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Abstract

The existence of an optimal feedback law is established for the risk
sensitive optimal control problem with denumerable state space. The
main assumptions imposed are irreducibility, and a near monotonicity
condition on the one-step cost function. It is found that a solution can
be found constructively using either value iteration or policy iteration
under suitable conditions on initial feedback law.
Keywords: Optimal Control; Risk Sensitive Control; Dynamic Pro-
gramming.

1 Introduction

This paper concerns optimal control of Markov Decision Processes (MDPs).
Formally, this is defined by a triple (X,A, Pa) where X is the state space, and
A is the action space. We assume that both X and A are denumerable sets.
In this case, Pa is, for any a ∈ A, a transition matrix on the state space X.
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A sequence {uk} evolving in A is called an admissible control sequence
if

uk ∈ Fk , k ≥ 0,

where Fk := σ{Φ0, . . . ,Φk}, k ≥ 0, is the minimal σ-field generated by the
observations, and the state process Φ is recursively defined via,

P{Φk+1 ∈ A | Φk
0;u

k
0; Φk = x;uk = a} = Pa(x,A), x ∈ X, A ⊂ X, a ∈ A.

We suppose that there is a one step cost function C : X × A → R+, so
that for a particular Markov policy w = (w0, w1, w2, . . . ) the risk sensitive
cost starting at x ∈ X is defined by

R(x,w) := lim sup
n→∞

1
n

(
log Ew

x

[
exp

(
αSn

)])
, (1)

where Sn =
∑n−1

k=0 C(Φk, wk(Φk)), and the expectation above is conditioned
on Φ0 = x. For the processes considered here, the limit supremum in (1)
will typically be a limit which is independent of the initial condition x ∈ X.
We consider only the risk-averse case where α > 0.

Models of this sort were first considered in [2, p. 329] for finite state
space models. An in-depth analyis first appeared in [11] in the finite state
space case where each controlled chain is irreducible and aperiodic. The
general finite state space case was subsequently treated in [20].

There has been renewed interest in the cost criterion (1) during the
past decade. The primary reason is the original one: when α > 0 the
use of the exponential reduces the possibility of rare, but devastating large
excursions of the state process. This control problem has attracted more
recent attention because of the interesting connections between risk sensitive
control and game theory (see [12] or the more recent treatments [15, 22, 7,
6, 8, 13, 23]).

Under certain conditions on the model (in particular, when the model is
linear in (x, a)), the controls that optimize (1) are known to be insensitive to
specific forms of model uncertainty [22, 6]. In general it may be shown that
any stationary policy which gives rise to a finite risk senstive cost will enjoy
some attractive properties. The controlled chain is V -uniformly ergodic
(see Theorem 3.3), which itself implies some degree of robustness to model
uncertainty [9].

The results developed in the present paper are most closely related to
[10, 3]. This prior work considers models with bounded cost functions,
and imposes a strong form of uniform ergodicity in order to show that a
relative value function exists and is bounded. It is also assumed in this
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prior work that the constant α appearing in (1) be sufficiently small. The
main contribution of this paper is to establish existence of optimal policies
under a simple growth condition on the one step cost function. These results
hold without any conditions on the ‘risk factor’ α.

As in [11, 10, 3], we require that each of the controlled chains be ir-
reducible. This can be relaxed to ψ-irreducibility, as defined in [16], with
slightly weaker conclusions. However, the general non-irreducible case is
subtle, as the treatment [20] of the general finite state space case shows.
Fortunately, most models found in applications exhibit some form of irre-
ducibility.

We also show here that stabilizing feedback policies are generated using
either the value iteration or the policy iteration algorithm, provided that
either algorithm is initialized with a stabilizing feedback law. This general-
izes recent results of [17, 4, 18] for the risk neutral ergodic control problem.
Under additional assumptions it is shown that either algorithm converges
to a solution to the dynamic programming equations.

The remainder of the paper is organized as follows. In the following
section we present some background on ergodic theory and the existence of
a relative value function for the risk sensitive control problem. Section 3
contains a proof that an optimal policy exists for normlike cost criteria.
In Sections 4 and 5 we present analyses of the value iteration and policy
iteration algorithms.

2 Multiplicative Ergodic Theorems

In order to address the optimization problem spelled out in the introduction
we first state some results from [1] which show that the limit supremum
in (1) is in fact a limit when the system is controlled using a stabilizing,
stationary policy.

We describe in this section results for a Markov chain without control.
We suppose that Φ = {Φ0,Φ1, . . . } is an aperiodic and irreducible Markov
chain with transition probability P on a countably infinite state space X.
We denote by C : X → R+ a fixed, non-negative valued function on X, and
let c(x) = exp(C(x)), x ∈ X.

The function C is assumed to be norm-like: the sublevel set {x : C(x) ≤
n} is finite for each n [16].

We first present a collection of ergodic theorems from [16]. Theorem 2.1
will be useful below, and it also serves to highlight the symmetry between
classical ergodic theory and more recently developed multiplicative ergodic
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theory for Markov chains. A Markov chain satisfying the drift criterion
(2) with C norm-like and Φ irreducible is V -uniformly ergodic (see [16] for
notation and related results).

The existence of the two limits in Theorem 2.1 is a consequence of the
Geometric Ergodic Theorem of [16]. That the limit Ĉ is the essentially
unique solution to Poisson’s equation is discussed on page 433 of [16]. The
characterization of the limit γ in (i) is simply the characterization of the
steady state mean π(C) given in Theorem 10.0.1 of [16].

The first entrance time and first return time to a state θ are defined
respectively by

σθ = min(k ≥ 0 : Φk = θ); τθ = min(k ≥ 1 : Φk = θ).

Theorem 2.1 Suppose that Φ is an irreducible and aperiodic Markov chain
with countable state space X and that C is norm-like. Suppose further that
there exists V : X → [1,∞), and constants b <∞, η < 1 all satisfying

Ex[V (Φ1)] =
∑
y∈X

P (x, y)V (y) ≤ ηV (x)− C(x) + b. (2)

Then there exists a constant γ ∈ R+ and a function Ĉ : X → R such that

lim
n→∞

Ex

[
Sn − γn

]
= Ĉ(x), and hence, lim

n→∞

1
n

Ex

[
Sn

]
= γ,

where

(i) The constant γ is the unique solution to

Eθ

[τθ−1∑
k=0

(
C(Φk)− γ

)]
= 0.

(ii) The function Ĉ solves the Poisson equation

PĈ (x) = Ĉ(x)− C(x) + γ, x ∈ X.

(iii) The solution Ĉ is unique up to an additive constant: If Ĉ ′ is any other
solution, then

Ĉ(x)− Ĉ(x0) = Ĉ ′(x)− Ĉ ′(x0), x, x0 ∈ X.
ut
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The desired multiplicative ergodic theorem is expressed in the following
result, which is evidently closely related to Theorem 2.1. This and some
related results are developed in [1].

Theorem 2.2 Suppose that Φ is an irreducible and aperiodic Markov chain
with countable state space X, and that C is norm-like. Suppose further that
there exists V0 : X → R+, and constants B <∞, α0 > 0 all satisfying

Ex[exp(V0(Φ1))] =
∑
y∈X

P (x, y) exp
(
V0(y)

)
≤ exp

(
V0(x)−α0C(x) +B

)
. (3)

Then there exists a (possibly infinite) constant α ≥ α0, and a convex, in-
creasing function Λ : R → R such that Λ(α) <∞ for α < α; and Λ(α) = ∞
for α > α. Furthermore, the following hold:

For any α < α, there is a function čα : X → R+ such that

lim
n→∞

Ex

[
exp

(
αSn − nΛ(α)

)]
= čα(x), (4)

and for all α,

lim
n→∞

1
n

log
(
Ex

[
exp

(
αSn

)])
= Λ(α).

Moreover, for all α < α,

(i) the constant Λ(α) ∈ R is the unique solution to

Eθ

[
exp

(τθ−1∑
k=0

αC(Φk)− Λ(α)
)]

= 1.

(ii) The function čα solves the multiplicative Poisson equation:

P čα (x) = čα(x) exp
(
−αC(x) + Λ(α)

)
, x ∈ X. (5)

(iii) The solution čα is unique up to constant multiples: If č′α is any other
solution, then

čα(x)
čα(x0)

=
č′α(x)
č′α(x0)

, x, x0 ∈ X.

ut

Analogous results for a bounded function C are also obtained in [1].
The constant λ(α) = exp(Λ(α)) is equal to the generalized principal

eigenvalue (g.p.e.) for the kernel P̂α defined by

P̂α(x, y) = exp(αC(x))P (x, y), x, y ∈ X.
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It is also known as the Perron-Frobenius eigenvalue, and R(α) = λ(α)−1 is
the convergence parameter (see [1]).

The function čα is the corresponding Perron-Frobenius eigenfunction for
P̂ , and (5) is a restatement of the eigenfunction equation P̂αč = λ(α)č. The
term multiplicative Poisson equation is used to stress the symmetry with
the previous theorem, and with the usual MDP theory under the average
cost optimality criterion.

Suppose that the Markov chain is recurrent, as it will be under (2) or
(3). For any α, the constant Λ(α) = log(λ(α)) is given by the following
formula:

Λ(α) := inf
{
Λ ∈ R : Eθ

[
exp

(
αSτθ

− τθΛ
)]
≤ 1

}
, (6)

with θ equal to any fixed state in X.
From the definition of Λ(α) and Fatou’s Lemma we have, whenever

Λ(α) <∞,
ξ(α) := Eθ

[
exp

(
αSτθ

− τθΛ(α)
)]
≤ 1. (7)

The constant α is then defined as α = sup{α : ξ(α) = 1} [1]. It is shown
there that for any α < α, the function

hα(x) = Ex

[
exp

(
αSτθ

− τθΛ(α)
)]
, x ∈ X,

is the unique (up to constant multiples) solution to the multiplicative Poisson
equation. The function hα will appear as the relative value function for the
optimization problems considered below.

The drift criterion (3) is useful since it gives a bound on α, and it also
implies a strong form of ergodicity for the chain. It is equivalent to the
following ‘sub-eigenvector equation’,

P̂α0V (x) := exp(α0C(x))
∑
y∈X

P (x, y)V (y) ≤ λV (x), x ∈ X, (8)

where V = exp(V0), and λ = exp(B).
Using these ideas we find that a solution V to (8) or (3) always exists

provided that the “cost” Λ(α) is finite. For a proof see [1].

Lemma 2.3 For an irreducible Markov chain Φ and a norm-like function
C, the following are equivalent for any 0 < λ <∞, and any α > 0,

(a) Φ is recurrent and the g.p.e. satisfies

λ(α) ≤ λ.
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(b) There exists a function V : X → R+ satisfying (8), and in addition

inf
x∈X

V (x) > 0. (9)
ut

The proof of Theorem 2.2 involves a change of measure performed using
a solution of the multiplicative Poisson equation (5). We sketch the main
ideas here since this change of measure will also be required in some of the
results below. For α < α define

P̌α(x, y) =
exp(αC(x)− Λ(α))

hα(x)
P (x, y)hα(y).

where hα is any solution to the multiplicative Poisson equation which is not
identically zero. The kernel P̌α is probabilistic (P̌α(x,X) = 1 for x ∈ X) since
the multiplicative Poisson equation holds. It follows that P̌α is the transition
kernel for some Markov chain Φ̌α. Theorem 2.4 establishes ergodicity of
these Markov chains, and shows that Φ itself is V -uniformly ergodic when
α > 0.

Theorem 2.4 For any α < α the Markov chain Φ̌α is Vα-uniformly ergodic
for some Vα ≥ 1. Hence there is an invariant probability measure π̌α for P̌α,
and for any g : X → R satisfying∣∣∣ g(x)

hα(x)

∣∣∣ ≤ Vα(x), x ∈ X,

the following limit holds at a geometric rate as n→∞:

Ex

[
exp

(
αSn − nΛ(α)

)
g(Φn)

]
→ hα(x)π̌α(g/hα), x ∈ X.

Proof It is shown in [1] that the chain Φ̌α is Vα-uniformly ergodic for
some Vα provided that α < ᾱ := sup(α : Λ(α) <∞).

The limit then follows from ergodicity and the formula

Ěα
x [f(Φ̌α

n)] =
1

hα(x)
Ex

[
exp

(
αSn − nΛ(α)

)
hα(Φn)f(Φn)

]
,

valid for any integrable f : X → R (see the Geometric Ergodic Theorem of
[16]). ut

There are several possible extensions of these results: the conditions on
the ‘cost function’ C can be generalized in various directions. One direction
which is developed in [17] for the risk neutral control problem is to assume
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that the sublevel sets of C(·) are petite, as defined in [16], rather than finite
or compact. Such conditions may be used to generalize results of the form
developed here to arbitrary state spaces [14].

Some extensions are possible even in the countable state space setting.
To remove the unboundedness condition on C one may replace the norm-
like assumption with near-monotonicity, so that {x : C(x) ≤ η} is a finite
set for any η < supx∈XC(x). A parallel ergodic theory is developed in [1]
for near-monotone cost functions, and using these results it is possible to
generalize all of the results in this paper. For the sake of brevity we do not
consider in detail such extensions.

3 Existence of Optimal Controls

We may now address the question of existence of optimal controls for a
controlled Markov chain with transition function Pa using the cost criterion
(1). We assume without loss of generality that α = 1, so that the goal is to
minimize over all controls,

R(x,w) = lim sup
n→∞

1
n

log
(
Ew

x

[
exp

(
Sw

n )
)])

,

where we set

Sw
n :=

n−1∑
k=0

C(Φk, wk(Φk)).

The function C is the one-step cost, which is assumed to satisfy a norm-
like condition. We let c(x, a) = exp(C(x, a)), and for any function w : X → A
we write,

cw(x) = c(x,w(x)), x ∈ X.

The function w is interpreted as a feedback law in the results below, and
the control uk = w(Φk) is called a stationary Markov policy. The control
sequence is called Markov if uk = wk(Φk), k ≥ 0, for a sequence of functions
w = {wk}.

Throughout the remainder of this paper we also impose the following
assumptions on the state space, action space, and on the controlled chain.

(A1) the state space X is countably infinite; the action space A is finite;
and the function C( · , a) is norm-like for any fixed a ∈ A.

(A2) For any Markov policy w

Pw{τy <∞ | Φ0 = x} > 0, x, y ∈ X.
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For any stationary policy w, the Markov chain with law Pw is assumed
to be aperiodic.

It will be clear that the strong assumption on A used in (A1) can be replaced
by appropriate continuity conditions. The norm-like condition on the cost
function is more difficult to remove, but some extensions were described
in the previous section. Condition (A2) is just an extension of the usual
definition of irreducibility for a time homogeneous Markov chain on X.

We now give a generalization of the g.p.e. defined by (6). Let θ be some
arbitrary state in X, and for any Markov policy w = (w0, w1, w2, . . . ) let

Λ(w) := inf
{

Λ ∈ R : Ew
θ

[
exp

(τθ−1∑
k=0

[C(Φk, wk(Φk))− Λ]
)]

≤ 1
}
.

The minimal value is denoted

Λ∗ := inf Λ(w), (10)

where the infimum is over all Markov policies. For any policy, we let λ(w) =
exp(Λ(w)), and we set λ∗ = exp(Λ∗).

If w is stationary then we set λ(w) = λ(w), Λ(w) = log(λ(w)), and in
this case, the constant λ(w) is the g.p.e. for the kernel

P̂w(x, y) = cw(x)Pw(x, y). (11)

We call the controlled Markov chain Φw stable if Λ(w) < ∞. If w =
(w,w, . . . ) is stationary then the feedback law w is called stabilizing.

Proposition 3.1 shows that Λ(w) is indeed the steady state cost when w
is a stabilizing feedback law. This is an immediate consequence of Theo-
rem 2.2.

Proposition 3.1 Suppose that (A1) holds and that w = (w,w,w, . . . ) is a
stationary policy defined through the stabilizing feedback law w. Then for
every initial condition x,

R(x,w) = lim
n→∞

1
n

log
(
Ex

[
exp

(
Sw

n

)])
= Λ(w).

ut

The following bounds are taken from [18].

Lemma 3.2 Under the assumptions of this section,
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(i) There exists a function s : X×X → (0, 1) such that for any Markov policy
w = (w0, w1, . . . ),

Kw(x, y) := Ew
x

[ ∞∑
k=0

2−(k+1)I(Φk = y)
]
≥ s(x, y), x, y ∈ X.

(ii) For any finite set S ⊂ X and any y ∈ X, there is a finite constant
B = B(S, y) such that for any Markov policy,

Ew
x

[τy−1∑
k=0

IS(Φk)
]
≤ B, x ∈ X.

ut

The following result illustrates that stability implies a strong form of
ergodicity for the chain.

Theorem 3.3 If w is a stabilizing feedback law then the controlled chain
Φw is V -uniformly ergodic for some V satisfying cw(x) ≤ V (x), x ∈ X.

Hence, in particular,

(i) the chain is ergodic with unique invariant probability πw.

(ii) There exists ρ < 1, B0 < ∞, such that for any function f satisfying
|f | ≤ V ,

|Ew
x [f(Φn)]− πw(f)| ≤ B0V (x)ρn, x ∈ X, n ≥ 0.

Proof If the feedback law is stabilizing then we have seen in Lemma 2.3
that there is a function V ≥ 1 such that

cwPwV ≤ λ(w)V.

It then follows that V ≥ λ(w)−1cw, so that the bound V ≥ cw can be ob-
tained on scaling V . Letting S denote the finite set S = {x : λ(w)−1cw(x) ≤
2} we obtain, for some b <∞,

PwV ≤ (1/2)V + bIS ,

which establishes V -geometric ergodicity (see Theorem 16.0.1 of [16]). ut
For general Markov policies we cannot exactly duplicate Proposition 3.1

but we can obtain a lower bound.

Proposition 3.4 Under (A1) and (A2), R(x,w) ≥ Λ∗ for any Markov
policy w, and any x ∈ X.
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Proof Let 0 < Λ < Λ∗ be arbitrary. For any Markov policy w we must
then have

Ew
θ

[
exp

( τθ∑
k=1

[C(Φk, wk(Φk))− Λ]
)]

> 1.

Using Fatou’s Lemma we may assert the existence of N0 ≥ 1 such that
for any Markov policy and any N ≥ N0,

Ew
θ

[
exp

(τθ∧N∑
k=1

[C(Φk, wk(Φk))− Λ]
)]

≥ 1. (12)

For N ≥ N0 let

WN (x) = min Ew
x

[
exp

(σθ∧(N−1)∑
k=0

[C(Φk, wk(Φk))− Λ]
)]
, (13)

where the minimum is taken over all Markov policies.
Fix N , and suppose that the minimum is achieved at w̄. Using Jensen’s

inequality we have

log(WN (x)) ≥ −ΛEw̄
x

[ σθ∑
k=0

IS(Φk)
]

where S = {x : minaC(x, a) ≤ Λ} is finite. By (13) and Lemma 3.2 (ii) we
see that WN (x) ≥ δ := exp(−ΛB(S, θ)) for all x and N .

For any feedback law w we have

λ−1cw(x)PwWN (x) = Ew̄′

x

[
exp

(τθ∧N∑
k=0

[C(Φk, wk−1(Φk))− Λ]
)]
,

where w̄ = (w0, w1, w2, . . . ), w̄′ = (w,w0, w1, . . . ). From the definition of
(WN : N ≥ N0) and (12) we then have

λ−1cw(x)PwWN (x) ≥WN+1(x)

We note that the bound (12) covers the case where x = θ. Since the
feedback law w is arbitrary we may iterate the previous bound to obtain for
any Markov policy w,

λ−nEw
x

[
exp

(n−1∑
k=0

C(Φk, wk(Φk))
)
WN0(Φn)

]
≥WN0+n(x) ≥ δ.
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From the Markov property and minimality of WN0 we then obtain the bound

λ−nEw
x

[
exp

(n+N0−1∑
k=0

C(Φk, wk(Φk))
)]

≥ δ.

In conclusion, we see that

lim inf
n→∞

Ew
x

[
exp

(n−1∑
k=0

[C(Φk, wk(Φk)− Λ])
)]
≥ λ−N0δ > 0.

Hence R(x,w) ≥ Λ∗ since Λ < Λ∗ is arbitrary. ut
A candidate relative value function and optimal policy are defined re-

spectively as follows: For each x ∈ X,

h∗(x) := inf
w

Ew
x

[
exp

( σθ∑
k=0

[C(Φk, wk(Φk))− Λ∗]
)]

(14)

w∗(x) := arg min
a∈A

c(x, a)Pah∗ (x), (15)

where in (15) the policy w∗ is taken to be any solution to the minimization.

Lemma 3.5 If Λ∗ is finite, then

(i) The function h∗ is everywhere finite.

(ii) The multiplicative Poisson inequality holds,

cw∗(x)Pw∗h∗ (x) ≤ λ∗h∗(x), x ∈ X. (16)

Proof We first show that there exists a Markov policy w such that
Λ(w) = Λ∗.

Take a sequence {Λn} for which Λn ↓ Λ∗ as n ↓ ∞, and choose Markov
policies wn for which Λ(wn) ≤ Λn for each n. We then have,

Ewn

θ

[
exp

(τθ−1∑
k=0

[C(Φk, w
n
k (Φk))− Λn]

)]
≤ 1.

Assume that there is a Markov policy w∞ such that wn → w∞ as n → ∞
pointwise. This is possible on taking a subsequence since the control set is
finite.
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Pointwise convergence is equivalent to weak convergence on XZ+ . Since
c is positive we then obtain,

Ew∞
θ

[
exp

(τθ−1∑
k=0

[C(Φk, w
∞
k (Φk))− Λ∗]

)]
≤ 1,

so that Λ(w∞) ≤ Λ∗. By minimality of Λ∗ this must be an equality, and
hence we may take w = w∞.

Observe that for each x 6= θ,

(λ∗)−1cw∗(x)Pw∗h∗ (x)

= (λ∗)−1 min
a

∑
y∈X

c(x, a)Pa(x, y)
{

inf
w

Ew
y

[
exp

(
Sw

σθ
− σθΛ∗

)]}
= h∗(x) ,

(17)

while for x = θ we have

Pw∗h∗ (θ) = min
w

Ew
θ

[
exp

(
Sw

τθ
− τθΛ∗

)]
≤ 1.

It follows that the sub-eigenvector equation (16) holds, which establishes
(ii).

One may infer from the inequality (16) that the set S = {x ∈ X : h∗(x) <
∞} is absorbing. That is, Pw∗(x, S) = 1 for x ∈ S. Since the point θ is
in S, and since the kernel Pw∗ is irreducible, it follows that S = X, which
establishes (i). ut

Theorem 3.6 Suppose that (A1) and (A2) hold, and that Λ∗ <∞. Then

(i) The feedback law w∗ is stabilizing with g.p.e. λ∗;

(ii) The stationary policy w∗ = (w∗, w∗, w∗, ...) is optimal over all Markov
policies: For any Markov policy w,

R(x,w) ≥ R(x,w∗) = Λ∗, x ∈ X;

(iii) The relative value function h∗ is uniformly bounded from below:

inf
x∈X

h∗(x) > 0.
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Proof Result (iii) follows from (16) which may be used to establish the
bound

Ew∗
x

[
exp

(τθ−1∑
k=0

Cw∗(Φk)− Λ∗
)]

≤ h∗(x)/h∗(θ), x ∈ X.

We then obtain, exactly as in the derivation of the lower bound on Wn

defined in (13),

h∗(x) ≥ h∗(θ) exp(−Λ∗B(S, θ)), x ∈ X,

with S = {x ∈ X : minaC(x, a) ≤ Λ∗}.
That w∗ is stabilizing with g.p.e. λ∗ then follows from (16), Proposi-

tion 3.1 and Lemma 2.3, giving (i), and then (ii) follows from Proposition 3.1
and Proposition 3.4. ut

Note that the theorem does not say that the pair (λ∗, h∗) solves the
dynamic programming equations

c(x, a)Pah∗ (x) ≥ min
a∈A

{
c(x, a)Pah∗ (x)

}
= λ∗h∗(x), x ∈ X, a ∈ A. (18)

The difficulty is that we do not know in general if (16) is in fact an equality.
It is an equality for all x 6= θ, but for x = θ the equality can fail (see
(7)). This corresponds to the ‘R-transient’ case for the kernel cw∗Pw∗ [21].
Fortunately, the inequality provides an upper bound which is enough to
show that w∗ is optimal.

4 Value Iteration

In this and the following section we assume that the conditions of Theo-
rem 3.6 are met so that an optimal policy exists. We now focus on compu-
tational approaches for constructing an optimal stationary feedback law w∗.
We first consider the value iteration algorithm, or VIA.

The VIA for the risk sensitive optimal control problem recursively con-
structs a sequence of value functions {Vn : n ≥ 0} as follows: For n = 0 the
function V0 : X → [1,∞) is given as an initial condition. For n ≥ 1 the value
function is defined recursively,

Vn(x) = min
a∈A

{
c(x, a)PaVn−1 (x)

}
, x ∈ X.

We follow [4] and assume that V0 is a “Lyapunov function” in the sense of
(8) for at least one policy so that for some λ−1 < ∞ and one feedback law
w−1,

cw−1(x)Pw−1V0 (x) ≤ λ−1V0(x), x ∈ X. (19)
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For each n we fix a feedback law wn which achieves the minimum,

wn(x) = arg min
a∈A

{
c(x, a)PaVn (x)

}
, x ∈ X.

From the sequence {wn : n ≥ 0} of feedback laws we define two policies:

wn = (wn, wn, wn, . . . ) vn = (wn−1, wn−2, . . . , w1, w0, w0, w0, . . . ).

We will find that the feedback law wn is stabilizing for any n, and that
it is near optimal when n is large. The Markov policy vn minimizes the
finite-horizon cost criterion,

Ew
x

[
exp

(
Sw

n

)
V0(Φn)

]
,

over all Markov policies w.
The normalized value function and the incremental cost are defined re-

spectively as

hn(x) = Vn(x)/Vn(θ); gn(x) = Vn+1(x)/Vn(x), x ∈ X, n ≥ 0.

For each n we let λn := supx∈X gn(x), and Λn = log(λn). We let Pn = Pwn

and cn = cwn .

Lemma 4.1 Suppose that (A1) holds and that the initial condition V0 is
chosen so that (19) holds. Then,

(i) For each n, the function Vn is bounded from below by unity, and the
following inequality holds:

cnPnVn ≤ λnVn

(ii) The upper bounds {λn} are finite and decreasing:

λ−1 ≥ λ0 ≥ λ1 ≥ · · ·

Proof By definition of wn we have

Vn+1 = cnPnVn.

Hence if Vn(x) ≥ 1 for all x then Vn+1(x) ≥ (infx cn(x))(infx Vn(x)) ≥ 1 for
all x. Since the initial condition V0 is assumed to be bounded from below
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by unity, we see by induction that each Vn is similarly bounded. The proof
of (i) is concluded on noting that

cnPnVn = gnVn ≤ λnVn.

To prove (ii) observe that for any n,

gn =
Vn+1

Vn
=

cnPnVn

Vn

≤ cn−1Pn−1Vn

Vn

=
cn−1Pn−1(gn−1Vn−1)

Vn

≤ λn−1
cn−1Pn−1Vn−1

Vn
= λn−1

This shows that the sequence {λn} is decreasing. ut
From the lemma we find that the value iteration algorithm generates sta-

bilizing policies, provided that it is properly initialized. This is summarized
in the following theorem:

Theorem 4.2 Suppose that (A1) and (A2) hold, and that (19) also holds
for some initial feedback law w−1 and a finite constant λ−1. Then each of
the feedback laws {wn} is stabilizing, and the risk sensitive cost satisfies

R(x,wn) = Λn ≤ Λn <∞, x ∈ X, n ≥ 0.

Proof From Lemma 4.1 we have the bound

PnVn ≤ λnc
−1
n Vn.

Hence the result follows from Lemma 2.3 and Proposition 3.1. ut
Define inductively a new sequence of functions {h̃n} as follows: For n = 0

we take h̃0 = h0, and for n ≥ 1 define

h̃n :=
1
λ∗

min
a

{
c(x, a)Pah̃n−1 (x)

}
, x ∈ X. (20)

By induction we see that h̃n and hn are constant multiples for each n, and
we have the following interpretation:

h̃n(x) = (λ∗)−n min
w

Ew
x

[
exp

(
Sw

n

)
h0(Φn)

]
, (21)

where the minimum is over all Markov policies.
To obtain an upper bound on {h̃n} we use the following assumptions.
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(A3) There exists a solution (λ∗, h∗) to the dynamic programming equa-
tions (18) satisfying h∗(θ) = 1, with λ∗ given in (10).

(A4) There exists a solution w∗ to (15) such that the transformed kernel

P̌∗(x, y) =
cw∗(x)Pw∗(x, y)h∗(y)

λ∗h∗(x)

is positive recurrent with unique invariant probability π̌∗.

We denote the transition kernel Pw∗ by P∗.
Suppose that w∗ is the feedback law defined in (15), with h∗ given in (14).

If the the Markov chain with transition function P∗ satisfies Λ(w∗, α) < ∞
for some α > 1, it then follows from Theorem 2.2 that (A4) holds with P̌∗
geometrically recurrent (see also [1]). Assumption (A3) will also hold since
the multiplicative Poisson equation cw∗P∗h∗ = λ∗h∗ is solved uniquely, again
by Theorem 2.2, and by definition of w∗ we do have

min
a
c(x, a)Pah∗ = c∗(x)P∗h∗ (x) = λ∗h∗(x), x ∈ X.

Lemma 4.3 Under (A1)–(A4), provided that π̌∗(h0/h∗) <∞, the following
bounds hold for all initial x:

lim sup
n→∞

h̃n(x) ≤ π̌∗(h0/h∗)h∗(x).

lim
n→∞

1
n

n−1∑
k=0

log(gn(x)) = Λ∗

Proof Substituting w∗ for w in (21) gives the upper bound,

h̃n(x) ≤ Ew∗
x

[
exp

(n−1∑
k=0

[C(Φk, w
∗(Φk)− Λ∗]

)
h0(Φn)

]
= h∗(x)Ě∗x

[h0

h∗
(Φn)

]
.

From the f -Norm Ergodic Theorem of [16] and irreducibility we must have
Ě∗x[h0

h∗
(Φn)] → π̌∗(h0/h∗) as n→∞ for each x, which gives the first bound.

The second limit involving (gn) follows from the definition of {h̃k} and
{gk} which give

log(h̃n+1(x)) = log(V0(x)) +
n∑

k=0

[log(gk(x))− Λ∗].

Dividing by n and using the boundedness of {h̃n(x) : n ≥ 1} gives the
desired limit. ut
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Lemma 4.4 Under (A1)–(A4), suppose that

δ := inf
x∈X

V0(x)
h∗(x)

> 0. (22)

Then for all n ≥ 0 and x ∈ X,

h̃n(x)
h∗(x)

≥ δ.

Proof The proof is by induction, where h0/h∗ is bounded from below
by δ > 0 by assumption.

If h̃n/h∗ is bounded from below by δ then for all x

h̃n+1(x)
h∗(x)

=
cnPnh̃n (x)
λ∗h∗(x)

≥ δ
cnPnh∗ (x)
λ∗h∗(x)

≥ δ
c∗P∗h∗ (x)
λ∗h∗(x)

= δ.

Hence h̃n+1 is bounded from below as claimed. ut

Theorem 4.5 Suppose that (A1)–(A4) hold, and suppose that the initial
condition satisfies the pair of bounds,

inf
x∈X

(V0(x)
h∗(x)

)
> 0; π̌∗

(V0

h∗

)
<∞.

Then hn(x) → h∗(x) as n→∞ for every x ∈ X.

Proof Let Φ̌ denote the stationary Markov chain with transition prob-
ability P̌∗ and invariant distribution π̌∗. For each n ≤ 0 we set

Zn =
h̃−n−1(Φ̌n)
h∗(Φ̌n)

.

From the inequality P̌∗ h̃n
h∗
≥ h̃n+1

h∗
it follows that {(Zn,Fn) : n ≤ 0} is a sub-

martingale (integrability follows from the bound π̌∗(h0/h∗) <∞). Applying
[5, Theorem 1, p. 376] we may then conclude that the limit

lim
n→−∞

Zn = γ

exists a.s., and since the chain Φ̌ is ergodic, its invariant σ-field is trivial,
and hence γ is a constant (c.f. [16, Proposition 17.1.4]). We must also have
convergence in probability: For any ε > 0, x ∈ X, as n→∞,

π̌∗(x)I{|h̃−n−1(x)− γh∗(x)| > εh∗(x)} = P{|Zn − γ| > ε, Φ̌n = x} → 0,
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which shows that h̃n → γh∗ pointwise as n→∞. It follows from Lemma 4.4
that γ is non-zero, and the result then follows since, for each n, the functions
hn and h̃n are constant multiples, and since hn(θ) = h∗(θ) = 1 for all n. ut

5 Policy Iteration

The policy iteration algorithm, or PIA, is similar to the VIA. Given an
initial feedback law w0 to initialize the algorithm, we denote Λ0 = Λ(w0, 1),
so that for any θ ∈ X,

Ew0
θ

[
exp

(τθ−1∑
k=0

(Cw0(Φk)− Λ0)
)]

≤ 1. (23)

We again recall that the above is an equality provided that αw0 > 1 (see
Theorem 2.2).

One version of the relative value function is given by

h0(x) = Ew0
x

[
exp

( σθ∑
k=0

(Cw0(Φk)− Λ0)
)]
, x ∈ X,

which satisfies h0(θ) = exp(Cw0(θ) − Λ0). Provided that w0 is stabilizing,
it follows as in Lemma 2.3 that h0 is finite valued, uniformly bounded away
from zero, and that the multiplicative Poisson inequality holds:

P0h0 (x) ≤ λ0c
−1
0 (x)h0(x), x ∈ X, (24)

where equality holds in (24) provided that (23) is an equality (see [1]).
Given an initial stabilizing feedback law w0, the PIA defines a sequence

of feedback laws, again recursively. Suppose that policies {w0, . . . , wn} have
been determined together with relative value functions {h0, . . . , hn}. To
enforce the normalization hk(θ) = 1, we define for all k ≥ 0, x ∈ X,

hk(x) := exp(−Cwk
(θ) + Λk)Ewk

x

[
exp

( σθ∑
k=0

(Cwk
(Φk)− Λk)

)]
. (25)

A new policy wn+1 is then defined to be any solution to the minimization

wn+1(x) = arg min
a∈A

c(x, a)Pahn (x), x ∈ X. (26)

As in the proof of the lower bound on {WN} in Proposition 3.4 we can
obtain a uniform lower bound on the relative value functions {hn}:
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Lemma 5.1 Suppose that (A1) and (A2) hold. Then there exists δ > 0
such that for each n and x,

hn(x) ≥ δ > 0

ut

Like the VIA, the PIA generates stabilizing policies if it is properly
initialized:

Theorem 5.2 Suppose that (A1) and (A2) hold. If w0 is stabilizing then
for any policies {w0, . . . , wn, . . . } determined by the PIA,

(i) Each of the {w0, . . . , wn, . . . } is stabilizing;

(ii) The costs {Λn := Λ(wn, 1), n ≥ 0} form a decreasing sequence:

Λ0 ≥ Λ1 ≥ · · · ≥ Λn ≥ · · · .

Proof The proof is by induction: For any n we have by Lemma 5.1
that infx hn(x) > 0. Also, by minimality,

cn+1Pn+1hn (x) ≤ cn(x)Pnhn (x) ≤ λnhn(x).

From this bound and Lemma 2.3 with V = hn we conclude that the feedback
law wn+1 is stabilizing, and λn ≥ λn+1. ut

Lemma 5.3 Under (A1) and (A2),

sup
n≥0

hn(x) <∞.

Proof Suppose not. Then there exists x0 ∈ X, a subsequence {nk} of
Z+, a policy w∞, and functions h∞, c∞ such that as k →∞,

cnk
→ c∞, hnk

→ h∞, wnk
→ w∞,

where the convergence is pointwise, and h∞(x0) = ∞.
However, from (25) we have h∞(θ) = 1, and by Fatou’s Lemma,

c∞(x)Pw∞h∞ (x) ≤ λ∞h∞(x).

Since the control set A is finite we know that c∞ is finite valued. It then
follows from the above inequality that the set S = {x : h∞(x) < ∞} is
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absorbing. Since it is also non-empty, it must be full [16], and since the
kernel Pw∞ is irreducible this means that S = X. This is in contradiction to
the assumption that h∞(x0) = ∞, and we conclude that {hn(x) : n ≥ 0} is
bounded for any x, as claimed. ut

To establish convergence of the PIA to an optimal solution it is necessary
to impose some additional assumptions on the process. One convenient
assumption is the skip free property that for each x, there is a finite set
Nx such that Pa(x,Nx) = 1, a ∈ A. This assumption is satisfied for most
network models. Unfortunately, we have also been forced to impose some
less easily verifiable conditions in Theorem 5.4.

Theorem 5.4 Suppose that (A1)–(A4) hold; that the kernel Pa is skip free;
and suppose that the multiplicative Poisson equation holds for each n:

cnPnhn = λnhn.

Suppose moreover that

(i) π̌∗(h/h∗) <∞, where h(x) = lim supn hn(x), x ∈ X.

(ii) For any limit {w∞, h∞, c∞} of the sequence {wn, hn, cn : n ≥ 0}, the
multiplicative Poisson equation has a solution hw∞ for Pw∞; the asso-
ciated kernel P̌w∞ is positive recurrent with invariant probability π̌w∞;
and π̌w∞(h∞/hw∞) <∞.

Then,
hn(x)
hn(θ)

→ h∗(x), x ∈ X,

and λn ↓ λ∗, as n→∞.

Proof Let {w,w∞, h∞, c∞} be any subsequential limit of the sequence
{wn+1, wn, hn, cn : n ≥ 0}. Clearly c∞ = cw∞ and λ∞ = infn λn. By the
skip free assumption,

λ∞h∞ = c∞Pw∞h∞.

Iterating then gives

h∞
hw∞

(x) =
1

hw∞(x)
Ew∞

x

[
exp

(n−1∑
k=0

(
C(Φk, w∞(Φk))− Λ∞

))
h∞(Φn)

]
=

(λ(w∞)
λ∞

)n
Ěw∞

x

[ h∞
hw∞

(Φ̌n)
]
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The expectation on the r.h.s. is bounded due to the ergodicity assumption
on Pw∞ . We conclude that λ∞ = λ(w∞) for any limiting feedback law w∞,
and hence also λ∞ = λ(w).

On taking limits we also obtain

λ∞h∞ = c∞Pw∞h∞ ≥ cPwh∞ = min
w
cwPwh∞.

By uniqueness of solutions to the multiplicative Poisson inequality we must
have an equality, cPwh∞ = λ∞h∞ (see Theorem 2.2). That is, (h∞, w)
solves the dynamic programming equations for the risk sensitive control
problem. Note that this conclusion depends crucially on the observation
that λ∞ = λ(w).

Note also that we have not yet shown that λ∞ = λ∗. For this we iterate
the identity

cw∗P∗h∞ ≥ λ∞h∞,

to obtain
Ěw∗

x

[h∞
h∗

(Φ̌n)
]
≥

(λ∞
λ∗

)nh∞
h∗

(x).

Since again the l.h.s. is bounded by assumption, and converges to a limit
independent of x, we conclude that λ∞ = λ∗, and m :=h∞/h∗ is a bounded
function of x.

Finally, we have P̌w∗m ≥ m, which shows that m is a bounded, sub-
harmonic function. Since P̌w∗ is assumed to be recurrent we must have
that m is a constant (see [19]), which implies the desired conclusion that
h∞(x)/h∞(θ) = h∗(x), x ∈ X. ut

6 A queueing model

To illustrate application of the theory we consider an elementary model.
Consider the single queue, described by the recursion,

Qk+1 = [Qk − uk +Ak+1]+, k ≥ 0,

where Q0 = x ∈ Z+ = X is given. Both Q and u take values in Z+, and we
assume that uk ≥ 1 if Qk ≥ 1.

Two sources contribute to cost: If Qk is large then there is excessive
inventory, and there is a relatively high price to pay for a large number of
servers. With these issues in mind, we take a cost function of the general
form,

C(x, a) = θ[g(x) + a], x ∈ X, a ∈ Z+,
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where g(x) = o(x), so that there is a relatively high cost for servers. We
assume that θ > 0, and that g(x) → ∞, x → ∞, so that condition (A1) is
satisfied.

The sequence {Ak : k ≥ 1} is assumed to be i.i.d., and the support of
the common marginal-distribution is equal to Z+. These assumptions imply
that the irreducibility condition (A2) holds. The mean of A1 is necessarily
finite, and is denoted α.

Finally, we assume that the moment generating function MA for A1 is
finite everywhere. This ensures that the risk sensitive cost is finite: To see
this, we show that for sufficiently small β, the linear feedback law w◦(x) =
dβxe is stabilizing, where dze denotes the least integer that is greater than
z, z ∈ R. Consider the Lyapunov function V0(x) = eγx, x ∈ X, with γ > 0.
We have for any a ≤ x,

PaV0 (x) = Ex[exp(γ(x− a+Ak))]

= e−γaMA(γ)V0(x) .

Thus, for any γ > θ, there exists λ◦ <∞ such that

Pw◦ V0(x) ≤ λ◦ exp(−Cw◦(x))V0(x), x ∈ X .

The drift inequality (3) holds for this policy, and consequently this linear
policy has finite risk-sensitive cost.

An application of Theorem 3.6 shows that an optimal policy w∗ exists,
with risk sensitive cost Λ∗ < log(λ◦) <∞.

Consider now the two algorithms considered above. Theorem 4.5 requires
a finite mean π̌∗(V0/h∗) to ensure convergence of the VIA. Similar conditions
are required in Theorem 5.4 to establish convergence of the PIA.

Suppose that w∗ is an optimal policy, and that h∗ is the relative value
function, so that Pw∗h∗ ≤ exp(Λ∗ − Cw∗)h∗. The following bound is then
obtained via Jensen’s inequality,

Pw∗V∗ (x) ≤ Λ∗ − Cw∗(x) + V∗(x) = V∗(x)− θ[g(x) + w∗(x)] + Λ∗

where V∗ := log(h∗). Letting τ denote the stopping time,

τ = min(k : Qk = 0),

we have Qτ = 0, and we then obtain the bound, for all x ∈ X,

Ew∗
x

[τ−1∑
k=0

(
θ[g(Qk) + w∗(Qk)]− Λ∗

)]
≤ V∗(x)− V∗(0) . (27)

23



We assume without loss of generality that V∗(0) = log(h∗(0)) = 0.
We also have by definition of τ ,

0 = Qτ ≥ Q0 +
τ−1∑
i=0

(−w∗(Qi) +Ai+1) ,

from which we deduce that

x = Q0 ≤ Ew∗
x

[∑τ−1
i=0 (w∗(Qi)−Ai+1))

]
= Ew∗

x

[∑τ−1
i=0 w

∗(Qi)
]
− αEw∗

x [τ ].

This combined with (27) gives a lower bound on h∗:

log(h∗(x)) ≥ θ(g(x) + x) + (θα− Λ∗)Ew∗
x [τ ].

If w∗(x) → ∞, x → ∞, then Ew∗
x [τ ] = o(x). Unboundedness is a necessary

condition for finiteness of the risk sensitive cost when g is unbounded.
For a bound on the mean, note that the lower bound on h∗ implies that

V0(x)/h∗(x) ≤ Kε exp(εx) for any ε > γ− θ, and some finite Kε. Hence the
required bound π̌∗(V0/h∗) <∞ is satisfied provided∑

π̌∗(k)eεk <∞

for some ε > 0. This has not been verified, but is plausible when the twisted
chain with invariant probability π̌∗ is geometrically ergodic. Hence, given a
geometric tail on the steady state distribution π̌∗, it follows that the VIA will
converge with the initialization V0(x) = eγx, provided γ > θ is sufficiently
small.
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