1×2(R) if i ≤ r1, j > r1

M2×1(R) if i > r1, j ≤ r1

M2(R) if i > r1, j > r1.

(16)

We will express g ∈ Mn(R) as g = (gij)r1+r2
i,j=1 , where gij ∈ Mij .
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Put

U =
(∏

1≤i<j≤r1+r2
Mij

) ∼= R 1
2 n(n−1)−r2 ,

u(x) = (uij); x = (xij) ∈ U ,Mij 3 uij =

8>><>>:
0 if i > j
1 if i = j
xij if i < j,

h(t) =
(

1 t
0 1

)
, ∀ t ∈ R.

Define

L1 = {diag(1, . . . , 1, g1, . . . , gr2) ∈ G : gi ∈ SL2(R)}
K1 = {diag(1, . . . , 1, k1, . . . , kr2) ∈ G : ki ∈ SO(2)}
N1 = {h(t) = diag(1, . . . , 1, h(t1), . . . , h(tr2) :

t = (ti) ∈ Rr2}

A1 = {a1 = diag(1, . . . , 1, b1, . . . , br2) :
bi = diag(βi, βi

−1), βi > 0} (17)

U = {u(x) : x = (xij) ∈ U}
C = {c = diag(c1, . . . , cr1 , c

1/2
r1+1I2, . . . , c

1/2
r1+r2

I2) ∈ G :
ci > 0,

∏r1+r2
i=1 ci = 1}

(18)

Σ = {diag(ε1, . . . , εr1 , I2, . . . , I2) ∈ G : εi = ±1}, (19)

where I2 denotes the identity matrix in M2(R).
We have the following product decompositions:

N = N1 · U, A = A1 · C,

H1 = Σ ·K1 · C, L = K1 ·N1 ·A1.
(20)

In each of the above decompositions, the product map, from the direct product
of the subgroups on the right hand side to the group on the left hand side, is a
diffeomorphism. We also note that

Σ · C ⊂ ZG(L), NG(U) = Σ · C · L · U. (21)

Therefore
G = O(n)NA = O(n)K1 ·N1U ·A1C

= O(n) ·K1N1A1 · UC

= O(n) · L · U · C.

(22)

One has that SL2(R) = SO(2) · h(R+) · SO(2) (see Proposition A.3). Since
L ∼= (SL2(R))r2 , we have that

L = K1N
+
1 K1,
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where N+
1 = {h(t) : t ∈ (R+)r2}. Now, in view of (20)–(22), we have

G = O(n) ·K1N
+
1 K1 · U · C

= O(n) ·N+
1 U ·K1C

= O(n)Σ ·N+
1 U ·K1C

= O(n) ·N+
1 U · ΣK1C

= O(n) ·N+
1 U ·H1.

(23)

3.3 Choice of Haar measures on subgroups of G. Our next aim is to choose the
Haar measures on each of the subgroups defined in the previous section, so that the
analogues of the decompositions (20), (22) and (23) also hold in terms of products
of the Haar measures on these subgroups.

Choice of Haar measure µ̃ on G. We choose a Haar integral dk on O(n) such
that Vol(SO(n)) = 1; in particular,

Vol(O(n)) =
∫

O(n)

1 dk = 2. (24)

We choose the Haar integral dn on N (see (14)) such that

dn =
∏

i<j

dnij .

We choose the Haar integral da on A such that ∀ f ∈ Cc(A),
∫

A

f(a) da =
∫

(R>0)n−1
f(a)

da1

a1
· · · dan−1

an−1
; (see (15))

alternative notation: da =
∏n−1

i=1 dai/ai.
We choose a Haar measure µ̃ on G such that,

∫

G

f dµ̃ =
∫

O(n)×N×A

f(kna) dk dn da, ∀ f ∈ Cc(G). (25)

Decomposition of integrals on A and N . We choose a Haar integral dc on C
such that (see (18))

dc = (dc1/c1) · · · (dcr1+r2−1/cr1+r2−1).

Choose the Haar integral da1 :=
∏r2

i=1 dβi/βi on A1 (see (17)). Then da = da1 dc,
where a = a1c, (a1, c) ∈ A1 × C (see (20)).

Let dt denote the standard Lebesgue measure on Rr2 . Let dx denote the stan-
dard Lebesgue measure on U . Then dn = dt dx, where n = h(t)u(x), (t, x) ∈
Rr2 × U .

Choice of Haar integral dl on L. Let dl be a Haar integral on L such that,
∫

L

f(l) dl =
∫

K1×Rr2×A1

f(kh(t)a1) dθ(k) dt da1, ∀ f ∈ Cc(L), (26)
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where θ denotes the Haar measure on K1 such that

θ(K1) = 1. (27)

Decomposition of Haar integral dµ̃. From the above choices of Haar integrals on
various subgroups of G, their interrelations, (21) and (22) we have

∫

G

f(g) dµ̃(g) =
∫

O(n)×L×U×C

f(klxc) dk dl dx dc, ∀ f ∈ Cc(G). (28)

Choice of Haar measure ν̃ on H. We also choose a Haar measure ν̃ on H such
that for the Haar measure ν̃1 := ψ∗(ν̃) on H1 (see (10)), we have (see (20))

∫

H1

f dν̃1 =
∑

σ∈Σ

∫

K1×C

f(σkc) dθ(k) dc, ∀ f ∈ Cc(H1). (29)

3.4 Description of integral η1 on G/H1. In order to describe η1, we will express
the integral dµ̃ as a product of an integral on certain subset of G and the integral
dν̃1 using the expressions (28) and (29).

A new description of the integral dl. First we will express the Haar integral on
L in terms of the product decomposition L = K1N

+
1 K1.

By Proposition A.3 (stated and proved in Appendix A), the following holds:
∀ f ∈ Cc(SL2(R)),

∫
SO(2)×R×R>0

f(kh(t) diag(β, β−1)) dϑ(k) dt (dβ/β)

= (π/2)
∫
SO(2)×R+×SO(2)

f(k1h(t1/2)k2) dϑ(k1) dt dϑ(k1),
(30)

where ϑ is a probability Haar measure on SO(2).
Since L ∼= SL2(R)r2 , by (26) and (30), ∀ f ∈ Cc(L),

∫

L

f(l) dl = (π/2)r2

∫

K1×(R+)r2×K1

f(kh(t1/2)k′) dθ(k) dt dθ(k′), (31)

where the notation is

t1/2 := (t1/2
1 , . . . , t

1/2
r2 ), ∀ t = (t1, . . . , tr2) ∈ (R+)r2 . (32)

From (23) and (28)–(31), ∀ f ∈ Cc(G),
∫

G

f(g) dµ̃(g)

= (π/2)r2

∫

O(n)×K1×(R+)r2×K1×U×C

f(kk′1h(t1/2)k1u(x)c)

× dk dθ(k′1) dt dθ(k1) dx dc

= (π/2)r2(#Σ)−1
∑

σ∈Σ

∫

O(n)×(R+)r2×U×K1×C

f(kσh(t1/2)u(x)k1c)

× dk dt dx dθ(k1) dc.

= πr22−r1−r2

∫

O(n)×(R+)r2×U×H1

f(kh(t1/2)u(x)h1) dk dt dx dν̃1(h1).
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Now in view of (11), we have the following:

Proposition 3.2. For any f̄ ∈ Cc(G/H1),
∫

G/H1

f̄ dη1 = (2π)r22−n

∫

O(n)×(R+)r2×U
f̄(kh(t1/2)u(x)H1) dk dt dx.

3.5 Changing the order of Integration. The Euclidean norm on Mn(R) is invari-
ant under the left and the right multiplication by the elements of O(n). Therefore

R1
T = O(n)Ψ(D1

T )H1/H1,

where

Ψ(t,x) = h(t1/2)u(x), ∀ (t, x) ∈ (R+)r2 × U , (see (32))
D1

T = {(t,x) ∈ (R+)r2 × U : ‖Ψ(t,x)X1‖ < T} (33)

Since U ∼= R 1
2 n(n−1)−r2 , let ` denote the standard Lebesgue measure on (R+)r2×

U . Then by (24) and Proposition 3.2,

η1(R1
T ) = (2π)r22−(n−1)`(D1

T ). (34)

For the purpose of analysing the limit in Theorem 2.5, we change the order of
integration in Proposition 3.1 using Proposition 3.2 and (33)–(34) as follows:

Proposition 3.3. For all f ∈ Cc(G/Γ1),

1
η1(R1

T )

∫
R1

T

(∫
H1/H1∩Γ1

f(ghΓ1) dν1(ḣ)
)

dη1(gH1)

= (1/2)
∫
O(n)

dk · ∫
H1/H1∩Γ1

dν1(ḣ) ×

×
(

1
`(D1

T )

∫
(t,x)∈D1

T
f(kΨ(t, x)hΓ1) dt dx

)
,

where ḣ denotes the coset h(H1 ∩ Γ1).

3.6 Description of the set D1
T . Our aim for this subsection is to show that D1

T

is asymptotically the image of a ball of radius T under a ‘polynomial like’ map (see
Propositions 3.4-5).

Coordinates of Ψ(t,x)X1. Take x = (xij) ∈ U . If u(x)−1 = u(y), y = (yij) ∈ U ,
then

yij = −xij + Bij((xkl)0<l−k<j−i)

where Bij :
∏

0<l−k<j−i Mkl → Mij is a polynomial map for i < j − 1, and Bij ≡ 0
if i = j − 1.

If u(x)X1 = u(x)X1u(y) = (ωij)r1+r2
i,j=1 , then wij = 0 if i > j, and

ωij =
{

di if i = j (see (9))
Sij(xij) + Qij((xkl)0<l−k<j−i) if i < j,

(35a)



counting integral matrices 397

where Sij : Mij → Mij (i < j) is defined as

Sij(x) = xdj − dix, ∀ x ∈ Mij , (35b)

and Qij :
∏

0<l−k<j−i Mkl → Mij is a polynomial map for i < j − 1, and Qij ≡ 0 if
i = j − 1; an explicit formula for Qij will not be needed later.

Let t = (ti) ∈ (R+)r2 . If we write

Ψ(t,x)X1 = h(t1/2)
(

u(x)X1

)
= (ζij)r1+r2

i,j=1 , (35c)

then ζij = 0 if i > j, and

ζij = h(t1/2
i−r1

)ωijh(−t
1/2
j−r1

) if i ≤ j, (35d)

where by convention: h(t1/2
i−r1

) = h(−t
1/2
i−r1

) = 1 for 1 ≤ i ≤ r1.
Note that for i = 1, . . . , r2, (see (9))

h(t1/2)dr1+ih(−t1/2) =
(

ai − t1/2bi −(1 + t)bi

bi ai + t1/2bi

)
. (35e)

Therefore by (35c),

‖Ψ(t,x)X1‖2 = ‖X1‖2 +
r2∑

i=1

b2
i (t

2
i + 4ti) +

∑

i<j

|ζij |2, (35f)

where the sum
∑r1+r2

i=1 |ζii|2 is evaluated using (35d), (35a), and (35e).
Expressing D1

T as an image of a ball. Now, in view of (33), we want to find a
function

δ̃ : (R+)r2 × U → (R+)r2 × U
such that

δ̃(B+
(T2−‖X1‖2)1/2 ) = D1

T , (36)

where
B+

T := {(s, z) ∈ (R+)r2 × U : ‖s‖2 + ‖z‖2 < T 2}.
For (s, z) ∈ (R+)r2 × U , if we write δ̃(s,z) = (t,x), where t = (ti) ∈ (R+)r2 and
x = (xij) ∈ U , then in view of (33), (35f), and (36), we want that the following
equations are satisfied:

si = [b2
i (t

2
i + 4ti)]1/2, (1 ≤ i ≤ r2) (37)

zij = ζij , (1 ≤ i < j ≤ r1 + r2), (38)

where ζij is a function of xij and {xkl : 0 < l − k < j − i} (see (35a) and (35d)).
By first solving the equations in (37), we get

ti = (b−2
i s2

i + 4)1/2 − 2.



398 nimish a. shah

Then we proceed to solve the equations in (38) inductively, in the following
order: for any (i, j) they are solved for all {xkl : 0 < l− k < j − i} before solving it
for the xij . Therefore it is enough to express xij in terms of s, z, t, and {xkl : 0 <
l − k < j − i}. We get

xij = xij(t, {xkl : 0 < l − k < j − i})
= Sij

−1
(
h(−t

1/2
i−r1

)zijh(t1/2
j−r1

)−Qij((xkl)0<l−k<j−i),
)

.
(39)

where Sij and Qij are as in (35a) and (35b).

‘Polynomial like’ approximation for δ̃. We define t′ := (t′i) ∈ (R+)r2 ,

t′i = |bi|−1si, 1 ≤ i ≤ r2.

Next we define x′ := (x′ij) ∈ U inductively, using the formula in (39), as follows:

x′ij = xij(t′, {x′kl : 0 < k − l < j − i}), (1 ≤ i < j ≤ r1 + r2).

Then we define
δ(s,z) = (t′, x′).

It is straightforward to verify that

0 ≤ t′i − ti < 2, 1 ≤ i ≤ r2.

Therefore
δ(B+

T−2) ⊂ δ̃(B+
T ) ⊂ δ(B+

T ), ∀ T > 0. (40)

Also note that if T > ‖X1‖, then

T − ‖X1‖2 T−1 < (T 2 − ‖X1‖2)1/2 < T.

Therefore, since (36) and (40) hold, we get the following:
Proposition 3.4. For T > ‖X1‖+ 2,

δ(B+
T−2−‖X1‖2T−1) ⊂ D1

T ⊂ δ(B+
T ).

Proposition 3.5. The map Θ : R 1
2 n(n−1) → G defined by

Θ(s, z) := Ψ(δ((s2
1, . . . , s

2
r2

), z)), ∀ (s, z) ∈ Rr2 × U = R
1
2 n(n−1),

is a polynomial map; that is, each coordinate function of Θ is a polynomial in
1
2n(n− 1)-variables.

3.7 Jacobian of δ. Let the notation be as in the definition of δ. The Jacobian of
δ at (s, z) is given by:

Jac(δ)(s, z) = |∂(t′,x′)/∂(s, z)| =
r2∏

i=1

|∂t′i/∂si| ·
∏

i<j

|∂x′ij/∂zij | (41)

=
r2∏

i=1

|bi|−1 ·
∏

i<j

|det(Sij)−1|, (42)
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where (41) holds because ∂t′i/∂zkl = 0 for all i, k, l, and ∂x′kl/∂zij = 0 for all
0 < l− k < j− i, and (42) holds because det h(t) = 1 for all t. In particular, Jac(δ)
is a constant function.

Computation of det(Sij). By (16)

Mij = Hom(Rνi ,Rνj ) ∼= Rνi ⊗ (Rνj )∗, (1 ≤ i < j ≤ r1 + r2),

where νk = 1 if 1 ≤ k ≤ r1, and νk = 2 if r1 < k ≤ r2. Under this canonical
isomorphism, Sij corresponds to

(1⊗ d∗j )− (di ⊗ 1), (see (35b))

whose eigenvalues are distinct, and by (8) they are

σj′(α)− σi′(α), i′ ∈ î, j′ ∈ ĵ,

where k̂ = {k} if νk = 1, and k̂ = {k, r2 + k} if νk = 2. Therefore by (42)

Jac(δ) = 2r2
∏

1≤i<j≤n

|σi(α)− σj(α)|−1 = 2r2/|DQ(α)/Q|1/2, (43)

where DQ(α)/Q denotes the discriminant of Q(α) over Q.
3.8 Volume of RT . We note that

`(B+
T ) = 2−r2 Vol(Bn(n−1)/2)Tn(n−1)/2, (44)

where Vol(Bm) denotes the volume of a unit ball in Rm. Also note that for any
m ∈ N and a, b > 0, if T > max{a, b} then

((T + a)m − (T − b)m)/Tm < m(a + b)T−1.

Therefore by (12), (34), Proposition 3.4, and since Jac(δ) is a constant,

limT→∞ η(RT )/`(B+
T ) = limT→∞ η1(R1

T )/`(B+
T )

= (2π)r22−(n−1) limT→∞ `(D1
T )/`(B+

T )
= (2π)r22−(n−1) Jac(δ).

Now by (43) and (44),

cη := lim
T→∞

η(RT )/Tn(n−1)/2 =
(2π)r2 Vol(Bn(n−1)/2)

2n−1|DQ(α)/Q|1/2
. (45)
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4. Equidistribution of Trajectories

In view of Propositions 3.1 and 3.3, by Propositions 3.4-5 and since Jac(δ) is a
constant we have the following: for any f1 ∈ Cc(G/Γ1), and any x1 ∈ G/Γ1,

limT→∞ 1
`(D1

T )

∫
(t,x)∈D1

T
f1(Ψ(t, x)x1) dt dx

= limT→∞ 1
`(B+

T )

∫
(s,z)∈B+

T
f1(Θ(s1/2, z)x1) ds dz,

(46)

Since Θ(Rr2 × U) ⊃ U , in order to apply Theorem 1.3 we show the following:
Lemma 4.1. For x ∈ G/Γ1, if H1x is compact then Ux = G/Γ1.
Proof. Choose c ∈ C, such that c1 > . . . > cr1+r2 > 0 (see (18)). Then

U = {u ∈ G : c−mucm → 1 as m →∞}, which is the expanding horospherical
subgroup of G0 associated to c. Therefore by Proposition 1.5 of Dani and Raghavan
(1980)

∪∞n=1c
mUy = G0Γ1/Γ1 = G/Γ1, ∀ y ∈ G/Γ1. (47)

By (20)-(21), C ⊂ H1 and H1 ⊂ NG(U). Let F be a compact subset of H1 such
that Fx = H1x. Then by (47)

G/Γ1 = CUx ⊂ H1Ux = UH1x = UFx = FUx. (48)

By Moore’s ergodicity theorem (Moore, 1966), U acts ergodically on G/Γ1.
Hence there exists x1 ∈ G/Γ1 such that Ux1 = G/Γ1. By (48) there exist h ∈ F
and x2 ∈ Ux such that x1 = hx2. Therefore, since h ∈ NG(U),

G/Γ1 = Ux1 = Uhx2 = hUx2 ⊂ hUx.

Hence Ux = G/Γ1.
Proposition 4.2. For all f1 ∈ Cc(G/Γ1), k ∈ K and h ∈ H1:

lim
T→∞

1
`(B+

T )

∫

(s,z)∈B+
T

f1(kΘ(s1/2, z)hΓ1) ds dz =
1

µ1(G/Γ1)

∫

G/Γ1

f1 dµ1,

where Θ is as in Proposition 3.5.
Proof. Note that G/Γ1 = G0/(Γ1 ∩ G0) and G0 = SLn(R). We apply Theo-

rem 1.3 for Γ1 ∩G0 in place of Γ, x = hΓ1 and the function f2 ∈ Cc(G/Γ1), where
f2(gΓ1) := f1(kgΓ1), ∀ g ∈ G. Since H1Γ1/Γ1 = ψ̄(HΓ/Γ), by Proposition 2.3, H1x
is compact. Therefore by Lemma 4.1, U1x is dense in G/Γ1. Since Θ(Rr2×U) ⊃ U ,
the conclusion of Theorem 1.3 holds, and hence the proposition follows.

Proof of Theorem 1.1. By a series of reductions in Section 3, we showed that it is
enough to prove Theorem 2.5. Now it is straightforward to deduce this result from
Propositions 3.1 and 3.3, Equation (46), Proposition 4.2, Lebesgue’s dominated
convergence theorem, Equation (13), and the fact that µ1 = ψ̄∗(µ).
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5. Computation of CP

The rest of the article is devoted to proving the following:
Theorem 5.1. Let the notation be as in Theorem 1.1. Fix any root α of P .

Then

CP =
∑

O⊃Z[α]

κ(O) · Vol(Bn(n−1)/2)
Vol(SMn)

,

where the sum is over all orders O of the number field K = Q(α) containing Z[α],

κ(O) =
2r1(2π)r2hORO
wO|DK/Q|1/2

,

here

r1 = Number of real places of K,

r2 = Number of complex places of K,

hO = Number of modules classes with order O
RO = Regulator of O×, (see (56))
wO = Order of the group of roots of unity in O×,

DK/Q = Discriminant of K,

and

Vol(Bm) = πm/2/Γ(1 + m/2)

Vol(SMn) =
n∏

s=2

π−s/2Γ(s/2)ζ(s)

The number theoretic terms involved in the above statement will be explained
in the course of the proof of this theorem; see Koch (1997, pp. 10–17) for their
definitions. See also Remark 1.1.

For computing CP , by Proposition 2.1 and Theorem 2.2, we need to count the
number of distinct Γ-orbits in VP (Z), and compute CX0 for each X0 ∈ VP (Z). To
compute CX0 , by (1), (3), (4), and Theorem 2.4, we need to compute cη, ν(H/H(Z)),
and µ(G/Γ. Note that (45) already gives a formula for cη.

5.1 Γ-Orbits in VP (Z). We will describe a result on a correspondence between
the classes of matrices and classes of ideals; here two matrices are said to be in the
same equivalence class if they are in the same Γ-orbit.

Fix any root α of P . Any (nonzero) ideal I of Z[α] is a free Z-module of rank
n. We say that ideals I and J of Z[α] are equivalent if and only if aI = bJ for some
nonzero a, b ∈ Z[α]. Let [I] denote the class of ideals in Z[α] equivalent to I.

For any X ∈ VP (Z), α is an eigenvalue of X, and there exists a nonzero eigen-
vector ω := t(ω1, . . . , ωn) ∈ Q(α)n such that

Xω = αω (49)
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Replacing ω by some integral multiple, we may assume that ωi ∈ Z[α] for 1 ≤ i ≤ n.
Put IX = Zω1 + · · ·+Zωn. Then by (49), αIX ⊂ IX . Hence IX is an ideal of Z[α].
The ideal class [IX ] depends only on X, and not on the choice of the eigenvector ω.

Let γ ∈ Γ = GLn(Z). Put Y = γX, and ω′ = γω = t(ω′1, . . . , ω
′
n). Then

Y ω′ = αω′, and ω′i ∈ IX for all i. If we put IY = Zω′1 + · · ·+ Zω′n, then IY ⊂ IX .
Since γ−1 ∈ GLn(Z) and ω = γ−1ω′, we have IX ⊂ IY , and hence IX = IY .

Thus the ideal class [IX ] depends only on the Γ-orbit ΓX, and not on the choice
of its representative X. Now we state a result due to Latimer and MacDuffee (1933);
see Taussky (1949) for a simpler proof.

Theorem 5.2. The assignment ΓX 7→ [IX ] is a one-to-one correspondence
between the collection of Γ-orbits in VP (Z) and the collection of equivalence classes
of ideals in Z[α].

Orders in Q(α). A subring O of the number field K = Q(α) is called an order in
K, if its quotient field is K, O∩Q = Z, and its additive group is finitely generated.

A free Z-submodule of K (additive) of rank n = [K : Q] is called a lattice in K;
for example, any (nonzero) ideal of Z[α] is a lattice in K. Two lattices M and M′

in K are said to be equivalent , if aM = bM′ for some nonzero a, b ∈ Q(α). Let M̄
denote the class of lattices equivalent to M. For ideals I and J of Z[α], we have
[I] = [J ] ⇔ Ī = J̄ .

For a lattice M in K,

O(M) := {β ∈ K : βM ⊂ M} (50)

is an order in K, it is called the order of M, and it depends only on the class M̄.
Let O be an order in K. Then by the class number theorem (Koch (1997),

Theorem 1.9), there are only finitely many classes of lattices in K with order O.
This number is called the class number of O and denoted by hO.

The ring OK of algebraic integers in K is an order. Any order O in K is
contained in OK , and [OK : O] < ∞. Also Z[α] is an order in K, and hence there
are only finitely orders O in K with O ⊃ Z[α].

Proposition 5.3. The Γ-orbits in VP (Z) are in one-to-one correspondence with
the classes of lattices in K whose orders contain Z[α].

In particular, each order O containing Z[α] is associated to hO distinct Γ-orbits
in VP (Z), and the number of distinct Γ-orbits in VP (Z) equals

∑
O⊃Z[α] hO.

Proof. In view of Theorem 5.2, to any Γ-orbit ΓX in VP (Z), we associate the
lattice class ĪX of the ideal IX in Z[α]. Then O(IX) ⊃ Z[α].

Conversely, let M be a lattice in K such that O(M) ⊃ Z[α]. Then there exists
a nonzero integer a such that I := aM is an ideal of Z[α]. By Theorem 5.2, there
exists X ∈ VP (Z), such that [I] = [IX ]. Therefore M̄ = ĪX , and hence M̄ is
associated to a unique orbit ΓX, and O(M) = O(IX). This proves the one-to-one
correspondence.

Now the second statement follows from the class number theorem for orders
(Koch (1997), Theorem 1.9).
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5.2 Number theoretic ‘realizations’ of H and H(Z). Fix X0 ∈ VP (Z) and let the
notation be as before. Put

ZX0 = {Y ∈ Mn(R) : Y X0 = X0Y }.
Since X0 ∈ Mn(Q), we have that ZX0 is the real vector space defined over Q; that
is, ZX0(Q)⊗Q R = ZX0 , where ZX0(Q) := ZX0 ∩Mn(Q).

Let ω = t(ω1, . . . , ωn) ∈ Z[α]n, ω 6= 0, be such that X0ω = αω. Since all
eigenvalues of X0 are distinct, there exists an R-algebra homomorphism λ : ZX0 →
C given by Y 7→ λY , such that Y ω = λY ω. Now if Y ∈ ZX0(Q) then λY ∈ Q(α).

Let IX0 = Zω1 + . . .+Zωn. Then IX0 is an ideal of Z[α], and hence IX0 ⊗ZQ ∼=
Q(α). Therefore {ω1, . . . , ωn} are linearly independent overQ. Hence if Y ∈ ZX0(Q)
and Y ω = 0, then Y = 0. Thus

ker λ ∩ ZX0(Q) = 0.

Let Yβ denote the matrix of the multiplication by β ∈ Q(α) on the Q-vector
space IX0 ⊗Z Q, with respect to the basis {ω1, . . . , ωn}. The map β 7→ Yβ is a
Q-algebra homomorphism of Q(α) into Mn(Q). Since Yα = X0, we have that
Yβ ∈ ZX0(Q). Also λYβ

= β. Hence λ : ZX0(Q) → Q(α) is an isomorphism between
the Q-algebras. In particular,

ZX0(Q) = Q[X0] and ZX0 = R[X0].

Note that for Y ∈ ZX0(Q), λY IX0 ⊂ IX0 ⇔ Y ∈ Mn(Z). Therefore

ZX0(Z) := ZX0 ∩Mn(Z) = {Y ∈ ZX0(Q) : λY ∈ O(X0)}, (51)

where O(X0) denotes the order of IX0 (see (50)).
Equality of Determinant and Norm. Recall the Notation 3.1. Define σi(ω) :=

t(σi(ω1), . . . , σi(ωn)). Then X0σi(ω) = σi(α)σi(ω). Let

g1 = (σ1(ω), . . . , σn(ω)) ∈ Mn(C).

Then
g1
−1X0g1 = diag(σ1(α), . . . , σn(α)),

and σi(α) 6= σj(α), if i 6= j. Therefore g1
−1ZX0g1 consists of diagonal matrices.

We define functions Di on ZX0 by

g1
−1Y g1 = diag(D1(Y ), . . . , Dn(Y )), ∀ Y ∈ ZX0 .

Since ZX0 = R[X0] and the Di’s are R-algebra homomorphisms, for all Y ∈ ZX0 ,
we have Di(Y ) ⊂ R for 1 ≤ i ≤ r1, and by (8),

Dr1+r2+i(Y ) = D̄r1+i(Y ), (1 ≤ i ≤ r2).

Therefore

det(Y ) =
n∏

i=1

|Di(Y )| =
r1+r2∏

i=1

|Di(Y )|νi , ∀ Y ∈ ZX0 , (52)
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where νi = 1 if i ≤ r1, and νi = 2 if i > r1. It is straightforward to verify that
Di(Y ) = σi(λY ), ∀ Y ∈ ZX0(Q). We have proved the following

Lemma. det(Y ) = NQ(α)/Q(λY ) for all Y ∈ ZX0(Q).
Note that H = {Y ∈ ZX0 : | det(Y )| = 1}. Therefore by (51),

H(Z) = H ∩ ZX0(Z)
= {Y ∈ ZX0(Q) : |NQ(α)/Q(λY )| = 1, λY ∈ O(X0)}
= {Y ∈ ZX0(Q) : λY ∈ O(X0)×}∼= O(X0)×;

(53)

here O(X0)× denotes the multiplicative group of the order O(X0) which is the same
as the multiplicative group of unit norm elements in O(X0)×.

Dirichlet’s Unit theorem and compactness of H/H(Z).
Theorem 5.4. H/H(Z) is compact.
Proof. Define l : H → Rr1+r2 as (see (52))

l(h) = (ν1 log |D1(h)|, . . . , νr1+r2 log |Dr1+r2(h)|), ∀ h ∈ H.

Let
E = {(x1, . . . , xr1+r2) ∈ Rr1+r2 : x1 + · · ·+ xr1+r2 = 0}.

Since ZX0 = R[X0] is an R-algebra and Di’s are R-algebra homomorphisms, by (52)
and (53), l : H → E is a surjective homomorphism.

By (20), H1 = Σ · K1 · C is a direct product decomposition; let p : H1 → C
denote the associated projection. We define l1 : C → E by

l1(c) = (log c1, . . . , log cr1+r2), (see (18))

and extend it to H1 by l1(h) = l1(p(h)), ∀ h ∈ H1.
We note that l1(g0hg0

−1) = l(h) for all h ∈ H. Therefore

ker l = g0
−1(ker l1)g0 = g0

−1ΣK1g0.

Hence ker(l) is compact.
We define ` : O(X0)× → E, by

`(λ) = (ν1 log |σ1(λ)|, . . . , νr1+r2 log |σr1+r2(λ)|), ∀ λ ∈ O(X0)×. (54)

Clearly, l(Y ) = `(λY ) for all Y ∈ H(Z). By Dirichlet unit theorem (Koch (1997),
Theorem 1.13), `(O(X0)×) is a lattice in E. Therefore l(H)/l(H(Z)) is compact.
Since ker(l) is compact, this completes the proof.

Computation of ν(H/H(Z)). Let pr : Rr1+R2 → Rr1+r2−1 be the projection
on the first r1 + r2 − 1 coordinate space. We choose a measure m on E ⊂ Rr1+r2

such that its image under pr is the standard Lebesgue measure on Rr1+r2−1. Let m̄
denote the associated measure on E/`(O(X0)×). We note that l1 : C → E preserves
the choices of the Haar integrals dc and dm.
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Let K̃1 = ΣK1. In view of (19) and (27), let θ̃ be the Haar measure on K̃1 such
that

θ̃(K̃) = #(Σ)θ(K1) = 2r1 . (55)

Define q : K̃1\H1 → C as q(K̃1h) = p(h) for all h ∈ H1. Then by (29), q is a
measure preserving homeomorphism.

Therefore l1 ◦ q : K̃1\H1 → E is a group isomorphism and preserves the chosen
Haar measures on both sides. Note that H ∩ Γ = H(Z), and

l1(H1 ∩ Γ1) = l(H ∩ Γ) = l(H(Z)) = `(O(X0)×).

Therefore we have an isomorphism,

K̃1\H1/(H1 ∩ Γ1) ∼= E/`(O(X0)×)

preserving the invariant measures on both sides. Now by Theorem B.1 (stated and
proved in Appendix B),

ν1(H1/(H1 ∩ Γ1)) =
θ̃(K̃1)

#(K̃1 ∩ (H1 ∩ Γ1))
· m̄(E/`(O(X0)×)). (56)

By the Dirichlet’s unit theorem, let {ε1, . . . , εr1+r2−1} be a set of generators of
O(X0)× modulo the group of roots of unity. Then

`(O(X0)×) =
r1+r2−1⊕

j=1

Z `(εj).

Hence, by (54),

m̄(E/`(O(X0)×)) =
∣∣∣det

(
(νi log |σi(εj)|)r1+r2−1

i,j=1

)∣∣∣ =: RO(X0), (57a)

which is called the regulator of the the order O(X0) (see Koch (1997), Sect. 1.3).
We note that g0

−1(K̃1 ∩ (H1 ∩ Γ1))g0 = ker(l) ∩ H(Z) ∼= ker(`), which is the
group of roots of unity in O(X0), and its order is denoted by wO(X0). Therefore,

#(K̃1 ∩ (H1 ∩ Γ1)) = wO(X0). (57b)

Now from (55)–(57b) we obtain the following:
Theorem 5.5. Let O(X0) be the order of the ideal IX0 of Z[α] which is associ-

ated to X0 as in Theorem 5.2. Then

ν(H/H ∩ Γ) = ν1(H1/H1 ∩ Γ1) = 2r1RO(X0)/wO(X0).

5.3 Volume of G/GLn(Z). To use the volume computation of G/GLn(Z) due to
Siegel, one needs to compare the Haar measure on G chosen for his computation
with the one chosen in (25). Instead of doing that, we will find it more convenient
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to use similar volume computations as in Terras (1988, Section 4.4.4), which also
uses Siegel’s formula.

The space Pn of positive n × n matrices. Let Pn be the space of n × n real
positive symmetric matrices. Then GLn(R) acts transitively on Pn by

(g, Y ) 7→ tgY g, ∀ (g, Y ) ∈ GLn(R)×Pn.

We consider a GLn(R)-invariant measure µn on Pn defined as follows: If we write
Y ∈ Pn as Y = (yij), yij = yji, yij ∈ R, then

dµn(Y ) = | det(Y )|−(n+1)/2
∏

i≤j

dyij .

Let SPn = {Y ∈ Pn : det(Y ) = 1}. Then G acts transitively on SPn, and
preserves the invariant integral dW on SPn which is defined as follows: If we write
Y ∈ Pn as Y = t1/nW , (t > 0, W ∈ SPn), then

dµn(Y ) = (dt/t)dW. (58)

Volume of Minkowski fundamental domain. Let SMn denote the Minkowski
fundamental domain for the action of GLn(Z) on SPn. We have chosen dµn and
dW such that by Terras, (1988, Section 4.4.4, Theorem 4, p. 168), we have the
following:

Vol(SMn) :=
∫

SMn

1 dW =
n∏

k=2

π−k/2Γ(k/2)ζ(k). (59)

Comparing volume forms. Now we want to compare the volume forms dn da on
O(n)\G and dW on SPn with respect to the map O(n)g 7→ tgg.

Put D = {b = diag(b1, . . . , bn) : bi > 0}. Choose the Haar integral db =∏n
i=1 dbi/bi on D. Then

db = (dt/t) da, where b = t1/na, t > 0, a ∈ A. (60)

By direct computation of the Jacobian of the map

(n, b) 7→ Y := t(nb)(nb)

from N ×D → Pn, one has (Terras (1988, Sec.4.1, Ex.24, p.23))

dµn(Y ) = 2ndn db. (61)

By (58), (60) and (61), for n ∈ N and a ∈ A, we have

dW = 2n−1dn da, where W = t(na)(na). (62)

If d(ḡ) denotes the Haar integral on O(n)\G ∼= AN associated to the Haar
integrals dg and dk, then by (25),

dḡ = dn da, where ḡ = O(n)na, n ∈ N , a ∈ A. (63)
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Now for any f ∈ Cc(SPn), by (62) and (63), we have
∫

SPn

f(W ) dW = 2n−1

∫

O(n)\G
f( tgg) dḡ. (64)

Relating Vol(SMn) and Vol(G/GLn(Z)). By (64), the map O(n)g 7→ tgg from
O(n)\G to SPn is a right G-equivariant diffeomorphism, and it preserves the invari-
ant integrals 2n−1dḡ and dW . We also note that O(n)\G is connected, and Z(G)
is the largest normal subgroup of G contained in K. Therefore by Theorem B.1
(stated and proved in Appendix B),

2n−1µ(G/GLn(Z)) =
Vol(O(n))

#(Z(G) ∩GLn(Z))
Vol(SMn).

By (24), Vol(O(n)) = 2, and #(Z(G) ∩ GLn(Z)) = 2. Also Γ = GLn(Z). Thus by
(59), we have the following:

Theorem 5.6.

µ(G/Γ) = 2−(n−1)
n∏

k=2

π−k/2Γ(k/2)ζ(k).

5.4 Proof of theorem 5.1. By Proposition 5.3, there exists a finite set
F ⊂ VP (Z), such that VP (Z) is a disjoint union of the orbits ΓX0, X0 ∈ F . By
Theorem 2.2, (1), and (4),

CP =
∑

X0∈F
CX0 .

By Theorem 2.4,

CX0 = cη · ν(H/H ∩ Γ)
µ(G ∩ Γ)

.

Let O(X0) denote the order in Q(α) associated to the Γ-orbit ΓX0 as in Proposi-
tion 5.3. Then by (45), Theorem 5.5, and Theorem 5.6,

CX0 =
(2π)r2 Vol(Bn(n−1)/2)

2n−1D
1/2
Q(α)/Q

· 2r1RO(X0)/wO(X0)

2−(n−1)
∏n

k=2 π−k/2Γ(k/2)ζ(k)

=
(2π)r22r1RO(X0)

wO(X0)D
1/2
Q(α)/Q

· Vol(Bn(n−1)/2)
Vol(SMn)

.

This shows that CX0 depends only on O(X0). We recall that O(X0) ⊃ Z[α].
By Proposition 5.3, for each order O in K containing Z[α], there exist exactly hO
number of X0 ∈ F , such that O(X0) = O. Therefore

CP =
∑

O⊃Z[α]

(2π)r22r1hORO
wOD

1/2
Q(α)/Q

· Vol(Bn(n−1)/2)
Vol(SMn)

.
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Proof of Theorem 1.2. By our hypothesis Z[α] is the integral closure of Z
in K = Q(α), and hence Z[α] is the maximal order OK in K. Now the theorem
follows immediately from Theorem 5.1.

Appendix A

Decompositions of Haar integrals on SL2(R)

Let

h(t) =
(

1 t
0 1

)
, ∀ t ∈ R

a(λ) =
(

λ
λ−1

)
, λ > 0.

k(θ) =
(

cos(2πθ) − sin(2πθ)
sin(2πθ) cos(2πθ)

)
, θ ∈ R/Z.

First will compare the decompositions of Haar integrals on SL2(R) with respect
to the Iwasawa decomposition and the Cartan decomposition.

Proposition A.1. For any f ∈ Cc(SL2(R)),
∫
(R/Z)×R×R>0

f(k(θ1)h(t)a(λ)) dθ1 dt dλ
λ

= (π/2)
∫
(R/Z)×R>0×(R/Z) f(k(θ2)a(α)k(θ)) |α2 − α−2| dθ2

dα
α dθ.

(65)

Proof. Suppose g = k(θ1)h(t)a(λ) = k(θ2)a(α)k(θ). Then

tgg = a(λ) th(t)h(t)a(λ) = k(−θ)a(α2)k(θ). (66)

Substituting β := α2, µ := λ2, and φ = 2πθ, from (66) we get,

µ = (1/2)(β + β−1) + (1/2)(β − β−1) cos(2φ)
t = −(1/2)(β − β−1) sin(2φ).

(67)

Therefore

|∂(µ, t)/∂(β, φ)| = |β − β−1|
β

µ.

Hence

|∂(λ, t)/∂(α, θ)| = 2π
|α2 − α−2|

α
λ. (68)

Then by (66) and (67) the map

(θ2, α, θ) 7→ (θ1, t, λ), (69)

is surjective if 0 ≤ θ < 1/2, and α ≥ 1, and it is injective if 0 ≤ θ < 1/2 and
α > 1. Therefore the map given by (69) from R/Z×R>0 ×R/Z to R/Z×R×R>0
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is differentiable, it is surjective, its degree at regular points is 4, and its Jacobian is
given by (68). This gives (65).

Next, we will show that SL2(R) = SO(2)h(R+)SO(2), and express the Haar
integral on SL2(R) with respect to this decomposition.

Proposition A.2. For any f ∈ Cc(SL2(R)),
∫
R/Z×R+×R/Z f(k(φ′)h(t)k(φ)) dφ′ dt2 dφ

=
∫
R/Z×R>0×R/Z f(k(θ′)a(α)k(θ)) |α2 − α−2| dθ′ dα

α dθ.
(70)

Proof. If we write g = k(φ′)h(t)k(φ) = k(θ′)a(α)k(θ), then

tgg = k(φ) th(t)h(t)k(φ) = k(θ)a(α2)k(θ). (71)

Therefore,
trace( tgg) = 1 + t2 = α2 + α−2. (72)

Consider the change of variables s := t2, and β := α2. Then

∂s =
β − β−1

β
∂β.

Clearly, ∂φ/∂θ = 1, and ∂t/∂θ = 0. Therefore

|∂(s, φ)/∂(β, θ)| = |β − β−1|
β

,

and hence

|∂(s, φ)/∂(α, θ)| = 2|α2 − α−2|
α

. (73)

By (71) and (72), we have that the map

(θ′, α, θ) → (φ′, s, φ)

is surjective if α ≥ 1, and it is one-one if α > 1. Therefore the map is a differentiable,
surjective, its degree at regular points is 2, and its Jacobian is given by (73). This
gives (70).

From Proposition A.1 and Proposition A.2, we obtain the following:
Proposition A.3. For any f ∈ Cc(SL2(R)),

∫

R/Z×R×R>0

f(k(θ)h(s)a(λ)) dθ ds
dλ

λ

= (π/2)
∫

R/Z×R+×R/Z
f(k(φ′)h(t)k(φ)) dφ′ dt2 dφ.
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Appendix B

A Lemma on volumes of two sided quotients

Let G be a Lie group and Γ a lattice in G. Assume that we are given a Haar
measure on G, and we want to find the volume of G/Γ. In many cases one can find
a compact subgroup K of G such that E = K\G is diffeomorphic to a Euclidean
space, and construct a fundamental domain, say F , for the right Γ-action on E.
The following result expresses the volume of G/Γ in terms of the volume of F .

Theorem B.1. Let G be a Lie group and K be a compact subgroup of G such
that K\G is connected. Let Γ be a discrete subgroup of G. Let µ̃ (resp. ν) be a
Haar measures on G (resp. K). Let η (resp. µ) be the corresponding G-invariant
measure on K\G (resp. G/Γ). Let F be a measurable fundamental domain for the
right Γ-action on K\G; in other words, F is measurable and it is the image of a
measurable section of the canonical quotient map K\G → K\G/Γ. Then

µ(G/Γ) =
ν(K)

#(K0 ∩ Γ)
· η(F), (74)

where K0 is the largest normal subgroup of G contained in K.
To prove this result, we need the the following two observations.
Lemma B.2. For γ ∈ G, put

Xγ = {ω ∈ G : ωγω−1 ∈ K}.

Then either Xγ is a finite union of strictly lower dimensional analytic subvarieties
of G, or γ ∈ K0.

Proof. Because the map ω 7→ ωγω−1 on G is an analytic map, and K is a Lie
subgroup of G, we have that Xγ is a finite union of analytic subvarieties of G. Note
that KXγ = Xγ and KG0 = G. Therefore either Xγ is strictly lower dimensional,
or Xγ = G.

Put K ′ = {γ ∈ G : Xγ = G}. Then K ′ is a normal subgroup of G, and K ′ ⊂ K.
Hence K ′ ⊂ K0. This completes the proof.

Lemma B.3. Let Γ be a discrete subgroup of G. Define

K(g) = K ∩ gΓg−1 and f(g) = #(K(g)), ∀ g ∈ G.

Then for µ̃–a.e. g ∈ G, we have

K(g) = g(K0 ∩ Γ)g−1 and f(g) = #(K0 ∩ Γ). (75)

Proof. We put n0 = #(K0 ∩ Γ). Since K0 is normal in G and K0 ⊂ K,

K(g) ⊃ K0 ∩ gΓg−1 = g(K0 ∩ Γ)g−1, ∀ g ∈ G. (76)
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Take any g ∈ G. Since K is compact and Γ is discrete, there exists an open
neighbourhood Ω of e in G such that

ΩKΩ−1 ∩ gΓg−1 = K ∩ gΓg−1.

Therefore

K(ωg) = ω(ω−1Kω ∩ gΓg−1)ω−1 ⊂ ωK(g)ω−1, ∀ ω ∈ Ω. (77)

First suppose, f(g) ≤ n0. Then by (76) n = n0, and by (77),

K(ωg) = ωK(g)ω−1 = ωg(K0 ∩ Γ)g−1ω−1, ∀ ω ∈ Ω.

In particular, f(ωg) = n0 for all ω ∈ Ω.
Now suppose f(g) > n0. Then by (77)

Ωg ∩ f−1(f(g)) = {ωg ∈ Ωg : K(ωg) = ωg(g−1Kg ∩ Γ)g−1ω−1}
⊂ ∩γ∈g−1Kg ∩Γ Xγ .

Now, by Lemma B.2, either there exists γ ∈ g−1Kg ∩ Γ such that Xγ is a finite
union of strictly lower dimensional analytic subvarieties of G, or g−1Kg ∩ Γ ⊂ K0.
In the latter case, by (76), K(g) = g(K0 ∩ Γ)g−1, and hence f(g) = n0, which is a
contradiction.

Thus we have shown that (75) holds for all g ∈ f−1(n0), and ∪n6=n0f
−1(n) is

contained in a countable union of strictly lower dimensional analytic subvarieties of
G, and hence µ̃(∪n6=n0f

−1(n)) = 0. This completes the proof.
Proof of Theorem B.1. Consider the natural quotient map ψ : G/Γ →

K\G/Γ. For any g ∈ G and x = gΓ ∈ G/Γ, we have

ψ−1(KgΓ) = Kx ∼= K/K ∩ (gΓg−1) = K/K(g).

Since K(kg) = K(g), ∀ k ∈ K, we can define f(Kg) = f(g), ∀ g ∈ G. Now by
Fubini’s theorem,

µ(G/Γ) =
∫

Kg∈F
ν(K)/f(Kg) dη(Kg). (78)

By Lemma B.3, f(g) = #(K0 ∩Γ) for µ̃–a.e. g ∈ G. Hence f(Kg) = #(K0 ∩Γ)
for η–a.e. Kg ∈ K\G. Now (74) follows from (78).
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