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Reducing the babel in plant volatile communication: using the
forest to see the trees
Y. Ranganathan & R. M. Borges
Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India

INTRODUCTION

Plants produce a diversity of volatile organic compounds
(VOCs) from above- and belowground tissues such as leaves,
flowers, fruit and roots (Laothawornkitkul et al. 2009). These
VOCs are usually lipophilic molecules with high vapour pres-
sures at ambient temperatures, and mainly consist of terpe-
noids, phenylpropanoids, and fatty acid and amino acid
derivatives (Dudareva & Pichersky 2008). More than
1700 VOCs have been found in floral scents (Knudsen et al.
1993, 2006; Raguso 2008), and many more are emitted from
other tissues (Dudareva et al. 2004). These VOCs may serve
specific functions of attracting pollinators, fruit dispersers
and parasitoids of herbivores, repelling herbivores, and also
alerting neighbouring plants or neighbouring parts of the
same plant about attacks by herbivores and pathogens (Ger-
shenzon & Dudareva 2007; Felton & Tumlinson 2008; van
Dam 2009; Dicke 2009). The function of some of these VOCs
in biotic interactions is known, but that of the vast majority
still remains to be discovered (Pichersky et al. 2006; Lewin-
sohn & Gijzen 2009). Besides biotic interactions, VOCs such
as isoprene and monoterpenes have also been implicated in
basic physiological functions within the plant, such as protec-
tion against thermal and oxidative damage (Owen & Peñuelas
2005). While plant species and habitats vary in their rates of
VOC emission (Guenther 1997; Arneth et al. 2008; Lappalai-
nen et al. 2009; Steinbrecher et al. 2009; Winters et al. 2009),

the quantity of VOCs released is enormous, e.g. the global
annual emission of biogenic VOCs is 700–1000 Tg C (Lao-
thawornkitkul et al. 2009). Given the quantity and diversity
of VOCs produced by plants in any given habitat, and the
fact that some of these VOCs are emitted only or in greater
amounts in certain contexts, the challenge for the biological
entity interacting with the emitting plant is to pick out the
signal against the background of VOC noise (van Dam &
Poppy 2008). This interacting entity could be a mutualistic
or antagonistic plant or animal or a researcher attempting to
find a pattern of VOC emission in specific contexts, e.g. after
herbivory or before pollination. Pattern recognition is there-
fore essential for successful communication using volatiles,
and requires not only that one signal be differentiated from
another signal but that noise within VOC blends is also
ignored.

While techniques to measure and characterise VOCs are
improving, and large amounts of VOC data are being gener-
ated (Fernie 2007), these efforts are not yet matched by suit-
able statistical analysis of data (van Dam & Poppy 2008;
Loreto et al. 2008). According to van Dam & Poppy (2008),
the field of plant volatile analysis needs to adopt methods
from bioinformatics, a discipline that also deals with copious
amounts of data, e.g. as in microarray analysis or genome-
wide data mining. This search for new methods to analyse
VOC data has led to the recent use of methods other than
conventional principal component analysis (PCA), discrimi-
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ABSTRACT

While plants of a single species emit a diversity of volatile organic compounds
(VOCs) to attract or repel interacting organisms, these specific messages may be
lost in the midst of the hundreds of VOCs produced by sympatric plants of differ-
ent species, many of which may have no signal content. Receivers must be able to
reduce the babel or noise in these VOCs in order to correctly identify the message.
For chemical ecologists faced with vast amounts of data on volatile signatures of
plants in different ecological contexts, it is imperative to employ accurate methods
of classifying messages, so that suitable bioassays may then be designed to under-
stand message content. We demonstrate the utility of ‘Random Forests’ (RF), a
machine-learning algorithm, for the task of classifying volatile signatures and
choosing the minimum set of volatiles for accurate discrimination, using data from
sympatric Ficus species as a case study. We demonstrate the advantages of RF over
conventional classification methods such as principal component analysis (PCA), as
well as data-mining algorithms such as support vector machines (SVM), diagonal
linear discriminant analysis (DLDA) and k-nearest neighbour (KNN) analysis. We
show why a tree-building method such as RF, which is increasingly being used by
the bioinformatics, food technology and medical community, is particularly advan-
tageous for the study of plant communication using volatiles, dealing, as it must,
with abundant noise.
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nant analysis (DA), or manova, e.g. artificial neural network
analysis (Cajka et al. 2009). In this paper, we demonstrate
the use of Random Forests (RF), a machine-learning algo-
rithm belonging to the class of data-mining techniques, in
the analysis of VOC data. This new technique is being
increasingly used in data-rich fields such as bioinformatics,
chemoinformatics, medical diagnostics, food technology,
astronomy and speech analysis, to select the most appropriate
candidate variables from the surrounding data babel (Svetnik
et al. 2003; Cannon et al. 2006; Dı́az-Uriarte & de Andrés
2006; Granitto et al. 2007a,b; Zhang et al. 2008; Gao et al.
2009; Rong et al. 2009). We use data from Borges et al.
(2008) on VOCs emitted by sympatric Ficus syconia in seed
dispersal phase as an illustrative example. With this dataset,
we also compare the performance of RF to other recent data-
mining algorithms and tree-building methods, such as sup-
port vector machines (SVM), diagonal linear discriminant
analysis (DLDA) and k-nearest neighbour analysis (KNN).

METHODS

Dataset

We used data published in Borges et al. (2008) on the vola-
tiles produced by the syconia of sympatric Ficus hispida,
F. exasperata and F. tsjahela at the seed dispersal stage. The
headspace samples were collected from Agumbe Reserve For-
est in the Indian Western Ghats (details of study site, volatile
collection, composition and analysis are available in Borges et
al. 2008). The dataset consisted of 49 samples and 77 VOCs.
F. hispida and F. exasperata are dioecious species, in which
only syconia on female trees produce seeds while those on
male trees breed the pollinating mutualistic wasps. F. tsjahela
is a monoecious species, in which all syconia produce seeds
and wasps. Since seed dispersers should be attracted only to
seed-bearing female syconia in the dioecious species because
the male-bearing syconia contain developing and eclosing
wasps, we predicted that the VOC signature of male and
female ripened syconia should be distinct and different from
each other. However, since in F. exasperata male and female
ripened syconia are not usually available simultaneously
owing to asynchrony between the sexes, we predicted that the
VOC signature of male and female ripened syconia in this
species could overlap, while they would be distinctive in the
synchronous F. hispida. We found these predictions to be
true (Borges et al. 2008). Using this dataset as a test case, we
now address the following classification problem. We assume
that in a forest where ripened syconia of these three Ficus
species are available simultaneously, the problem to be solved
by a biological entity, such as a seed disperser of Ficus, is to
pick out the volatile signature of the ripened syconia of
F. tsjahela, female F. hispida or female F. exasperata from
other signatures in this data universe using the entire set of
77 VOCs recovered from these samples. Therefore, in this
case, we are attempting to differentiate signal from noise
within VOC blends produced by the five groups (male ⁄ fe-
male F. hispida, male ⁄ female F. exasperata and F. tsjahela),
and also differentiate signal from signal (a unique VOC set
to identify a group from the background) for each group.
Moreover, since F. hispida is largely bat-dispersed and the
other two species are largely bird-dispersed (Borges et al.

2008), we expect that the signatures of the seed-bearing syco-
nia for each group should be distinguishable from the back-
ground or ‘the rest’ in this case in order to attract specific
dispersal agents. We examine the efficacy of Random Forests
(RF) in solving this classification problem. We emphasise that
this classification problem was not attempted in Borges et al.
(2008), in which clusters of the seed dispersal data were visu-
alised with the help of PCA using only 33 out of the
77 VOCs (i.e. those VOCs with >5% occurrence in an indi-
vidual sample).

VOC data and Random Forests

VOC data usually consist of samples of volatile emissions col-
lected over several plant individuals or from the same plant
over several time points. Whatever the type of sample or its
method of collection, the key feature of a VOC dataset is that
it is analogous to a microarray gene expression dataset in the
sense that there are many more variables than samples. A
typical headspace sample would include between 50 and
100 VOCs, just as a typical microarray would yield expres-
sion levels for hundreds of genes. This nature of a VOC data-
set limited our use of the entire VOC dataset in earlier PCA
analyses (Borges et al. 2008) and also limits the usage of clas-
sical multivariate analysis methods such as manova or LDA.
Conventional multivariate analysis methods require sample
sizes to be proportionately increased for each added variable
and also assume normality of the dataset, as well as the
absence of auto-correlation between variables, besides having
other limitations (Stevens 1992). Random Forests (Breiman
2001) is a classification algorithm with the following features
that make it best suited for volatile analyses: (i) it allows for
more variables than samples; (ii) it has a good classification
efficiency, even with a lot of background noise; (iii) it is
capable of arriving at a minimal set of variables, which can
be used as predictors of that particular group; (iv) it is robust
to interactions and correlations among variables; (v) it gives
measures of relative variable importance (this objective and
identifying the minimum variable set are more efficiently
achieved using the varSelRF modifications to RF provided by
Dı́az-Uriarte & de Andrés 2006); and (vi) it can also be used
to analyse time series data that record patterns in volatile
emissions over time (achieved by the ‘dyn’ package available
at http://cran.r-project.org). RF builds sets of decision trees
using bootstrapping from the set of samples, and also selects
a variable set of attributes (different VOCs in this case) at
each node of the many decision trees thus generated. In this
way, RF is also different from other tree-building methods
such as PAUP: phylogenetic analysis using parsimony (Perd-
iguero-Alonso et al. 2008). RF also uses the unselected sam-
ples in a given bootstrap iteration to calculate an out-of-bag
(OOB) error; i.e. the classification error obtained when the
OOB (unselected samples) samples are examined; approxi-
mately one-third of the samples are unselected in each itera-
tion. A major advantage of RF is that it does not overfit the
data (Breiman 2001; Granitto et al. 2007a,b) so that even if
minor fluctuations in variable strength (VOC concentrations
or proportions in this case) lead to the building of thousands
of classification trees, these fluctuations are not given undue
importance in the final model; thus only the minimum set of
important predictor variables is obtained.

Random Forest-based volatile selection Ranganathan & Borges
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Classification using RF

Between group classification
In this case, we retained the identity of the groups (e.g.
female F. hispida or male F. exasperata) and attempted to
find the prediction error of group membership.

One versus the rest classification
In this case, we determined the characteristic set of variables
(VOCs) that define a particular group (e.g. female F. hispida)
from all other samples, and for this purpose we masked the
identity of the other groups (the rest). We attempted to find
the smallest number of variables (VOCs) with which each
group can be distinguished from the rest. The package varS-
elRF was used with R software version 2.9.0 (R Development
Core Team 2009) for this purpose. The variable selection was
allowed to run for 100 iterations. Running the algorithm for
1000 iterations did not yield a different result when com-
pared with 100 iterations (data not shown). We therefore
opted to use the results obtained from 100 iterations alone,
as these are computationally intensive algorithms. For all
analyses presented in this paper, only the proportions of the
different VOCs present in the samples were used; this was
purely for illustrative purposes; RF can use proportions or
actual concentrations of each variable. A coefficient of varia-
tion (CV) was calculated for the predictor variables in each
of the groups to determine whether RF consistently picks
VOC predictors with low variability. An average out-of-bag
(OOB) probability of membership in the groups (in the ‘one’
versus ‘the rest’ classification) was also estimated. This is the
probability (calculated à posteriori) of a sample belonging to
that group. We also obtained prediction errors for group
membership for the bootstrapping procedures as well as the
mean decrease in accuracy (MDA) when particular variables
(VOCs) are removed from the model. The MDA provides an
importance score for that variable. The ‘importance’ function
of the package randomForest for R was used to calculate
MDA.

Comparative efficiency of Random Forests

To compare the relative performance of RF with other classi-
fication methods being currently evaluated in the literature
for use in data-rich fields, we used the .632+ bootstrap
method with 200 iterations for all methods. This bootstrap
method is an improvement on the ‘leave-one-out’ cross-vali-
dation method and gives a better estimate of prediction error
(Efron & Tibshirani 1997; Dı́az-Uriarte & de Andrés 2006).
We compared the prediction errors of support vector
machines (SVM), diagonal linear discriminant analysis
(DLDA), k-nearest neighbour (KNN) to RF. SVM is a data-
mining algorithm that uses the concept of data kernels and
support vectors that maximise the distance between parallel
supporting planes between kernels of data (Bennett & Camp-
bell 2000). DLDA is a type of linear discriminant analysis
that uses maximum likelihood and diagonal covariance
matrices (Dudoit et al. 2002). KNN is a classification method
that classifies each sample based on minimum distance to k
nearest neighbours of the sample (Hastie et al. 2001). The
‘errorest’ function of the package ipred for R was used for
SVM, the ‘geSignatureBoot’ function of the package geSigna-

tures for R was employed for DLDA and KNN, and the ‘varS-
elRFBoot’ function of the package varSelRF was used for RF.
All packages mentioned in this paper are freely obtainable
from http://cran.r-project.org.

RESULTS

The OOB membership probability plots showed that Ficus
tsjahela, as well as male and female F. hispida, were clearly
separated from the rest, while male and female F. exasperata
extractions were not clearly classifiable from the rest (Fig. 1).
In the case of female F. exasperata, one sample actually
grouped with the rest, while in male F. exasperata many more
samples grouped with the rest. The variable selection proce-
dure indicated similar trends (Table 1). The model frequency
in this Table indicates the percentage of times the same
predictor volatiles appeared in the 100 iterations. Female
F. hispida extractions were clearly classifiable from the rest by
2-amyl acetate and iso-amyl acetate. This combination of

Fig. 1. The average out-of-bag (OOB) probability of membership of sam-

ples in the different groups. Samples that have a distinct volatile profile

have an OOB probability close to one. Samples in the group of interest are

indicated by filled circles; samples constituting the rest are indicated by

open circles.
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predictor compounds appeared in 100% of the iterations.
Male F. hispida extractions were also uniquely classifiable by
indole and a-trans-bergamotene. This combination of predic-
tive compounds also appeared in 100% of the iterations.
F. tsjahela had a-pinene and camphene that differentiated
this group from the rest at 100% model frequency. On the
other hand, male F. exasperata especially was relatively poorly
classifiable and there were many misclassified samples with
low model frequency (31%) (Table 1). This result for F. ex-
asperata was as expected (see Discussion). Based on classifica-
tions achieved by RF, a biological entity (such as a seed
disperser) could have less difficulty in finding female figs
compared to finding male figs. This is an important and bio-
logically relevant result (see Discussion). Additionally, the
coefficient of variation (CV) was also lower for those predic-
tor compounds whose contribution to the volatile signature
of each sample was high (Table 1). The RF procedure also
indicated the mean decrease in accuracy (MDA) in classifica-
tion when the principal predictor compounds, as well as oth-
ers, are removed from the model (Table 2). These results
demonstrate the relative importance of certain VOCs in
defining the volatile signature of the group.

RF was extremely good at classifying samples with the VOC
data. For instance, out of the 77 seed dispersal VOCs found in
the five groups examined, only 11 compounds (14% of the
complete repertoire of compounds) (Table 1) were sufficient
to classify all of the 49 samples with 5.84% error (Table 3).
This translates to approximately only three samples being mis-
classified. RF clearly scored over the other tree-building and
classification methods examined (Table 3). For example, the
prediction error for RF was 5.8% compared to 34.6% for
SVM, 22.1% for DLDA and 14.9% for KNN in the between
group comparison (Table 3). The same lower prediction error
for RF was generally found in the comparison of one versus
the rest for all the other groups (Table 3). It must be noted
that all classification methods evaluated in this paper per-
formed better than when no information was provided other
than representation of the different groups in the total num-
ber of samples (no information category in Table 3).

DISCUSSION

While there are several methods available for multivariate
analysis and clustering, RF is ideally suited for the analysis of

VOC data, as this case study of dispersal stage volatiles in
sympatric Ficus has illustrated. RF enables the selection of
candidate variables from a large dataset consisting of many
more variables (77 VOCs) than samples (49 belonging to five
groups) and also provides model statistics for these variables.
Such variables can then form the basis of biological assays
under controlled conditions. Information such as the mean
decrease in accuracy when particular VOCs are removed
from the model can also be used to determine candidate
VOCs that are important in the particular VOC message that
is intended for communication. It must be emphasised that
we have merely used our dataset as an illustrative example of
RF. Moreover, we attempted this classification exercise in the
absence of knowledge of the overall background volatile land-
scape (i.e. volatiles produced by other plant species at the
same site). As we discuss later, this is an important limitation
of the dataset and not of the classification method.

Since plants and animals are faced with a complex volatile
landscape, the characterisation of the statistical structure of
this environment is an important first step towards under-
standing how volatile signals are encoded (Wright & Thom-
son 2005). Evaluating the statistics of visual scenes has
correspondingly played an important role in understanding
visual systems and how they function (Mackay 1986; Field
1987; Wright & Thomson 2005). In the case of VOCs too,
understanding and characterising natural olfactory landscapes
has been recently advocated, since many studies are now
showing the effect of background compounds such as iso-
prene or various mixtures on olfactory perception and corre-
sponding behavioural or physiological responses (Dicke et al.
2003; Mumm & Hilker 2005; Laothawornkitkul et al. 2008;
Loivamäki et al. 2008). Conducting experiments on volatile
communication in natural conditions using natural contexts
is therefore being increasingly encouraged (Hunter 2002; Hale
et al. 2009). However, moving from the controlled olfactory
environments of the laboratory to complex natural olfactory
landscapes will involve presenting and detecting signals where
the signal-to-noise ratio is likely to be very low. Under this
scenario, RF can be a powerful exploratory classification tool
since it has been demonstrated to work extremely well with
noise in a variety of noisy environments ranging from proteo-
mics to astronomy (Gunther et al. 2003; Svetnik et al. 2003;
Cannon et al. 2006; Dı́az-Uriarte & de Andrés 2006; Granitto
et al. 2007a,b; Kwak et al. 2008; Zhang et al. 2008; Gao et al.

Table 1. Predictor volatiles, the frequency of their

occurrence in Random Forest models and their

proportions in sample headspace.species sex model frequency

predictor

volatiles

percentage in

headspacea CVa,b

Ficus hispida female 100 2-amyl acetate 63.3 0.3

iso-amyl acetate 1.3 1.5

male 100 indole 32.1 0.6

a-trans-bergamotene 20.9 0.5

Ficus tsjahela monoecious 100 a-pinene 31.5 0.2

camphene 3.1 0.3

Ficus exasperata female 98 c-terpinene 21.7 0.5

p-cymene 5.4 0.3

b-caryophyllene 0.2 1.5

male 31 daucene 2.9 1.0

b-copaene 0.9 0.9

aData from Borges et al. (2008).
bCoefficient of variation.
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2009; Rong et al. 2009). In the context of noise, it is also sig-
nificant that the compounds picked as predictors by RF in
our case study were mostly those that had very low CVs
(Table 1). This is biologically relevant since a VOC that is to
be used to constitute a signal with reliable information con-
tent should not vary greatly in its representation in the vola-
tile signature. Low CVs of biologically relevant VOCs have
been found recently in other systems, e.g. in orchid pollina-
tion (Salzmann et al. 2007). Therefore the variability in scent
components is a critical factor in their inclusion into a signal,
and identifying such VOCs as predictor variables can be
important in generating testable hypotheses about communi-
cation using volatiles. The mean decrease in classification
accuracy when individual volatiles are deleted from the model
(Table 2) can also help in identifying a set of candidate VOCs
suitable for biological assays when details of sensitivity of the
receiver to these compounds are known from electroanten-
nography or other types of investigation. Table 2 also indi-
cates those VOCs whose inclusion into the classification
model is equivalent, in the sense that the decline in model
prediction accuracy on their addition or removal is the same.
Such information is immensely useful, especially when sam-
ples of the natural background olfactory landscapes are also
included into the classification problem, since these very com-
pounds may constitute ‘generic’ VOC noise generated by basal
plant physiology. Most researchers in this field also collect
samples of ambient air when acquiring headspace samples of
specific interest. These samples of ambient air usually remain
unquantified. The inclusion of such samples into the classifi-
cation problem would increase our understanding of the com-
plexity of the communication problem under natural settings.
The identification of predictor variables by RF can also be
used to make predictions about samples outside the current
dataset, a situation analogous to using a set of predictor genes
or their protein products in bioinformatics to predict or diag-
nose a disease. Thus RF does answer the call made by van
Dam & Poppy (2008) to induct methods employed in bioin-
formatics into the analysis of plant volatiles.

Many studies have demonstrated the superiority of RF over
other classification methods, including newer data-mining
methods such as SVM (Dı́az-Uriarte & de Andrés 2006;
Granitto et al. 2007a; Perdiguero-Alonso et al. 2008; Fusaro
et al. 2009; Rong et al. 2009), as also shown with our case
study. In our particular case study, we also demonstrate
(Table 3) that some classification methods (e.g. DLDA or
KNN) may perform better than RF when only a binary classi-
fication is required (e.g. female Ficus hispida versus ‘the rest’);
however, even RF can do better in some such cases (e.g.
female F. exasperata versus ‘the rest’). Furthermore, in our
own case study, DLDA was unable to perform a binary classi-

fication in two cases (marked as NA) when no results could
be obtained, while RF and KNN were able to perform classi-
fications in such cases (Table 3). Methods such as DLDA and
KNN also do much worse than RF when many groups need
to be distinguished (Table 3). Furthermore, using PCA with
this same dataset, Borges et al. (2008) were able to visualize
well separated clusters of seed dispersal volatile groups only
when compounds whose concentration was <5% in each
individual sample were excluded, while RF found predictor
variables with high model frequency even when these com-
pounds occurred at <5% concentration [e.g. iso-amyl acetate
in female F. hispida (1.3%), b-caryophyllene in female F. ex-
asperata (0.2%), b-copaene in male F. exasperata (0.9%) and
camphene in F. tsjahela (3.1%); Table 1]. It must also be
noted that our dataset also contained many instances when
particular VOCs were absent; i.e. the dataset had many zero
values. With our dataset, RF had clear advantages over PCA,
which in any case suffers from limitations of statistical inter-
pretation. Overall, therefore, RF scores significantly over the
other available methods, including PCA.

More importantly, RF also provided information on the
probability of membership of each sample in the investigated
group (Fig. 1); such information can be used to validate
expected patterns, to examine reasons for the membership of
particular samples in certain classifications or to detect out-
liers due to experimental error. For example, several male
F. exasperata samples are misclassified with ‘the rest’. This
has a biological explanation. In F. hispida, dispersal stage figs
are available simultaneously on trees of both sexes in the
population (synchrony between sexes), while in F. exasperata
there is low overlap between syconia production in the sexes
(asynchrony between sexes) (see Borges et al. 2008). There-
fore, while there should be selection on female figs to have a
VOC profile different from male figs or ‘the rest’, such that
only seed figs are consumed so that seeds are dispersed
(female figs are well classified in both species; Fig. 1 and
Table 1), selection for this difference is expected to be greater
in dioecious species that produce male and female figs simul-
taneously in the same season, i.e. F. hispida in this case. Thus,
there should be less selection pressure on F. exasperata than
on F. hispida in the dispersal phase to make the male fig vol-
atile signature different from that of seed figs or ‘the rest’,
and this why several male F. exasperata figs are misclassified
with ‘the rest’. Furthermore, the ability of RF to separate
female signatures from ‘the rest’ is biologically relevant since
seed-bearing female figs, rather than wasp-containing male
figs, should be consumed.

Another advantage of RF in chemical ecology is that it can
deal not only with categorical variables (within a classification
framework), such as volatile type, chirality, or any other fea-

Table 3. Error rates estimated for the different

classification methods using the .632+ bootstrap

method with 200 bootstrap samples. The ‘no informa-

tion’ column denotes the error rate at random when

information from the groups is not used (Dı́az-Uriarte

& de Andrés 2006).

no information SVM DLDA KNN random forest

between groups 0.6530 0.3462 0.2208 0.1496 0.0584

female Ficus hispida versus the rest 0.1224 0.0590 0.0011 0.0018 0.0177

male Ficus hispida versus the rest 0.1837 0.1267 NA 0.0161 0.0054

Ficus tsjahela versus the rest 0.2245 0.0984 0.0011 0.0010 0.0107

female Ficus exasperata versus the rest 0.1224 0.0878 NA 0.1341 0.0589

male Ficus exasperata versus the rest 0.3469 0.2256 0.1339 0.1255 0.0855

NA = not available.
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ture of stereochemistry that one may want to include, but also
with continuous variables, such as concentrations of volatiles
or their ratios (in a regression framework) or a combination
of both types of variables. Furthermore, as in all good model
building, RF allows portions of the data to be used as training
sets so that the tree-building algorithm can be refined (Brei-
man 2001). Such flexibility and feature diversity facilitate
comprehensive exploration of volatile landscapes where com-
plex algorithms may be required to determine how olfactory
systems find their targets (Bruce et al. 2005; Pareja et al.
2009). Such algorithms can also deal with complex datasets
that show great intraspecific variability in VOC emissions (e.g.
Degen et al. 2004). From a biologically relevant perspective,
using RF to find a limited set of predictor variables from a
universe of 77 VOCs in our test dataset can provide a practi-
cable set of compounds to be employed in biological assays
with model seed dispersal agents, such as bats or birds, that
are the natural dispersers of these Ficus species.

Despite the fact that RF has come into recent use in ecol-
ogy, including forestry, parasitology and migratory move-
ments (Prasad et al. 2006; Cutler et al. 2007; Iverson et al.
2008; Perdiguero-Alonso et al. 2008; Oppel et al. 2009), it
has not yet been employed in understanding the chemical
ecology of communication using volatiles in plants. Its versa-
tility can be a great boon in this field and needs further
examination. RF is itself in the process of being constantly
evaluated (e.g. Amaratunga et al. 2008). We suggest that RF
could be a valuable addition to the chemical ecologist’s tool
kit, a view that should, however, always be tempered by Wol-
pert’s ‘no free lunch theorem’; i.e. there is no one algorithm
that can be universally suitable for all classification problems
(Svetnik et al. 2003).
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