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SUMMARY. We give a simpler proof of an earlier result giving an asymptotic estimate for the
number of integral matrices in large balls whose characteristic polynomial is a given monic integral
irreducible polynomial. The proof uses a result on equidistributions of multi-dimensional polyno-
mial trajectories on SLy(R)/SLy(Z) which is a generalization of Ratner’s theorem on equidistri-
butions of unipotent trajectories.

We also compute the exact constants appearing in the above mentioned asymptotic estimates.
1. Introduction

Let P be a monic polynomial of degree n (n > 2) with integral coefficients which
is irreducible over Q. Let

Vp = {X € My (R) : det(\T — X) = P(\)}.

Since P has n distinct roots, Vp is the set of real n x n-matrices X such that the
roots of P are the eigenvalues of X. Let Vp(Z) denote that set of matrices in Vp
with integral entries. Let By denote the ball in M, (R) centred at 0 and of radius
T with respect to the Euclidean norm: ||(zi;)|| = (32, ; xfj)1/2. We are interested
in estimating, for large T', the number of integer matrices in By with characteristic
polynomial P.

THEOREM 1.1 (Eskin, Mozes and Shah (1996)). There exists a constant Cp > 0

such that .
i Z#VP(Z) 0 Br)

T 00 Tn(n—1)/2 =Cp.

A formula for Cp, in the general case, is given in Theorem 5.1. Under an
additional hypothesis, the formula for Cp is simpler and it can be given as follows
(Cf. Eskin, Mozes and Shah (1996)):
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THEOREM 1.2. Let a be a root of P and K = Q(«). Suppose that Z[a] is the
integral closure of Z in K. Then
o= 2m(2m)"2hR ™2 )T (1 + (m/2))
P w2, w2l (s/2)((s)

where h = ideal class number of K, R = requlator of K, w = order of the group of
roots of unity in K, D = discriminant of K, r1 (resp. r2) = number of real (resp.
complez) places of K, and m = n(n —1)/2.

REMARK 1.1. The three components of the above formula for Cp are volumes
of certain standard entities in geometry of numbers (with respect to the canonical
volume forms on the respective spaces):

Vol(JO(K)/K*) = Tlfg#,
Vol(B™) = «™2/T(1+ (m/2)),

Vol(SMy,) =[] 7 */°T(s/2)¢(s).
s=2

Here J°(K)/K* = the group of principal ideals of K modulo K* (see Koch (1997),
Chap. 1, §5.4), B™ = the unit ball in R™, and SM,, = the determinant one surface in
the Minkowski fundamental domain M, in the space of n xn real positive symmetric
matrices with respect to the action of GLy,(Z) (see Terras (1988, Sect. 4.4.4)).

REMARK 1.2. The hypothesis of Theorem 1.2 is satisfied if « is a root of unity
(see Koch (1997), Theorem 1.61).

The conclusion of Theorem 1.2 was obtained in Eskin, Mozes and Shah (1996)
under a further hypothesis that all roots of P are real.

In Eskin, Mozes and Shah (1996), the proof of Theorem 1.1 is based on the fol-
lowing: (1) the existence of limits of large translates of certain algebraic measures
as proved in Eskin, Mozes and Shah (1997); (2) showing that such limiting distribu-
tions are actually algebraic measures, using Ratner’s description of ergodic invariant
measures of unipotent flows Ratner (1991a); and (3) the verification that a certain
condition, called the non-focusing condition, holds in the case of Theorem 1.1 (See
Ratner, 1995).

A main purpose of this article is to provide a simple and direct proof of this the-
orem using the following result on equidistributions of ‘polynomial like’ trajectories
on SL,(R)/SL,(Z):

THEOREM 1.3. Let I' be a lattice in SLy,(R), u the SL, (R)-invariant probability
measure on SL,(R)/T", and x € SL,,(R)/T". Let

@ = (@ij)?,jzl :R™ — SLn(R)
be a map such that each ©;; is a real valued polynomial in m variables, and ©(0) = I,
the identity matriz. Suppose that O(R™) is not contained in any proper closed sub-
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group L of SL,,(R) such that the orbit Lx is closed. Then for any f € C.(SL,(R)/T),

. 1 _
TIEOVOI(B(T))/B(T) f(©(s)z) ds*/fdll,

where B(T) denotes the ball of radius T in R™ centered at 0.
Take 0 <r <m. Put BY(T) = B(T) N (Ry)"xR™". Then

. 1 ~
oy SO o= / Fdu, V€ Co(SLo(R)/T),

where O(s) == @(31/2, cee 571‘/2,570“7 ceySm), Vse (Ry)" xR™ 7.

The first part of the theorem is a particular case of Corollary 1.1 of Shah (1994),
whose proof can be readily modified to prove the second part. This result is a
generalization of Ratner’s theorem on equidistribution of orbits of one-dimensional
unipotent flows Ratner (1991b). The main ingredient in its proof is, just as in
Ratner (1991Db), the classification of ergodic invariant measures for unipotent flows.

As in Eskin, Mozes and Shah (1996), the first step in the proof of Theorem 1.1
is its reformulation to a question in ergodic theory of subgroup actions on homoge-
neous spaces of Lie groups; we follow the approach of Duke, Rudnick and Sarnak
(1993). The second step is to reduce this question to one about equidistribution of
polynomial trajectories, so that Theorem 1.3 can be applied.

Another purpose of this article is to obtain an expression for Cp in terms of
algebraic number theoretic constants associated with P; this is carried out in Sec-
tion 5.

2.  Reduction to a Question in Ergodic Theory

We write
9X :=gXg~', VgeGL,(R),V X cM,(R).

Put
I'=GL,(Z) ={X € M,(Z) : det(X) = £1}.

If X € Vp(Z) and v € T, then "X € Vp(Z); and we denote the I'-orbit through X
by
X ={X:yeT}.

2.1 Finitely many T-orbits in Vp(Z). Using a correspondence between I'-orbits
and ideal classes due to Latimer and MacDuffee (1933) and the finiteness of class
numbers of orders, one has the following (see Proposition 5.3).

ProPOSITION 2.1 (Latimer and MacDuffee). There are only finitely many dis-
tinct T'-orbits in Vp(Z).
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REMARK 2.1. The above proposition is a particular case of a general ‘finiteness
theorem’ due to Borel and Harish-Chandra (1962).
By Proposition 2.1, to prove Theorem 1.1 it is enough to prove the following.
THEOREM 2.2. Let X € Vp(Z). Then there exists cx > 0 such that
#('X N Br)

Th_r,noo Tnn—1)/2 X

2.2 Considering a fized I'-orbit. Put G = {g € GL,(R) : det g = £1}. Since the
conjugation action of GL,(R) on Vp is transitive, the same holds for the action of
G on Vp. Note that I' = GL,,(Z) is a lattice in G. Fix any Xy € Vp(Z). Put

H:{QGGZQXQZX()}.

Since all the eigenvalues of Xy are distinct, H is an abelian group consisting of
elements diagonalizable over C. In fact, H is a real algebraic torus defined over Q.
Using Dirichlet’s unit theorem we will show the following (Theorem 5.4):
PROPOSITION 2.3. H/H NT is compact.
Define
Rr = {g eG: Xy € BT}/H c G/H,

and yr denote its characteristic function. Then

#("XoNBr) = #@[HINRr)= Y xr(y[H). (1)
4€T/TNH

2.3 Choosing Haar measures on G and H. We choose Haar measures [i (resp.
7) on G (resp. H). Let p (resp. v) denote the left invariant measure on G/T" (resp.
H/H NT) corresponding to the measure i (resp. ). Let n be the corresponding
left G-invariant measure on G/H (see Raghunathan (1972), Lemma 1.4); that is,
vV f e Ce(Q),

/G f di = /g e ( /H f(gh) dﬂ(h)) dn(gH). 2)

In Section 3.8 we show that there exists a constant ¢, > 0 (see (45)) depending
on X such that
Jim n(Re)/ 7002 = ¢ (3)

2.4 Introducing an auziliary counting function. For all T > 0 and g € G, let

Pr(gl) :=#(gU[HINRr) = > xr(g7H). (4)
el /(TNH)

Note that Fr is bounded, measurable, and vanishes outside a compact set in G/T".
By (1) and (3), in order to prove Theorem 2.2, it is enough to prove the following:
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THEOREM 2.4.
. Fr(el') v(H/HNT)
1m =
T—oc 1(Rr) w(G/T)

Although the precise constant, given by a volume ratio, on the right hand side
of the above equation is not needed for proving Theorem 2.2, it will be used in the
computation of Cp.

2.5 Weak convergence is enough. From the computations in Sections 3.5 and
3.6, one can deduce the following: Given any « > 1 there exists a neighbourhood (2
of e in G such that

R,-17 CQRp C Rer. (5)

Now by (3),
lim lim n(Re.r)/n(Rr) =1 (6)

k—1T—o00

By (5) and (6), in order to prove Theorem 2.4, it is enough to prove the following
weak convergence (see Eskin and McMullen, 1993):

THEOREM 2.5. For any f € C.(G/T),

f (L Fr) _ v(H/HOT)

T ) S (71D R AR

Using Fubini’s theorem (Raghunathan (1972), Lemma 1.6), we have the follow-
ing (Duke, Rudnick and Sarnak (1993), Eskin and McMullen (1993)):

PROPOSITION 2.6. For any f € C.(G/T),

Py = o 190 (Saersiann Xo(gvH) ) du(3)
= Joyunr FaD)xr(9H) di(g)
= Sy xr(9H) (i e F(hT) dv(h)) dn(gH)
fRT (fH/Hnr f(ghl’) dV(h)) dn(gH),

where i is the left G-invariant measure on G/(H NT) corresponding to fi, and &
denotes the coset x(HNT).

In Eskin, Mozes and Shah (1996) further analysis of the limit was carried out
by showing that, as T; — oo, for ‘almost all’ sequences ¢;H — oo in G/H, where
ng € RTi;

(7)

, i *)I/(H/Hﬁr) as i — 0o
/H o T @) — P (g .

In view of (7), this implies Theorem 2.5.

In this article, our approach is to change the order of integration in the final
expression in (7), and then apply Theorem 1.3 to find the limit. For this purpose,
we need an explicit description of Rp, and of the measure 1. We will show that
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Ry is a ‘polynomial like’ image of a ball, and 7 is the push forward of a Lebesgue
measure under this map.

3. Integration on Rp

NOTATION 3.1. Let r; be the number of real roots of P and 75 be the number
of pairs of complex conjugate roots of P. Since P is irreducible, all roots of P
are distinct, and n = r; + 2r2. Fix a root a of P. Let o4,...,0,, be the distinct
real embeddings of Q(«). Let oy, 41,...,0p 12r, be the distinct non-real complex
embeddings of Q(«), such that

Ori+ro+i = Opry4i, 1 S 1 S r2. (8)
Put
0'7;(01) lf].SZSTl
di = (ai_“ —bin, ) ifry <i<ry+ra, (9)
bi—rl ai—rl

where a; + bjv/—1:= 0y 1i(@), i=1,...,rs.
3.1 Diagonalization of X and H. Let

X, = diag(dy,...,dr4ry)
H, = {gGGI gX1:X1}
R%ﬂ = {QEGI gXleBT}/Hl.

Since the eigenvalues of X are same as the roots of P, X1 € Vp. Let gy € G be
such that 99X, = X;.

Define v : G — G as ¥(g) = goggo ™',V g € G. Then Hy = o(H) and . (i) = ji.
We choose a Haar measure 71 on H; defined by

0 = 1 (D). (10)

Define ¢ : G/H — G/H; as ¢(gH) = ggo *Hy,V g € G. Let 11 := ¢.(n). Then
by (2),V f € Ce(G),

[rai=[ . ( [ ram) () ) dnoth). (1)

R = ¢(Ry) and  mi(Rp) =n(Rr). (12)
Put Fl =

= ¢(I). Define ¢ : G/T — G/I'y as ¢(gI') = ¢(g)T1, V g € G.
Let py := ¥ (p) and vy := ¥, (v). Then py is the G-invariant measure on G/T'y
associated to fi. Also vy is the Hi-invariant measure on

Also

Hl/(Hl n Fl) = lel/rl = QZ(HF/F)
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associated to 71, and
vi(Hy/HyNTy) =v(H/HNT). (13)

Now we can rewrite Proposition 2.6 as follows:
PROPOSITION 3.1. V f € Co(G/T), and f1 := fop™ € Co(G/TY),

/ ( / f(ghT) du(h>> dn(gH)
Ry \JH/HAD

/ (/ fi(ghT'y) dVl(h)> dm (gHy).
Ry \JH,/H AT,

Due to this proposition, instead of integrating on Ry, it suffices to integrate on
RL. Therefore we describe the measure 11 on G/H;. For this purpose we want to
express G as G = Y Hy, where Y is a product of certain subgroups and subsemi-
groups of G (see (23)). Later, in Section 3.3 we will decompose the Haar measure of
G into products of appropriate Haar measures on these subgroups. This will allow
us to describe 7; as a product of the chosen Haar measures on the subgroups and
subsemigroups, whose product is Y (Proposition 3.2).

<f7FT>

3.2 Product decompositions of G. In view of the above, first we will describe
various subgroups of GG, and then obtain different product decompositions of G into
those subgroups and their subsemigroups.

Let O(n) denote the group of orthogonal matrices in GL,(R). Let

N = {n = (nij)ﬁjzl 1Ny € R, Nij = 0if 7> 7y Mg = 1} (14)
A = {a = diag(ai,...,a,) : a; > 0, Haizl}. (15)
i=1

By Iwasawa decomposition, the map
(k,n,a) — kna : O(n) x N x A— G

is a diffeomorphism.
Fori,j=1,...,r1 + 1, let

R if’iSTl,ng‘l
Mlxg(R) ifig’l“l,j>7“1
ngl(R) ifi>’l“1,j§7“1
MQ(R) ifi>7’1,j>7"1.

Mij =

r1+ra

We will express g € M,,(R) as g = (gi5); ;_1, where g;; € M;;.
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Put
u - (H1§i<j§h+r2 Mz) = R%n(”_l)_ﬁ,
0 ifi>j
w(e) = (uij); = (vi;) €U Mij Suij =1 1 ifi=j
Tij if 1 < j,
1 t
h(t) :(0 1)7VtER.
Define
L, = {diag(1,...,1,¢91,...,9r,) € G:g; € SL2(R)}
K, =

.., 1,91,.
{diag(1,...,1,k1,... k) € G: k; € SO(2)}
(

Ni = {h(t) = diag(L,..., L,h(t)), ... h(t,,) -
t=(t;) € RTQ}

A1 = {a1:diag(l,...,l,bl,...,bw):
b; = diag(3;, 6; 1), B > 0}

U = {u(x):x=(x;) €U}
1/2

C = {c:diag(cl,...,crl,crl+1fg,...,cl/2 L) eqG:

1472

¢i >0, [[5 e =1}

X = {diag(eh...767«17]2,...,12)EG:eZ—::I:l},
where I denotes the identity matrix in M (R).
We have the following product decompositions:
N:N1~U’ A:AI'C7
H =% K-C, L=K;-N;-A;.

393

(17)

(18)

(19)

(20)

In each of the above decompositions, the product map, from the direct product
of the subgroups on the right hand side to the group on the left hand side, is a

diffeomorphism. We also note that

Y.CCZg(L), Ne(Uy=%-C-L-U.

(21)

(22)

Therefore
= O(n) . KlNlAl -UC
=0(n)-L-U-C
One has that SLy(R) = SO(2) - h(R4) - SO(2) (see Proposition A.3). Since

L = (SLy(R))™, we have that

L =K NK,
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where N;” = {h(t) : t € (Ry)™}. Now, in view of (20)—(22), we have

G :O(’I’L)K1N1+K1UC
=0(n) N U - K,C
=0(n)Y- N, U K,C (23)
=0(n)-N{U-3K,C
=0(n)-N{U-H;.

3.3 Choice of Haar measures on subgroups of G. Our next aim is to choose the
Haar measures on each of the subgroups defined in the previous section, so that the
analogues of the decompositions (20), (22) and (23) also hold in terms of products
of the Haar measures on these subgroups.

Choice of Haar measure i on G. We choose a Haar integral dk on O(n) such
that Vol(SO(n)) = 1; in particular,

Vol(O(n)) = /O k=2 (24)

We choose the Haar integral dn on IV (see (14)) such that
dn = H dn”
1<j
We choose the Haar integral da on A such that V f € C.(A),

. oy day
[ f@da= [ g ST e 1)

alternative notation: da = H?;ll da;/a;.
We choose a Haar measure i on G such that,

/ fdp :/ f(kna) dkdnda, V f € C.(G). (25)
G O(n)XNxA

Decomposition of integrals on A and N. We choose a Haar integral dc on C
such that (see (18))

de = (dcl/cl) e (dc7'1+?“2—1/c7'1+7“2—1)'

Choose the Haar integral day := [[}2, dB3;/8; on Ay (see (17)). Then da = da, de,
where a = a;¢, (a1,¢) € Ay x C (see (20)).

Let dt denote the standard Lebesgue measure on R™. Let da denote the stan-
dard Lebesgue measure on Y. Then dn = dtdx, where n = h(t)u(x), (t,z) €
R™ x U.

Choice of Haar integral dl on L. Let dl be a Haar integral on L such that,

/ £ di = / F(kh(t)ay) dO(k) dtdar, ¥ f € Co(L),  (26)
L KixR™2x Ay
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where 6 denotes the Haar measure on K7 such that
0(K,) = 1. (27)

Decomposition of Haar integral dfi. From the above choices of Haar integrals on
various subgroups of G, their interrelations, (21) and (22) we have

/ F(g) diilg) = / f(klae) didldzde, ¥ f € Co(G).  (28)
G O(n)XLxUXC

Choice of Haar measure  on H. We also choose a Haar measure 7 on H such
that for the Haar measure 7y := 1. (0) on H; (see (10)), we have (see (20))

/ fdin = Z/K F(oke) do(k)de, ¥ f € Co(HY). (29)

ocED 1xC

3.4 Description of integral n; on G/H;. In order to describe 1y, we will express
the integral dji as a product of an integral on certain subset of G and the integral
dvy using the expressions (28) and (29).

A new description of the integral dl. First we will express the Haar integral on
L in terms of the product decomposition L = K1N1+K1.

By Proposition A.3 (stated and proved in Appendix A), the following holds:
V f € C.(SLa(R)),

Jso@)xmxa., £ (kh(t) diag(8, 571)) dv(k) dt (d53/5)

(30)
= (7/2) Jso(2)xr, xso(2) f (k1 h(t'/2)ks) d9(k:) dt d9 (K1),
where 9 is a probability Haar measure on SO(2).
Since L = SLo(R)™2, by (26) and (30), V f € C.(L),
/ f) dl = (x/2)™ / F(kR(EY?)E') dO(k) dt dO(k), (31)
Kix(Ry)m2 x Ky

where the notation is
£/2 = (1128 V= (t, . tey) € (Ry)™. (32)
From (23) and (28)-(31), V f € C.(G),

/f ) dir(g

(r/2) /
O(n)x K1 x(Ry)™2x Ky xUXC
x dk dO(K,) dt d6 (k) d de

w2 Y [ Fkoh (8 )u(@)hac)

cER (n)x(Ry)"2xUX K1 xC

F(kRLR(E?)kyu(z)e)

« dk dt da dO(k, ) de.

= ﬂ22fﬁ*r2/ F(kh(t? u(a)hy) dk dt da diy (hy).
O( ) (R+)T2XZ/IXH1
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Now in view of (11), we have the following;:
PROPOSITION 3.2. For any f € Co(G/Hy),

/ F i = (2m)722" / FORR(E/2)u(@) Hy) dis dt da.
O(n)x (B4)72 xU

3.5 Changing the order of Integration. The Euclidean norm on M, (R) is invari-
ant under the left and the right multiplication by the elements of O(n). Therefore

Ry = O(n)¥(Dy)H: /Hy,
where

U(t,x) h(tY ) u(z), V (t,x) € (Ry)"™ x U, (see (32))
DL = {(t@) e Ry XU | YEX | < T

(33)

Since U = R2™("=1="2 et ¢ denote the standard Lebesgue measure on (Ry)m x
U. Then by (24) and Proposition 3.2,

m(Ry) = (2m)"=22”"~Ve(Dy). (34)

For the purpose of analysing the limit in Theorem 2.5, we change the order of
integration in Proposition 3.1 using Proposition 3.2 and (33)—(34) as follows:

PROPOSITION 3.3. For all f € C.(G/T'1),

#R}) fR%ﬂ (le/Hlmrl f(ghrl) dyl(h)) dﬁl(ng)
= (1/2) Joum & - [, mor, dvy(h) x
« (17 Jiemyeps, (KU @)RTY) dida)

where h denotes the coset h(Hy NTy).

3.6 Description of the set DX. Our aim for this subsection is to show that D1,
is asymptotically the image of a ball of radius 7" under a ‘polynomial like’ map (see
Propositions 3.4-5).

Coordinates of Y&®)X,. Take x = (2;;) € U. I u(x)™! = u(y), y = (yi;) €U,
then

Yij = —Tij + Bij(Tri)o<i—k<j—i)
where B;; : H0<l_k<j_i My,; — M;; is a polynomial map for i < j —1, and B;; =0
ifi=j5-1.

If u(a:)Xl = u(m)Xlu(y) = (wij);}j'gf‘, then Wij = 0ifi> 4, and

d; ifi=7 (see (9))
Wi = op - . 35a
J { Sij(wi;) + Qij(Tr)o<i—k<j—i) ifi <y, (352)
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where S;; : M;; — M;; (i < j) is defined as
Sij(x) = xd; — dix, ¥ x € My, (35D)

and @Q;; : Ho<l7k<jﬂ. My — M;; is a polynomial map for i < j —1, and Q;; = 0 if
i = j — 1; an explicit formula for @);; will not be needed later.
Let t = (t;) € (Ry)™. If we write

T = M (1) = (Gt (35c)
then (;; = 0if i > j, and
Gij = h(t)2 wyh(—t2 ) ifi <, (35d)

where by convention: h(tllgl) = h(—tgf,l) =1forl<i<nr.
Note that for i = 1,...,72, (see (9))

1/2 1/2\ a; — tl/Qbi _(1 + t)bz
A pin(-02) = (4 O, (35¢)
Therefore by (35¢),
T2
| =2 = || X01” + Zb?(t? +4t;) + Z [k (35f)

i=1 i<
where the sum 372772 |¢;;|? is evaluated using (35d), (35a), and (35e).
Ezpressing DY as an image of a ball. Now, in view of (33), we want to find a
function

6:(Ry)™ xU — (Ry)™ x U
such that

5(3:;2—\\X1u2>1/2 ) =Dr, (36)
where

B = {(s,2) € (R+)™ x U : ||s|* + ||z]* < T*}.
For (s,z) € (R)™ x U, if we write §(s, z) = (t,x), where t = (t;) € (R,)"™ and
x = (z;;) € U, then in view of (33), (35f), and (36), we want that the following
equations are satisfied:

s; = [D2(t2 + 4t;)]Y/2, (1<i<ry) (37)

Zij :Ci]’, (1§7:<j <r +7’2), (38)

where (;; is a function of x;; and {zk; : 0 <1 —k < j — i} (see (35a) and (35d)).
By first solving the equations in (37), we get

t; = (b 2s? +4)Y/2 — 2.
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Then we proceed to solve the equations in (38) inductively, in the following
order: for any (i, ) they are solved for all {zy; : 0 <1 —k < j — i} before solving it
for the x;;. Therefore it is enough to express z;; in terms of s, z, t, and {zx; : 0 <
l—k<j—i}. We get

Ty = xij(t7{xkl:0<l—k<j—i})
_ 1/2 1/2
= 8! (h(—tifrl)zijh(tjfrl) - Qij((xkl)0<lfk<jfi>v) :
where S;; and @;; are as in (35a) and (35b).
‘Polynomial like’ approzimation for 5. We define ¢’ := (t}) € (R4)",

(39)

t;: |bi|718i, 1§ZST’2
Next we define =’ := (z;) € U inductively, using the formula in (39), as follows:

xgj:xij(t',{xﬁd:O<kfl<jfi}), (1<i<j<ri+mr).

Then we define
8(s,z) = (t,x).

It is straightforward to verify that
0<t,—t; <2, 1 <4< ry.
Therefore R
§(Bf_,) C 8(BF) c 6(B}), YT > 0. (40)
Also note that if T > || X1]|, then
T X 2T < (T2~ ||X1 )2 <T.

Therefore, since (36) and (40) hold, we get the following:

PROPOSITION 3.4. For T > || X1|| + 2,

8(Bf 5 yxyj2r—1) C Di. C §(B7).

ProproOSITION 3.5. The map © : Rzn(n-D) _, @ defined by
O(s, 2) == U(6((s2,...,52),2)), V(s,2) R xYf =R2"n"1),

? < rg

is a polynomial map; that is, each coordinate function of © is a polynomial in
Ln(n — 1)-variables.

2
3.7 Jacobian of §. Let the notation be as in the definition of §. The Jacobian of
0 at (s, z) is given by:

Toc(d)(s,2) = [ot.a)/0(s,2) = [[10t/0s [] 10wl /0551 (a)
=TI T fdettsiy) ', (12)
i=1 i<j
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where (41) holds because 0t,/0ziy = 0 for all i,k,1, and Jz},;/0z;; = 0 for all
0<l—k<j—i,and (42) holds because det h(t) = 1 for all ¢. In particular, Jac(J)
is a constant function.

Computation of det(S;;). By (16)
M” = HOm(Ryi,RVj) = RW X (IRVJV)*7 (1 S 7 < ] S 1 + TQ),

where v, = 1if 1 <k <7, and vp, = 2if r1 < k < ro. Under this canonical
isomorphism, S;; corresponds to

(1®d;) - (d®1), (see (35b))
whose eigenvalues are distinct, and by (8) they are
oj(e) —ou(a), i€, j €],

where k = {k} if v, = 1, and k = {k,ro + k} if 1, = 2. Therefore by (42)

Jac(0) =27 [ loi(e) = oj(a)| ™" =2"/|Dgayal '/, (43)

1<i<j<n

where Dg(q)/@ denotes the discriminant of Q(a) over Q.
3.8 Volume of Ry. We note that

((Bf) = 2772 Vol(Br(n=1/2)pn(n=1/2, (1)

where Vol(B™) denotes the volume of a unit ball in R™. Also note that for any
m € N and a,b > 0, if T > max{a, b} then

(T +a)™ — (T —b)"™)/T™ < m(a+b)T .

Therefore by (12), (34), Proposition 3.4, and since Jac(d) is a constant,

limy_ o n(Ry) /0(BF) limy— oo 11 (RY) /€(BF)
= (2mm2=" "V limp_ ., (DY) /0(BY)

(2m)r22= (=1 Jac(§).

Now by (43) and (44),

(27r)"2 Vol(B™(n—1)/2)
2771 Dga)/o]*/?

ey 1= Jim n(Re) [T/ =
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4. Equidistribution of Trajectories

In view of Propositions 3.1 and 3.3, by Propositions 3.4-5 and since Jac(J) is a
constant we have the following: for any f; € C.(G/I'1), and any x; € G/I'y,

hmT—M}O ﬁ f(t,w)GD% fl(\:[j(t7 m)xl) dtdx (46)
= llmT*,OO @ f(S,Z)EB; fl((—)(Sl/?, z){L‘l) ds dz,

Since ©(R™ x U) D U, in order to apply Theorem 1.3 we show the following;:
LEMMA 4.1. For x € G/Ty, if Hyx is compact then Uz = G/T.

ProoF. Choose ¢ € C, such that ¢ > ... > ¢p4r, > 0 (see (18)). Then
U={ue€G:c™uc™ — 1asm — oo}, which is the expanding horospherical
subgroup of G associated to c. Therefore by Proposition 1.5 of Dani and Raghavan
(1980)

UX Uy =Gy /Ty =G/Ty, VyeG/T;. (47)

By (20)-(21), C C Hy and Hy C Ng(U). Let F be a compact subset of Hy such
that Fo = Hyz. Then by (47)

G/T1 =CUx C HHUz =UH,x =UFz = FUx. (48)

By Moore’s ergodicity theorem (Moore, 1966), U acts ergodically on G/T'.
Hence there exists x1 € G/T'y such that Uz; = G/T';. By (48) there exist h € F
and xzo € Uz such that z; = haxy. Therefore, since h € Ng(U),

G/Fl =Uzxzy =Uhzy = hUxy C hm

Hence Ux = G/T';. 0
PROPOSITION 4.2. For all f1 € C.(G/T1), k € K and h € Hy:

1
lim 7/ f1(kO(s'/?, 2)hT dsdzzi/ f1du,
T—co ((Bf) Js.z)eB}: (k6 )LL) 11 (G/T) Jom,

where © is as in Proposition 3.5.

PrOOF. Note that G/T; = GY/(T'1 N G°) and G° = SL,,(R). We apply Theo-
rem 1.3 for T’y N G in place of ', x = hI'; and the function f € C.(G/I'1), where
f2(gT1) := fi(kgl'1), ¥ g € G. Since H,T'; /Ty = ¢(HT/T), by Proposition 2.3, H,x
is compact. Therefore by Lemma 4.1, Uz is dense in G/T';. Since ©(R™ xU/) D U,
the conclusion of Theorem 1.3 holds, and hence the proposition follows. 0O

Proof of Theorem 1.1. By a series of reductions in Section 3, we showed that it is
enough to prove Theorem 2.5. Now it is straightforward to deduce this result from
Propositions 3.1 and 3.3, Equation (46), Proposition 4.2, Lebesgue’s dominated
convergence theorem, Equation (13), and the fact that 1 = . (u). 0
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5. Computation of Cp

The rest of the article is devoted to proving the following:

THEOREM 5.1. Let the notation be as in Theorem 1.1. Fix any root a of P.
Then

Vol(Bn(n—l)/Q)
Cp= Z K(0) - TNOlSM,)
ODZ[a]

where the sum is over all orders O of the number field K = Q(«) containing Z[a],

K(0) = 2 (27T)T2hoRo’
w@|DK/@|1/2
here
ry =  Number of real places of K,
ro = Number of complex places of K,
ho = Number of modules classes with order O
Ro = Regulator of O, (see (56))
wo = Order of the group of roots of unity in O,
Dg,q = Discriminant of K,
and

Vol(B™) = a™/2/T(1+m/2)

Vol(SM,) = [ 7 /2T (s/2)¢(s)

The number theoretic terms involved in the above statement will be explained
in the course of the proof of this theorem; see Koch (1997, pp. 10-17) for their
definitions. See also Remark 1.1.

For computing Cp, by Proposition 2.1 and Theorem 2.2, we need to count the
number of distinct I-orbits in Vp(Z), and compute Cx, for each Xy € Vp(Z). To
compute Cx,, by (1), (3), (4), and Theorem 2.4, we need to compute ¢,,, v(H/H(Z)),
and p(G/T. Note that (45) already gives a formula for ¢,.

5.1 T'-Orbits in Vp(Z). We will describe a result on a correspondence between
the classes of matrices and classes of ideals; here two matrices are said to be in the
same equivalence class if they are in the same I'-orbit.

Fix any root o of P. Any (nonzero) ideal I of Z[a] is a free Z-module of rank
n. We say that ideals I and J of Z[«a] are equivalent if and only if al = bJ for some
nonzero a,b € Z[a]. Let [I] denote the class of ideals in Z[«a] equivalent to I.

For any X € Vp(Z), a is an eigenvalue of X, and there exists a nonzero eigen-
vector w = Ywq,...,w,) € Q(a)™ such that

Xw = aw (49)
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Replacing w by some integral multiple, we may assume that w; € Z[a] for 1 <i < n.
Put Ix = Zwi + -+ + Zw,. Then by (49), alx C Ix. Hence I'x is an ideal of Z[«a].
The ideal class [Ix] depends only on X, and not on the choice of the eigenvector w.

Let v € T = GL,(Z). Put Y = X, and w’ = yw = Yw},...,w,). Then
Yw' = aw', and v} € Ix for all i. If we put Iy = Zw| + - -+ + Zw),, then Iy C Ix.
Since y~! € GL,(Z) and w = vy~ 'w’, we have Ix C Iy, and hence Ix = Iy.

Thus the ideal class [Ix] depends only on the I'-orbit "X, and not on the choice
of its representative X. Now we state a result due to Latimer and MacDuffee (1933);
see Taussky (1949) for a simpler proof.

THEOREM 5.2. The assignment "X s [Ix] is a one-to-one correspondence
between the collection of T-orbits in Vp(Z) and the collection of equivalence classes
of ideals in Z[a].

Orders in Q(a). A subring O of the number field K = Q(«) is called an order in
K, if its quotient field is K, ONQ = Z, and its additive group is finitely generated.

A free Z-submodule of K (additive) of rank n = [K : Q) is called a lattice in K;
for example, any (nonzero) ideal of Z[a] is a lattice in K. Two lattices I and 9V
in K are said to be equivalent, if a®t = b9 for some nonzero a,b € Q(a). Let M
denote the class of lattices equivalent to 9. For ideals I and J of Z[a], we have
M=J&eIl=J

For a lattice 9 in K,

OOM) == {3 € K : pM C M} (50)

is an order in K, it is called the order of 9, and it depends only on the class 9.
Let O be an order in K. Then by the class number theorem (Koch (1997),
Theorem 1.9), there are only finitely many classes of lattices in K with order O.
This number is called the class number of O and denoted by heo.
The ring Ok of algebraic integers in K is an order. Any order O in K is
contained in Ok, and [Ok : O] < co. Also Z[a] is an order in K, and hence there
are only finitely orders O in K with O D Z|a].

PROPOSITION 5.3. The -orbits in Vp(Z) are in one-to-one correspondence with
the classes of lattices in K whose orders contain Z[«].

In particular, each order O containing Z|a] is associated to ho distinct T'-orbits
in Vp(Z), and the number of distinct I'-orbits in Vp(Z) equals 3_ o~z ho-

PROOF. In view of Theorem 5.2, to any I'-orbit 'X in Vp(Z), we associate the
lattice class Ix of the ideal Iy in Z[a]. Then O(Ix) D Z[a/.

Conversely, let 9t be a lattice in K such that O(91) D Z[a]. Then there exists
a nonzero integer a such that I := a9 is an ideal of Z[a]. By Theorem 5.2, there
exists X € Vp(Z), such that [I] = [Ix]. Therefore 9 = Ix, and hence 9N is
associated to a unique orbit X, and O(9) = O(Ix). This proves the one-to-one
correspondence.

Now the second statement follows from the class number theorem for orders
(Koch (1997), Theorem 1.9). O
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5.2 Number theoretic ‘realizations’ of H and H(Z). Fix Xo € Vp(Z) and let the
notation be as before. Put

Zx, ={Y € Mu(R) : YX( = XY}

Since X € M,,(Q), we have that Zx, is the real vector space defined over Q; that
is, ZXO (Q) Rq R = ZXO, where ZXO (Q) = ZXO N Mn(Q)

Let w = Ywy,...,wn) € Z[a]", w # 0, be such that Xow = aw. Since all
eigenvalues of Xy are distinct, there exists an R-algebra homomorphism A : Zx, —
C given by Y — Ay, such that Yw = Ayw. Now if Y € Zx,(Q) then Ay € Q(a).

Let Ix, = Zwy + ...+ Zw,. Then Ix, is an ideal of Z[a], and hence Iy, ®z Q =
Q(«). Therefore {wy, . ..,wy,} are linearly independent over Q. Hence if Y € Zx,(Q)
and Yw =0, then Y = 0. Thus

ker AN Zx,(Q) = 0.

Let Yj denote the matrix of the multiplication by § € Q(«) on the Q-vector
space Ix, ®z Q, with respect to the basis {w1,...,w,}. The map 8 — Yz is a
Q-algebra homomorphism of Q(a) into M,,(Q). Since Y, = Xy, we have that
Ys € Zx,(Q). Also Ay, = . Hence ) : Zx,(Q) — Q(«) is an isomorphism between
the Q-algebras. In particular,

Zx,(Q) = Q[Xo] and Zx, = R[Xy].
Note that for Y € Zx,(Q), \yvIx, C Ix, © Y € M, (Z). Therefore
Zxo(Z) = Zx, NMn(Z) ={Y € Zx,(Q) : Ay € O(Xo)}, (51)

where O(X() denotes the order of Ix, (see (50)).
FEquality of Determinant and Norm. Recall the Notation 3.1. Define o;(w) :=

Hoi(w1), ..., 0i(wn)). Then Xyo;(w) = 0;(a)o;(w). Let

g1 = (Ul(w)a Ty Un(w)) € Mn((c)
Then

g1 Xog1 = diag(o1(a), ..., 0,()),
and o;(a) # oj(a), if @ # j. Therefore g1~ 'Zx,g1 consists of diagonal matrices.
We define functions D; on Zx, by

g1 Y1 =diag(D1(Y),...,Dp(Y)), VY € Zx,

Since Zx, = R[Xy] and the D;’s are R-algebra homomorphisms, for all Y € Zx,,
we have D;(Y) C R for 1 <i <y, and by (8),

DT1+T2+i(Y) = DT1+i(Y)’ (1 <i< T2)'
Therefore

ri+ra

det(Y) =[] ID:(Y)] = H |Di(Y)

i=1

i VY € Zx,, (52)
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where v; = 1 if ¢ < rq, and v; = 2 if ¢ > r1. It is straightforward to verify that
D;(Y)=0i(\y),VY € Zx,(Q). We have proved the following

LEMMA. det(Y) = N@(a)/Q(/\y) for allY € Zx, (Q)
Note that H = {Y € Zx, : |det(Y")| = 1}. Therefore by (51),

H(Z) = HNZx,(Z)
= {Y € Zx,(Q) : [Ng)0(Mv)| = 1, Ay € O(Xo)} (53)
= {Y €Zx,(Q): \y € O(Xo)*}
&= O(Xo)x;

here O(X()* denotes the multiplicative group of the order O(Xy) which is the same
as the multiplicative group of unit norm elements in O(Xg)*.

Dirichlet’s Unit theorem and compactness of H/H(Z).

THEOREM 5.4. H/H(Z) is compact.

PROOF. Define [ : H — R "2 as (see (52))

l(h) = (Vl log‘Dl(h)L"'ayh-i-?”z 10g|DT1+T2(h)|)7 VheH.

Let
E={(x1,...,Tp 4r,) ER™ ™2y 4o p. 0 =0}
Since Zx, = R[X] is an R-algebra and D;’s are R-algebra homomorphisms, by (52)
and (53), [ : H — E is a surjective homomorphism.
By (20), H = ¥ - K; - C is a direct product decomposition; let p : H; — C
denote the associated projection. We define i1 : C — E by

ll(c) = (IOg Cly- - alOg CT'1+T'2)7 (See (18))

and extend it to Hy by I3 (h) =l1(p(h)), ¥ h € H;.
We note that I1(gohgo ') = I(h) for all h € H. Therefore

ker | = go~ " (ker l1)go = go~ ' S K1go.

Hence ker(l) is compact.
We define ¢ : O(Xy)* — E, by

LX) = (v log ot A, - vy Vry 4 108 |07 4y (V)]), VA € O(Xp) ™. (54)

Clearly, [(Y) = ¢(A\y) for all Y € H(Z). By Dirichlet unit theorem (Koch (1997),
Theorem 1.13), £(O(Xy)*) is a lattice in E. Therefore [(H)/I(H(Z)) is compact.
Since ker(l) is compact, this completes the proof. 0

Computation of v(H/H(Z)). Let pr : Rtz — Rmi+r2=1 be the projection
on the first 7, + 7o — 1 coordinate space. We choose a measure m on £ C R"+72
such that its image under pr is the standard Lebesgue measure on R™+72~1, Let m
denote the associated measure on E/¢(O(X)*). We note that I3 : C'— E preserves
the choices of the Haar integrals dc and dm.
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Let K1 = XK. In view of (19) and (27), let  be the Haar measure on K; such
that o
0(K) = #(X)0(K1) = 2. (55)
Define ¢ : K,\H; — C as q(K1h) = p(h) for all h € H,. Then by (29), ¢ is a
measure preserving homeomorphism.

Therefore Iy o ¢ : K1\Hy — E is a group isomorphism and preserves the chosen
Haar measures on both sides. Note that H NT' = H(Z), and

L(H NT) =1HNT) =I1(H(Z)) =£0(X0)™).
Therefore we have an isomorphism,
K\H,/(H,NT}) = E/0(O(Xy)*)

preserving the invariant measures on both sides. Now by Theorem B.1 (stated and
proved in Appendix B),

O(K)

vi(Hy/(HNTy)) = #(K, N (H,NTy))

-m(E/6(O0(X0)™))- (56)

By the Dirichlet’s unit theorem, let {e1,..., € +r—1} be a set of generators of
O(Xp)™ modulo the group of roots of unity. Then

ri+re—1

HOX) )= @ zie).
j=1

Hence, by (54),
M(E/U(O(X0))) = [det ((v:1og |oa(e) )57 ) | = Roxyys (57a)

which is called the regulator of the the order O(Xy) (see Koch (1997), Sect. 1.3).
We note that go=1(K; N (H; NT4))go = ker(l) N H(Z) = ker(¢), which is the
group of roots of unity in O(Xy), and its order is denoted by we(x,). Therefore,

#(Kl N (Hl n Fl)) = WO(X,)- (57b)

Now from (55)—(57b) we obtain the following:

THEOREM 5.5. Let O(Xy) be the order of the ideal Ix, of Z[a] which is associ-
ated to Xy as in Theorem 5.2. Then

v(H/HNT) = vi(Hy/Hi NT1) = 2" Ro(xy)/Wo(xy)-

5.3 Volume of G/GL,(Z). To use the volume computation of G/GL,(Z) due to
Siegel, one needs to compare the Haar measure on G chosen for his computation
with the one chosen in (25). Instead of doing that, we will find it more convenient
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to use similar volume computations as in Terras (1988, Section 4.4.4), which also
uses Siegel’s formula.

The space P, of positive n x n matrices. Let P, be the space of n x n real
positive symmetric matrices. Then GL,(R) acts transitively on P, by

(9.Y) — %Yg, ¥V (9,Y) € GLn(R) x P,,.

We consider a GL,, (R)-invariant measure p,, on P, defined as follows: If we write
YeP,aY = (yij), Yij = Yjis Yij € R, then
dpn (V) = | det (V)| =02 T dyi;.
i<j

Let SP,, = {Y € P, : det(Y) = 1}. Then G acts transitively on SP,,, and
preserves the invariant integral dW on SP,, which is defined as follows: If we write
Y € P,asY =t/ W, (t >0, W e SP,), then

dpn (Y) = (dt /t)dW. (58)

Volume of Minkowski fundamental domain. Let SM,, denote the Minkowski
fundamental domain for the action of GL,(Z) on SP,. We have chosen du, and
dW such that by Terras, (1988, Section 4.4.4, Theorem 4, p. 168), we have the
following:

Vol(SM,,) := / 1dW = ﬁ T 20 (k/2)C (K). (59)

SMan k=2

Comparing volume forms. Now we want to compare the volume forms dn da on
O(n)\G and dW on SP,, with respect to the map O(n)g — %gg.

Put D = {b = diag(bs,...,by) : by > 0}. Choose the Haar integral db =
[T, db;/b; on D. Then

db = (dt/t) da, where b= t'/"a, t > 0, a € A. (60)
By direct computation of the Jacobian of the map
(n,b) — Y := Ynb)(nb)
from N x D — P, one has (Terras (1988, Sec.4.1, Ex.24, p.23))
dpn(Y) = 2"dn db. (61)
By (58), (60) and (61), for n € N and a € A, we have
dW = 2" tdn da, where W = Yna)(na). (62)

If d(g) denotes the Haar integral on O(n)\G = AN associated to the Haar
integrals dg and dk, then by (25),

dg = dnda, where g = O(n)na, n € N, a € A. (63)
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Now for any f € C.(SP,), by (62) and (63), we have
| swyaw =zt [ gtgg) dg (64)
SPn O(n)\G

Relating Vol(SM,,) and Vol(G/GL,(Z)). By (64), the map O(n)g — %gg from
O(n)\G to SP,, is a right G-equivariant diffeomorphism, and it preserves the invari-
ant integrals 2" 1dg and dW. We also note that O(n)\G is connected, and Z(G)
is the largest normal subgroup of G contained in K. Therefore by Theorem B.1
(stated and proved in Appendix B),

Vol(O(n))
#(Z(G) N GL,(Z))
By (24), Vol(O(n)) = 2, and #(Z(G) N GL,,(Z)) = 2. Also I’ = GL,(Z). Thus by
(59), we have the following;:

THEOREM 5.6.

9"=1 (G /GL, (Z)) = Vol(SM.,).

wG/r)=2-""1 ﬁ 720 (k/2)C (k).

k=2

5.4 PROOF OF THEOREM 5.1. By Proposition 5.3, there exists a finite set
F C Vp(Z), such that Vp(Z) is a disjoint union of the orbits Xy, Xo € F. By

Theorem 2.2, (1), and (4),
Cp= Y Cx,.

Xo€eF

By Theorem 2.4,
v(H/HNT)
Cx, =¢p- ————.
Yo = @t
Let O(Xj) denote the order in Q(a) associated to the I'-orbit 'X, as in Proposi-
tion 5.3. Then by (45), Theorem 5.5, and Theorem 5.6,

Cr — (2m)"2 Vol(B™(n=1)/2) . 2" Ro(x0) /WO (x0)
0 oipE 2O, m AT (k/2)C ()
(2m)"22" Ro(x,)  Vol(B™"—1)/2)

172
wO(XO)DQ(a)/Q Vol(SM,,)

This shows that Cx, depends only on O(Xj). We recall that O(Xo) D Z[a].
By Proposition 5.3, for each order O in K containing Z[«], there exist exactly heo
number of Xg € F, such that O(Xy) = O. Therefore

(27)"22" ho Ry Vol(B™"—1)/2)

Cp = 1 : . -
/2
05za]  WoDg(ay /g Vol(SMy)
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PROOF OF THEOREM 1.2. By our hypothesis Z[«] is the integral closure of Z
in K = Q(a), and hence Z[a] is the maximal order Ok in K. Now the theorem
follows immediately from Theorem 5.1. 0O

Appendix A

Decompositions of Haar integrals on SL3(R)

Let

—_

t

h(t) = <0 1>7 vteR
o)) = <A )\1>’ A 0.

[ cos(2mf) —sin(270)
k(@) = <sin(27r9) cos(270) ) ) 0 e R/Z.

First will compare the decompositions of Haar integrals on SLo(R) with respect
to the Iwasawa decomposition and the Cartan decomposition.

PROPOSITION A.1. For any f € C.(SL2(R)),

f(R/Z)XRX]R>O f(k(01)n(t)a(X)) dby di %

= (7/2) fi/z)roox @z f(F(O2)a(@)k(0)) |o? — a™2| db; T db. (%)
PROOF. Suppose g = k(01)h(t)a(N) = k(62)a(a)k(f). Then
g = a(\) ()h(H)a(N) = K(~0)a(0?)k(6). (66)
Substituting 3 := a?, u:= A2, and ¢ = 270, from (66) we get,
p= (/203 + 57 + (1/2)(3 — 5 cos(2) o
t=—(1/2)(8 - B~")sin(2¢).
Therefore .
os.0/03.0)] = L=
Hence ) L
1O\ 1)/0(a, )] = 2%%/\. (68)
Then by (66) and (67) the map
(02, ,0) — (01,t,)), (69)

is surjective if 0 < 6§ < 1/2, and a > 1, and it is injective if 0 < § < 1/2 and
a > 1. Therefore the map given by (69) from R/Z x Rso X R/Z to R/Z x R x R
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is differentiable, it is surjective, its degree at regular points is 4, and its Jacobian is
given by (68). This gives (65). 0

Next, we will show that SLy(R) = SO(2)h(R1)SO(2), and express the Haar
integral on SLy(R) with respect to this decomposition.

PROPOSITION A.2. For any f € C.(SL2(R)),

Jojzxw, xwyz f(R(@)h()k(9)) do' dt* de (10)
= fR/ZwaxR/Z f(k(0)a(a)k(0)) |o? — a™2| df’' 2 df.
PROOF. If we write g = k(¢ )h(t)k(¢p) = k(0")a(a)k(d), then
‘99 = k() h()h()k(d) = k(B)a(a®)k(8). (71)
Therefore,
trace(fgg) = 1+t* =a® + a2 (72)
Consider the change of variables s := t2, and 3 := o2. Then
ds = 6_;_186.
Clearly, 0¢/00 = 1, and 9t/06 = 0. Therefore
_ -1
o1s.6)/0(8.0)] = =7,
and hence ol .
905,000, 0)] = 2] (73)

By (71) and (72), we have that the map

(¢',0,0) = (¢/,5,0)

is surjective if « > 1, and it is one-one if @ > 1. Therefore the map is a differentiable,

surjective, its degree at regular points is 2, and its Jacobian is given by (73). This

gives (70). 0
From Proposition A.1 and Proposition A.2, we obtain the following:
PROPOSITION A.3. For any f € C.(SL2(R)),

/ F(k(O)h(s)a(N)) db ds %
R/ZXRXxRsq

= (2/2) / (@ (B)k(0)) do’ di? do.
R/ZXRy XR/Z
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Appendix B

A Lemma on volumes of two sided quotients

Let G be a Lie group and I' a lattice in G. Assume that we are given a Haar
measure on G, and we want to find the volume of G/T'. In many cases one can find
a compact subgroup K of G such that F = K\G is diffeomorphic to a Euclidean
space, and construct a fundamental domain, say F, for the right I'-action on E.
The following result expresses the volume of G/T" in terms of the volume of F.

THEOREM B.1. Let G be a Lie group and K be a compact subgroup of G such
that K\G is connected. Let T' be a discrete subgroup of G. Let i (resp. v) be a
Haar measures on G (resp. K). Let n (resp. u) be the corresponding G-invariant
measure on K\G (resp. G/T'). Let F be a measurable fundamental domain for the
right T-action on K\G; in other words, F is measurable and it is the image of a
measurable section of the canonical quotient map K\G — K\G/T'. Then

v(K)

w(G/T) = EZKonD)

-(F), (74)

where Ky is the largest normal subgroup of G contained in K.
To prove this result, we need the the following two observations.
LEMMA B.2. For~ € G, put

X, ={weG:ww?eK}

Then either X, is a finite union of strictly lower dimensional analytic subvarieties
of G, or v € Ky.

PROOF. Because the map w +— wyw™"! on G is an analytic map, and K is a Lie
subgroup of G, we have that X, is a finite union of analytic subvarieties of G. Note
that KX, = X, and K G° = G. Therefore either X, is strictly lower dimensional,
or X, =G.

Put K’ = {y € G: X, = G}. Then K’ is a normal subgroup of G, and K’ C K.
Hence K’ C Ky. This completes the proof. 0

LEMMA B.3. Let T’ be a discrete subgroup of G. Define
K(g)=Knglg™" and f(g) =#(K(9)), ¥V g€G.
Then for ji-a.e. g € G, we have

K(g9) =g(KonNT)g™! and f(g) = #(KoNT). (75)

ProoOF. We put ng = #(KoNT'). Since Ky is normal in G and Ky C K,

K(g) D Konglg ' =g(KoNT)g™t, Vgeq. (76)
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Take any g € G. Since K is compact and I' is discrete, there exists an open
neighbourhood 2 of e in G such that

OKQ 'Nnglg™ ' = Knglg™t.
Therefore
Kwg) =ww 'Kwnglg Hw™ cwK(g)w™*, YweQ. (77)
First suppose, f(g) < no. Then by (76) n = ng, and by (77),
K(wg) = wK(g)w™ ' =wg(KoNT)g'w™, YweQ.

In particular, f(wg) = ng for all w € Q.
Now suppose f(g) > ng. Then by (77)

QN (flg) = {wgeQg:K(wg)=wg(g 'KgnT)g 'w™'}
C ﬂfyegflKgﬁF X’Y'

Now, by Lemma B.2, either there exists v € g7'Kg N T such that X, is a finite
union of strictly lower dimensional analytic subvarieties of G, or g !KgNT C K.
In the latter case, by (76), K(g) = g(KoNT)g~!, and hence f(g) = ng, which is a
contradiction.

Thus we have shown that (75) holds for all g € f~!(no), and Uy, f~1(n) is
contained in a countable union of strictly lower dimensional analytic subvarieties of
G, and hence [i((Upzn, f~'(n)) = 0. This completes the proof. 0

Proor oOF THEOREM B.1. Consider the natural quotient map ¥ : G/T" —
K\G/T'. For any g € G and = = gI' € G/T, we have

N (Kgl) = Ko = K/K N (gTg™") = K/K(g).

Since K(kg) = K(g), V k € K, we can define f(Kg) = f(g9), V g € G. Now by
Fubini’s theorem,

WG/ = [ w0/ 1(EK) dn(Kg). (78)
KgeF

By Lemma B.3, f(g) = #(KoNT) for fi-a.e. g € G. Hence f(Kg) = #(KoNT)

for n—a.e. Kg € K\G. Now (74) follows from (78). 0
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