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Abstract. Introducing the concepts of set-theoietic sequencing logic, hierarchic
optimsation and sensitivity-directed 1terative simulation, this paper provides a theore-
tical basis for the development of a simulation package for the three-dimensional
atmospheric controlled flight of satellite launch vehicles subject to specified control
constraints. The approach described here enables the optimisation of the profile of
the vehicle to be carried out together with 1ts trajectory, given the orbital objectives
The simulation package, SIMSPACE II, developed on this basis, is shown to have
features superior to the MATS program and 1elated packages.
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1. Introduction

The design of a satellite Jaunch vehicle is best carried out as the mtegrated optimisa-
tion of the profile of the multi-stage rocket along with the trajectory, giventhesatellite
characteristics along with the desired orbit. The figst step towards such an mnte-
grated optimisation is the development of a simulation package which can be con-
veniently built into the optimisation procedure. The optimisation procedure, in
turn, should be so developed as to accommodate certain specified control constraints.

A FORTRAN package for the simulation of the trajectory of the atmospheric
flight, given the profile of the vehicle, was developed by Seshagin ez af (1969) for
assisting the design efforts relating to the Indian satellite launch vehicle SLV-3.
The development of this package, SIMSPACE I, paralleled the efforts of the TRW
Systems Group, California, where the Mission Analysis and Trajectory Sumulation
(MATS) package was developed Both packages had similar capabilities though
SIMSPACE I was computationally more efficient but somewhat inferior in flexibility
to MATS. Both were phase-oriented with mput parameter controlled simulation.
However, MATS made use of the bucket concept for minimising the input storage
requirements by identifying the data by phase and storing it en masse; as each phase
15 initiated the associated data are brought mto active memory. On the other hand,
SIMSPACE 1 relied on a set-theoretic sequencing logic for mcreasing computational
efficiency When adequate details of MATS were released through the publications
of Lanzano (1970a, b) some of the flexibility features of MATS were introduced into
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Both SIMSPACE I and MATS lacked the following desirable features.

(1) As the bucket concept of MATS and the sequencing logic of SIMPSAC
have several complementary advantages, a framework 1s necessary for 1
grating the better features of both in a common package.

(1) As the optimusation of the vehicle profile or that of the trajectory influer
each other, best results are obtained through their integrated optimisati

(1) The mtegrated optumisation should be catried out by more efficient te

niques while preserving the main simulation framework. Both SIMSPA
I and MATS, which are basically for trajectory simulation, can do this o
through repeated trial-and-error simulations as was the case when SL'
was designed.

The above three desirable features missing in SIMSPACE I and MATS are int
duced in SIMSPACE 11, a new package developed by the author as an extensiv
modified version of SIMSPACE I The theoretical basis of sunulation and in
grated optimisation in SIMSPACE II is described 1n the following sections.

2. Theoretical basis of simulation

The simulation of flight performance 1s realised in the proposed scheme predominan.
in the body co-ordinate system. However, certain input parameters are convenieni
expressed in other co-ordinate systems like the geocentric system and the top
centric system. At the core of the simulation procedure 1s the calculation of nerti
forces and moments. The natural system 1n which these are calculated is the boc
co-ordinate system. The principal additive constituents of the force and the mome
equations are thrust, gravity, jet damping, and inertial, control and aerodynam
forces and moments. The schematic diagram of interrelations between the simul
tion parameters and their co-ordinate transformation given in figure 1 is self-expl:
natory. The approach represented by figure 1 is a significant departure from thot
advocated by Krause (1961), Harris (1963), Fogarty (1968) and the TRW Systen
Group which developed MATS, in the manner in which the inter-coordinate tran:
formations are designed so as to minimise the time of simulation

2.1. Effect of the earth’s rotation

For accurate determination of the co-ordinates of the vehicle and the radar range

the earth’s rotation has to be considered. The circumferential velocity of the eartl
at the launch point is

Wy = R, w c0s ¢,

;N};ire;i w is the spin Yelocity. of the earth, R, is the radius of the earth and ¢, is th
(;1 itude. dThe earth’s rotat.lonal velocity is specified in the geocentric system anc
esignated ). However, since the equations of motion are represented in the bod

co-ordinates, the earth’s rotational com i
: pornents in the body co-ordinates should be
determined. The transformation matrix is ! °

E=[e;] = [d] [d,], M
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Figure 1. Schematic diagram of inter-relations between simulation parameters and

their co-ordinate transformation.

where d;; = cos Bcos v, dy, = s1n B cos v, dyg = sin v and all other dj; are zero.

In (1) and throughout the rest of this section the subscripts i and j are taken to be
indexes for space co-ordinates running through 1, 2 and 3
The body co-ordinate components of £) are

by=0Q z} ey

@)

If the actual inertial rotational velocity components of the vehicle in body co-ordi-
nates are g;, then the rotational velocity components relative to the atmosphere are

given by

gy =q; — b,

3)




406 N Seshagirt

The earth’s rotation also has an influence over the translational velocity components.
In topocentric co-ordinates these will be

Vo= QR d:zs v == yy and a;ss =0, (4)

where R is given in terms of the displacements X, in geocentric co-ordinates

R (3 ) ®

The contribution of the earth’s rotation to the translational velocity components is
given by

[v] = [dij] [e,]- ()

The calculation of translational velocity components relative to the atmosphere
requires the inclusion of wind velocity components. Initially, wind velocity is
specified 1 terms of lmear velocity ¥,, and a rotational velocity 8,,. They are speci-
fied as functions of H, the altitude, given by (R — R,). These wind velocity com-
ponents are expressed in the topocentric system by

i =—VoDii Ty =cos(B—6,), Dy =sm@B—0,), =0 (7
Transforming (7) to body co-ordinates, we obtain
[25,] = (4] [o,]. (8)

Thus, if the inertial translational velocity components u, are known, the velocity
components uy, relative to the windy atmosphere can be expressed as

Upe =ty — v, — 2, )

The composite relative velocity of the vehicle is

Ue =3, )", (10)

which corresponds to a Mach number, M = U,/a, where a is the velocity of sound

at an altitude H. Similarly, the dynamic pressure 6 == 1,U.2 wh : :
of air at the altitude . 2PUx" Where pis the density

2.2 Atmospheric perturbations

Dunng an atmospheric flight if the angle of attack becomes very large, the aero-
dynamic forces produce pronounced bending moments which act on the, vehicle

. To compute the angle of attack certain conventions will be followed. If the veio—
City vector comncides with the rocket axis, which is also the x axis in l;ody co-ordi-
nates, the angle of attack o is assumed to be zero. The anglle of attack is resolved
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into pitch angle of attack a, and yaw angle of attack «, corresponding to the resolu-
tion of U, along the pitch and yaw axes. These are expressed as

a, = tan™ (upg/g,); @, = tan™ (Uge/ug,), (11)
the angle of attack 1s

a = tan™t [(u, + 1 Vi IV (12)
The aerodynamic force components are

Fg=—CpQS; Fyp=—Cy, 0, Q8; Fyg=—Cp,0,0S5], (13)
where S 1s the reference area with respect to which the drag coefficient C;, and the

normal force coefficient Cj, are calculated. The estimation of Cp, and Cy as func-

tions of Mach number and the angle of attack 1s made taking into account the shape
of the vehicle.

In the computation of aerodynamic moments, the variation of the angle of attack
is also included. If the time duration of an event during simulation 1s quantified to
At, the variations in the relative translational velocity components can be expressed
at any time ¢ as

. 1

Up, = = (g, (2 4 AL) — ug, (). (14)
Utilising (11) and (14), the variations m. ¢, and «, can be shown to be

a, = A(ugg) COS* ap; ay, = A(ugp)cos® ay; A(a) = (@ g, —i1g,a)] uju - (19)
The aerodynamic moments about the three body axes are

M,, = (QS/2UR)B,, (16)
where B]. = 2 UR C]_ Qv],.D + Cz 51-D2 + C3 63 Dz,

.82 = 2URCNG, a‘p (Cg — Cp) + C4 mpDZ "+‘ C5§2 D2,

By, =2U, Cy4 o, D* + Cyq3 D* + Cy, o, (C,— Cp).
Here D is the reference diameter, C, and C, are the distance of the centre of gravity
and the centre of pressure from the nozzle end; C;, C; and C; denote the rolling
moment coefficients, C, and Cj the pitching moment coefficients and Cg; and C; the
yawing moment coefficients.

2.3. Control forces

A change in the direction of a powered flight is determmed by the forces acling normal
to the instantaneous flight direction whereas the magnitude of acceleration 1s

Proc, (Cy—=5
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detetmmed by the langeniial foices. 1f all normal forces except the norn

component of the vehicle weight are absent, the path 1s deflected by gravitatior
forces only. If one desires a different powered irajectory, one should introduce
new force such that the resultant normal force controls the vehicle to correspond

a pre-specified trajectory. If a thrust force normal to the mstantaneous direction
fhght is required, the vehicle should be rotated till the X; axis forms an angle «
attack with the flight direction such that the required normal force is generate:
For effecting this rotation a steermg force 1s applied. If forces due to the wind:
thrust misalignment or airframe deflection exist, they tend to deviate the vehicl
from its prescribed trajectory. To balance the moment produced by these forces
control forces are required.

Control forces and control moments can be specified as a set of conditional state
ments. For example, we may have as inputs the rotational velocity components in
the topocentric co-ordinates, viz., (¢ B, zZrc) as functions of time. The correspond-
ing rotational velocity components i the body co-ordinate constituting the control
components are

qcl = ‘]gc - 0;: Sin ¢’
G2 = 6,008 i cOs ¢ + i, sin ¢,
Gos = 6, €08 510 $ - 4, cOS 6.

If the actual rotational velocities are ¢;, the difference from the control components
will be

Ag, = dei. — G-

Depending upon the type of control system used, certain conditional propositions
governing the control forces F,, and F,5 and the control moment M,; may be des-
cribed. The package is general enough 1o accommodate any practical control sys-
tem through input conditions specified for F,,, F4 and M

2.4. Gravity, jet-damping and inertial components

If no normal thrust components or aerodynamic lift forces act on the vehicle, the
normal force deflecting the path of the vehicle will be that due to gravity, The
advantage of gravity deflection during ascent through the denser atmosphere is that
the angle of attack is kept small so that the bending moment is mmmused. This
will have the effect of reducing the structural weight of large vehicles. Apart from
the deflection, gravitation accounts for a gravity loss which results, in general, in a
loss of velocity and altitude. Thus, for considermg gravity loss and gravity deflec-
tion during simulation, the three components of the gravity force should be calculated
in the body coordinates.

If g, 1s the acceleration due to gravity at the surface of the earth, this acceleration
of the vehicle at an altitude H( = R — R,) is given by

g = — gy (R,/R)™. ) | an
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The gravity foree due to this acceleration is governed by a variable mass due to the
reduction 1 the weight of the propellant durmg the powered ascent. The change m
the propellant weight can be computed from the given thrust-time curve.

At any tiume ¢ let the weight of the vehicle be W(¢). Then, at a time At later, the
weight will be

W(t + At) = W(t) ——M, (18)
20 TI

where, Tay = average thrust of the current stage, W, = propellant weight of the
current stage and T, = total impulse of the current stage. Correspondingly, there
will be a shifi in ihe centre of gravity so that,

o

1 Tay . At. W,.C
—_ W(t Ct) — & ity
Wt an A0 GO 2.1, o

where C,, is the initial value of C,.
The mass and its time rate of change are given by

Cg(t -+ Af) =

m(z) = W(z)/g(r) and (20)
m(t 4+ A1) = — [m(t + A1) — m(1)]/ At. “y

In the topocentric co-ordmate, (X, X9, X3), the components of the gravitational
acceleration are

& = (g/R)(Xﬂi + 813 —Re)a (22)
where 8f = 1di=k,
= 07k

Transforming these to the body co-ordinate system

[l = )] [g] (23)

the corresponding forces are
Fy = mgy. 24
The thrust force and moment components can be calculated from the thrust-time
curve. However, we should take note of the differences between the atmospheric

pressure P, at the altitude H and the design pressure Pges which the thrust-time
curve qualifies. The corrected thrust will be

T——-Tav'f“(Pa*“Pdes)Ae; (25)

where A, is the exit area of the nozzle.

et BT
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If there are no thrust musalignment components, Fry, Fpy and Fpgare all equal
to T. However, in general, misalignment may be present and expressed by two
angles, viz., the angle between the thrust vector and the Xj-axis (€) and the angle
between the Xp-axis and the projection of the thrust vector on the X,Xg-plane (7).
In such cases, the correspondmng forces and moments of thrust, jet-damping and
|nertia are along the X,- and Xp-axis (i = 2, 3) respectively.

Fr, = Tsm £ (82 cos n + 83 sin n), My = (— 1)'™ Fr, C,
Fji =mC, (82 ¢z + 32 qo)y My, = —h CP q (26)
Fy = m(Uyy Gig —Yiy qi1) Mp = (=1 (h—1) Gy ez, Ya=U1,9=0,

Here I, and I, are the moments of inertia of the vehicle along the X;- and X;-axes
respectively. These are functions of time because the mass of the vehicle and the
mass distribution within the vehicle change with time during the powered ascent.

2.5. Translation and rotation

The forces and moments described in §§ 2.2 to 2.4 are the additive terms in the total
force and moment components. Thus, the total force and moment components

are respectively
F, =Fn +Fa+ Fri + Fu + Fa + Fp,
M,=Mp + M4 + Mg + My + Mp, 27)
Fy=Fp =My =My = Mr =0.

The mertial, translational and rotational acceleration components are respectively
Uy = Fim, 4, = My[I, (28)

where I, 1s the moment of inertia along the x-axis. Integratingthese the correspond-
1ng mertial velocity components are realised.

u = g+ [i, - dt, gy = qig + [d d. (29)

Since these are expressed in the body co-ordinate, a reverse iransformation is required
to express the displacements in the familiar topocentric and geocentric co-ordinates.
In the topocentric system, they will be

[ug] = [dy] [, (30

and <;§=q1mq,cos¢tan¢+q3singbtan¢,
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cos:/a+ s ¢ 31)

§ = gy 510 b + g cos 4.

The corresponding displacements and Euler angles are
Yo = o + [t = gy + [ 4 drete (32)

The transformation to the geocentric system is given by
[xai] = [Cyj] [x, + R, 5 (33)

The altitude can be calculated from

H=R—R,R=(3 & ™" (34)

PG

If there 15 a tracking system at the launch station, it will be rotating with the earth
at the rotational velocity )  In the geocentric system this will contribute a displace-
ment x,, given by

xp, = R, [(8* + 8%) cos vy + 83 sm vy] [83 4 8 cos (4 + Qf) + §2
sim (A, + Q). (35)

The difference (x5 — X,,) gives the xg-directional distance between the launch
station and the vehicle. The corresponding radar range 1s

Ry=[Y, (o — x| (36)
This corresponds to an instantaneous longitude and latitude of the vehicle
v = s (Xg, [ R), A = sin~! (xg, [ R cos v) (37)

2.6. Set theoretic sequencing logic

The transformation relations and the equations of motion in different co-ordinate
systems are independent of the sequence of occurrence because, if we make the ele-
mental time-step size sufficiently small, every variable occurring on the right hand
side in the expansion of a variable can be substituted by the values they had taken m
the previous iteration, 1f such have not been calculated during the present iteration.
However, a problem exists during the initiation of the first iteration. In the order-
independent simulation, it is necessary to specify the initial values of every variable
ocourring on the right hand side of the statement. This is so cumbersome that the
order that minimises the time of simulation should be determined and followed in
the programme.

For practical simulation, we advocate the following set-theoretic sequencing logic,
which minimises the time of simulation for given schemes of integration and mter-

polation,
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The n functions constituting the core of the simulation are represented as a family
of sets

S = {Sb S2’ L) Sn}a Si CS: Sr, = {Sl].’ S125 veey Stnz}«

Let M = U Sk == {SI’ 52, e s Sm}-
k

Let the set of variables for which 1nitial values are given, be
Iy = {q1, @ap s Qu}> W < 1.

Form a residual set
R=Mn I,

where J, 1s the complement of the set 1,
Find an element, a; € R, such that under the conditions

(@meS) = [@d=1,(a¢5) = (=0,

1t 1s ensured that

z;;l d; — maximum, (38)

Form a new residual set
Ry =Rn {‘E}

Find an element, a, € Ry, such that under the conditions
@meES)= =1, (©¢S)= { =0,

condition (38) 1s again ensured.
This ordering is continued till the following ordered set 1s realised:

A = <a19 az: L] am—w>, (39)
such that {ay, @, .., @} = R.

A further ordermg s required to be carried out as follows. Let f be a 1—1 mapping
function. Find that set, Q; < S, for which

fi(Cr~ay,a, €4, N O = {a,}, j > mmimum).
Form a new residual set

R’]_ = S n Ql‘

o

oy =

2 IS, S e

B 2 O
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Again find a set, 0, € R';, such that
[ (Qa>ay, ), € 4, @ # 4y, [hU {a,} N Qs = {ay,}, j > mimmum),

This procedure 15 continued till the following ordered set is realised

B =401 Qs s O (40)
such that {0y, Qy, .., Qu} = {Sp Sas > S}

A feature of MATS which gives a better computational performance as compared
to SIMSPACE I is the bucket concept which minimises the storage requirements by
relating sets of data with the corresponding phase, so that as each phase of simulation
is initiated the associated data are brought nto the active memory. This beneficial
feature is included m SIMSPACE II with the modifications found necessary to
integrate 1t with the set theoretic sequencing logic, which 1s a more logical and effi-
cient phasing scheme than that in MATS. With each distinct logical step outlined
10 § 2.6 is considered as a distinct phase and with 1t 1s associated a storage bucket,
the capacity of which 1s proportional to the input data intensiveness of the logic
step phase The mput processor then handles these buckets of different capacity.
The data may be fed i as input m any order and may be superseded It 1s read
contiguously mto the bucket and organised with respect to the above described
logic-step phase when the simulation is requested.

2.1, Interpolation and wtegration

Input data like thrust, aerodynamic coefficients, moments of mertia and centre of
pressure are functions of Mach number and angle of attack or time. While accuracy
of simulation depends on the accuracy with which these values are mterpolated, the
time of simulation increases exponentially with the complexity of interpolation.
A compromise between accuracy and complexity of mterpolation is therefore called
for.

In the development of SIMSPACE II special attention was given to the flexibihity
in the choice of the iterpolation and numerical integration methods for each phase
of simulation occurring n each iteration  This necessitates not only making avail-
able a minimal set of properly selected interpolation and integration algorithms but
also certamn objective criteria buwilt mto the package for calling the appropriate
algorithm for a given phase of the simulation.

The set of algorithms available in the present version of SIMSCRIPT II for one-
or two- dimensional interpolation mclude well tesied algorithms for step, linear,
general polynomial with » = 2 1o 5 and least oscillatory techniques.

The set of algorithms for numerical integration available presently inciude the
simple finite difference ntegration with constant time step, the Runge-Kutta-Gill
fourth order with fixed or variable step and Cowell eighth order with fixed or variable
step using Runge-Kutta as a starter. Durmg different phases of the simulation
different algorithms which are most appropriate for the phase, are called m, For



414 N Seshagiri

example, the Cowell algorithm is called 1 for free flights governed by second order
differential equations. Sufficient flexibility has been provided 1 the package for
adding more mnterpolation and mtegration algorithms if required.

Expertence with both SIMSPACE I and SIMSPACE II indicates that the more
frequently called algorithms are the simpler ones. For interpolation, it is the constant
step lmear algorithm whereas for mtegration 1t 1s the trapezium method.  Typically
the latter 1s found suitable for expressing u,(t), gi(t), X,(t) and $,(2), e.g.,

X0 = Xgi(t_'At) + AL [uy () + ugi(t"‘ AB)].

This is not surprising because both accuracy and time of simulation depend on At.
Expermmental simulations have shown that the reduction of Af gives diminishing
returns after an optunum value. Af determines not only the finite interval of ele-
mental integration but also the number of times the entire set of equations of motion
and transformations outlined in figure 1 are iterated. For more complex interpola-
tion or iniegration algorithms, this increases the time of simulation exponentially
with complexity. It is for this reason that SIMSPACE I uses mainly the least com-
plex mterpolation and mtegration schemes, decreasing Af to the extent necessary to
meet the accuracy called for. However, SIMSPACE II allows for a wide variety
of algorithms, which are at present chosen a priori for each general category of the
phase of simulation. The choice depends upon earlier experience with the type of
computation represented by the phase under consideration. It would, of course,
be of much interest to evolve objective criteria for automatic choice of the algorithms
for each phase, but at present this feature is provided only for general categories of
call by the main routine.

3. Theoretical basis of integrated optimisation

Powerful methods are available for the optimisation of the trajectory, given a fixed
vehicle profile as well as for the optimal staging, given a fixed trajectory. The pro-
blem of the simultaneous optimisation of staging and trajectory has not received the
attention 1t deserves, atleast in hiterature. The problem 1s complex because the
trajectory description of an n-stage vehicle in a thiee-dimensional six degree of free-
dom, atmospheric flight is governed by the entire set of equations described in § 2,
while the optimal staging is an involved exercise even for idealised trajectories. In
view of this a hierarchic optimisation method was developed for SIMSPACE II

which optimises the vehicle profile and trajectory in three successive stages as out-
lined below.

(1) Certain approximate ‘thumb-rule’ optimisations are carried out for the
stage weight and the structure weight of the vehicle. From these, a first
approximation profile of the vehicle is realised. Certain functions governing
the trajectory are parametrised and the trajectory design is related to steering
coefficients and the last stage propellant fraction. Using the Newton-

Raphson method, stage sizing is carried out by a discrete step steepest
descent.
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(i) Using the first-approximation solutions of step (1) as the initialisation point,
4 more accurate sizing optimisation as well as a more accurate and versatile
method of parametric trajectory optimisation is carried out.

(1ii) With the second approxmatlon profile of step (1) as the starting point, a
technique called ° sensitivity-directed iterative simulation’ based on the
accurate simulation routine described 1 § 2 1s used for enabling the final
integrated optimisation of the profile and the trajectory to be carried out.

A brief description of each of these three steps m the hierarchic optimisation 1s
given in the following subsections. For convenience and as there are no cross
references to the equations, the notations of § 3 are kept distinct from those of § 2.

3.1. The low level approximation

Minimisation of the Lift-off weight of an n-stage vehicle for a given payload requures
the maximisation of the growth factor G, or equivalently the minimisation of 11:.'=1 L

where L; 1s the payload ratio of the ith stage. This minimisation 1s constrained by
the terminal velocity specification. Equivalently, the optimality condition is

u; Ry L, = constant, @1

where »; and R; are respectively the terminal velocity and mass ratio of the ith stage.
The condition to be satisfied at the optimum is

n o i1 [en v, L, ”l’”’] 42

where S, is the structural ratio of the ith stage, »’ is the average terminal velocity of
all the steps and R is the effective mass ratio given by

R=[m"_, (S + L] (43)

From (42), L, can be determined which when used along with (41) determumnes L,
(i=12,.,n—1. -

Alternatively, as the hardware 1s generally costlier than the propellant, it is desir-
able 10 optimise the structure weight or equivalently the system structure factor
« = SG, where S is the total structure ratio. The optimal values can be obtamed
as solutions of the set of equations

0=-237.6=m_ 2"
ma G5+ FL(nn0)] =0 “
144

where A is Lagrange’s multiplier.

o o e



416 N Seshagir:

For the computation of the trajectory, a simplified model is introduced assuming
a two-dimensional earth, a constant propellant flow for each stage, constant drag
and a specific impulse variation with altitude governed by the relation

P
Isp = Iyac — (Ivac — ISL)( ),
Pgr

where Iyvac 18 the vacuum specific impulse, Igy, 1s the sea level specific impulse, P is
the ambient pressure and Pgy, 1s the sea level pressure

The ideal set of equations of motion at this low level approximation 1s the high
speed trajectory equations (HSTE) of Bingham (1964). The equations of motion
for two-dimensional motion 1n a spherical gravitational potential of a non-rotating
earth are:

V =T cos a — D — mg sin v,

_J;=Vcos'y_g005y_Tsma’ (45)
R 14 mV

R =R Ry Y’
=R, +h g=g m .
0

Here V is the vehicle relative velocity, T the stage thrust, D the drag, m the mass,
a the angle of attack, y the relative flight path angle, R the radius vector, A the alti-
tude, R, the radius of theearth, g the local gravitational acceleration and g, the sea-
level gravitational acceleration. To approximate the earth’s rotational effect, an
appropriate component of the earth’s rotational velocity 1s vectorially added to V
at first stage burnout, ie.,

Vx = V cos b "}" no Ro COos ia Vy = Vsm Y. (46)
Vi= (V3 + VYR, yp = tan™ (V,/V.),

where V7 is the vehicle inertial velocty, y, 1s the mertial fight path angle, Q, is the
earth’s angular rotational velocity and i is the orbital inclination.

Trajectory optimisation 1s carried out by parametrismng the functions upon which
the trajectory depends. To do this a standard proven flight profile 1s selected, made
up of the followmg segments: vertical rise, initial pitch-over for a short period of
time, gravity turn to first stage burnout and linear tangent steering from first-stage
burnout to trajectory end conditions:

tan ¢y = 4 — Bt,
where ¢ is the vehicle inertial altitude referred to the launch horizontal. The para-

meters selected to describe this profile are an angle of attack to control the mitial
pitch rate and the two hnear tangent steering coefficients 4 and B.
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To meet trajectory end conditions, Bingham (1964) employs a modified Newton-
Raphson three-variable iteration technique. The end conditions chosen are velo-
city, altitude and flight path angle. The control functions used are the two linear
tangent steering coefficients and the propellant fraction of the last stage P,. The
Newton-Raphson technique for multi-dimensional functions 1s given by the matrix
equation

[5 1] = [g—ﬂ o],

where f = {V-, h, ')’}; X = {-Pm A: B}:

and the square matrix 1s composed of unique elements which are partial derivations
of the elements of f with respect to the elements of x. The §x term contains the con-
trol parameter increments while the 8f term describes the errors 1n the trajectory end
conditions. One of the problems which arises in obtaining a convergence for the
trajectory 1s the sensitivity of the end conditions to theinitial pitch rate. To improve
the convergence characteristics and correct for the sensitivity problem, a weighting
function KX 1s employed as follows.

[5x] = K[i_:; ] A1 (48)

The form of the K factor is largely determined by experience. To fully automate
the trajectory simulation, it was necessary to develop analytic approximations for
estumating initial values of the last stage propellant fraction A, and the two linear
tangent steering coefficients 4 and B. This 1s done by feeding the values obtained
from the approximate sizing step.

3.2. The middle-level approximation

The s1zing and trajectory optimisations described above are very approximate and
the solutions derived from them are only intended to serve as initialisation values for
more accurate methods used 1 the middle-level approximation. Initialisation values
are mmportant as they increase convergence and decrease computational time.
The Iime of evolution of staging optumisation concepts found suitable for this middle-
level approximation 1s that based on the concepts of Schurmann (1957), Subotowitz
(1958), Hall & Zambelli (1958), Cobb (1961) and Adkins (1965). A general formula-
tion of staging optimisation consolidated from their work is given m the following.
The thrust F, specific impulse 7 and the sea-level vehicle weight W are time

functions and related by F = — WI. The equation of motion is taken in the direction
of the velocity vector

W+ GW =—JS, J=Cpq/Icosa), G=LS%2"CpaS 44
Wi cos a

where F is the thrust, o the angle between thrusi and velocity vector, Cp the drag
coefficient, g the dynamic pressure and S the reference area for drag.
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The optimal trajectory obtamed in the low-level optimisation is used to determine
J and G as functions of time which renders (1) into a first order differential equation
in W. The solution to (1) for the jih stage 1s

Wlb = Wli €Xp (_NJ) - QJ SJ: (50)

where N, = N(,, ty) = 2’: G() dt,

0, = QU 1) = N [ exp [N, 0] J(1) dt.
The subscripts b and i refer to burnout and ignition times respectively. For the

Jth stage the thrusting duration or burning time, 7, = 1, — t;,, must be selected
so that (1/1 cos «) is defined for all £ on this interval. The burnout value is

— Wy=G, W, eN +(J,— G, @) S, (1)

where G; and J, are at burnout
Propellant and payload weights for the jth stage are related by

WJb = PJ = (Wﬂ - P.i) (1 - Aj)s (52)
where P, is the payload, ve., P, = W,.;;, and A, is the propellant mass fraction
for the jth rocket motor.

From (50) and (52), the payload ratio of the jth stage p, is given by

By = f:j/(l + Qj SJ/AJ PJ)’

f—"J = e-Nj/AJ - 1/RJ’ (53)

R; = §/(1 — ).

The overall payload/gross weight ratio is
Wy =T, iy (54)
where P, 1s the final payload. It is now required to determine the optimum set of

velocity increments (z;) of the jth stage which maximise P,/W;, subject to the cons-
traint of a known total velocity increment,

Vr= Z]’;I v,

The prop_ellant flow rate (— W) is an arbitrary function of time and can be related
to W, and t; by the dimensionless function 7(t). At burnout for the jth stage,

- ij =" (sz - W_rb)ﬁy (55)
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From (51) to (55),

7y R, (1 — )

t, =
’ GJ (1 + R.I I—"j) + (JJ/QJ - GJ) (l:.r - I“j) -RJ. (56)

Using this expression and well-known techniques of Lagrangian mualtiphers it is
possible to arrive at the optimal stagmg values. The optimal staging values so
arnved at may in turn be used to optimise the trajectory further.

The optimal trajectory values so obtamed are m turn fed back to the above staging
optimisation procedure. This iteration is contmued until both the optimal staging
and the optimal trajectory converge to a unique set of values. To facilitate this, the
parametric approach adopted m § 3.1 must be refined for better accuracy and con-
vergence. After a number of trial-and-error expermments, the following approach
based on the better features developed by Powell (1969), Hestenes (1969), Karacsony
& Cole (1970), Buys (1972), Brusch & Peltier (1974) and Brusch (1976) was adopted.

Following Brusch the general formulation of trajectory optimisation leads to the
following non-linear programming problem.

Minimise 1(x) subjected to h(x) = 0 and g(x) > 0, &)

through the following definitions.  Let the vector of all parameters subject to optimi-
sation be

X = {31, Ay - o Ay, d19 d29 tees dq}: (58)

where a, is the vector of parameters associated with the parametric control model
for u, u,(t) = Vi(ay, t). The design variables d are variables to be optimised which
are constant with respect to time-like gross lift-off weight and propellant mass frac-
tion. Let the number of parameters in the x vector be N,.

It is advantageous to express the constrained variables as equivalent free variables
to enable the use of unconstrained function optimisation methods.

If ¢ > 0 is the sth state variable mequality constraint then consider the transfor-
mation

T, = mm [£ (?)] [f;: A exp {——Bmax [min (£ (2), Crax)s Cmin]} dt]: (59
1

where A, B and Cpax are positive constants and Cpun 18 @ negative constant.
Equation (59) is a functional that transforms & mnto a number T, such that T; is
negative if the constraint 18 violated and positive otherwise. This transformation
enables the use of unconstrained optimisation methods outhned below.

The above non-linear programming problem can be solved by the method of multi-
pliers. If (A p) and (K, C,) are respectively the equality and inequality cons-
traint multiphers and equalty and inequahity constraint quadratic multiphers, we
can construct an augmented objective function of the form

J0) = 1(x) -y oy Do+ K 7]

4+ No [p, g + Cr 865 if oy -+ 2 Cy 8k QO]. (60)
et |— pd +4C,ifp+2C8>0
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The broad outline of the computational procedure consists of the following steps.

(1) Imtial values of x, C, A and u are obtamed from the low-level approximation

step. Select tolerable errors for each of the constraints and positive control
tolerances. Sety = 1; evaluate J;, (x).

(11) Perform unconstrained function mimimisation of J, (x) through iteration.

(ui) Test for solution convergence.

(iv) Update the Langrange multipliers using the approach suggested by Buys

(1972) and Hestenes (1969).
(v) Change the penalty constants as required using the approach suggested by
Powell (1969)

(vi) Setj =j - 1 and return to step 2.

The above method avoids the severe functional distortion characteristic of the
penalty function approaches and do not requre return to a feasible solution after
each optumisation step as required by the gradient projection and related methods.
Both these features tend to reduce the computational load significantly.

33 The higher approximation

One of the methods of optimisation uses repeated trial-and-error simulation. The
simulation scheme of § 2 bemg near exact and comprehensive, optimisation as a
process of repeated simulation would consume prohibitively more computer time.
In spite of this, desired levels of accuracy require the use of simulation routines
atleast as the last step 1n the optimisation. The solutions are therefore required to
be brought as near the exact as possible before simulational optimisation is resorted
to. The solutions of the middle-level approximation obtaimed from the procedure of
§3.2is found to be close enough to appreciably reduce the total computational time
for the hierarchic optimisation.

With the middle-level approximation serving as the mitialisation for the simula-

tional optimisation step, the following algorithm 1s employed for the final step.
(i) The solutions from the middle-level approximation step are taken to be the
ingtial set of values,

(i) Sensitivity of the objective function J 1s worked out for each design variable
like azimuth, launch angle, and coastmng time.

(1) The design variables are perturbed one at a time m the sequence of the
ascending order of sensitivity  While a design variable 1s perturbed so as to
mimimise J, all the other variables are held constant at their previous values.
For each perturbation, the simulation 1s carried through once. From a
trend analysis the perturbation step can be estimated, which will mmimise
the number of simulational iterations.

(iv) The gradient can be estimated usmg the same techmique described m (57)
to (60). The only difference 1s that 1t 18 sensitivity-directed and the entire
simulation 1s carried out for each iteration as agamst the use of simplified
two-dimensional trajectory equations i the middle-level approximation.

(v) A design variable 15 perturbed until J attams a munmum value relative to
the fixed values of the other variables and subject to the specified constraints.,
The set of variables are perturbed omne after the other cyclically until J
saturates at a minimum value within the tolerance limit specified.
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The above * sensitivity-directed iterative simulation ’ approach enables the inte-
grated optimisation of profiles and trajectory. 1f we designate the above algorithm
with respect to the objective function J, the set of constramts C and the set of design
variables ¥ as Alg (J, C, V) then the integrated optimisation will be the cyclic iteration

of Alg (J', C’, V") and Alg (J”, C”, ¥"") where the former refers to the trajectory opti-
misation and the latter to the profile optimisation.

4. Conclusions

The theoretical basis of the evolution of SIMSPACE II has been outlined providing
a framework for mcluding the better features of the packages SIMSPACE I and
MATS. In addition, the followmg new features have been mcorporated for increas-
ng the scope and versatility of sumulation and optimisation of satellite launch vehi-
cles.

First, by the set-theoretic sequencing logic of SIMSPACE I is oriented to
accommodate the MATS bucket concept.

Secondly, a hierarchic optimisation procedure 1s advocated for increasing con-
vergence and decreasing computational time of the integrated staging-trajectory
optimisation,

Lastly, a * sensitrvity-directed simulational iteration’ approach to the integrated
optimisation is suggested to include not only the finer features of the profile of various
stages but also the three-dimensional 6-degree of freedom atmospheric trajectory
ncluding refined computations responding to drag, wind effects, control schemes
ete.

An important feature of SIMSPACE II is that it has a general main routine struc-
ture which is independent of particular sets of mterpolation, integration and optimi-
sation subroutines. Facility 1s provided for mcluding any set of hierarchic optimi-
sation methods, a bank of mterpolation and integration procedures along with the
governing criteria for automatic call from the main routme. This enables a constant
improvement of the package as better imterpolation, integration and optimisation
algorithms become available.

SIMSPACE II also has a number of other features which are not described here
as they are not related to the main theme of this paper, e.g., the methods for includ-
ing range safety constramts. As these have independent theoretical basis, they will
be described elsewhere.
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