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Abstract

We study the problem of long-run average cost control of Markov chains conditioned on a
rare event. In a related recent work, a simulation based algorithm for estimating performance
measures associated with a Markov chain conditioned on a rare event has been developed. We
extend ideas from this work and develop an adaptive algorithm for obtaining, online, optimal
control policies conditioned on a rare event. Our algorithm uses three timescales or step-size
schedules. On the slowest timescale, a gradient search algorithm for policy updates that is based
on one-simulation simultaneous perturbation stochastic approximation (SPSA) type estimates
is used. Deterministic perturbation sequences obtained from appropriate normalized Hadamard
matrices are used here. The fast timescale recursions compute the conditional transition proba-
bilities of an associated chain by obtaining solutions to the multiplicative Poisson equation (for
a given policy estimate). Further, the risk parameter associated with the value function for a
given policy estimate is updated on a timescale that lies in between the two scales above. We
briefly sketch the convergence analysis of our algorithm and present a numerical application in
the setting of routing multiple flows in communication networks.

Key Words: Markov decision processes, optimal control conditioned on a rare event, simulation
based algorithms, SPSA with deterministic perturbations, reinforcement learning.

1 Introduction

Markov decision processes (MDPs) [5], [35] form a general framework for studying problems of
control of stochastic dynamic systems (SDS). Many times, one encounters situations involving
control of SDS conditioned on a rare event of asymptotically zero probability. This could be, e.g., a
problem of damage control when faced with a catastrophic event. For instance, in the setting of a

large communication network such as the internet, one may be interested in obtaining optimal flow
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and congestion control or routing strategies in a subnetwork given that an extremal event such as a
link failure has occurred in another remote subnetwork. Our objective in this paper is to consider
a problem of this nature wherein a rare event is specifically defined to be the time average of a
function of the MDP and its associated control-valued process exceeding a threshold that is larger
than its mean. We consider the infinite horizon long-run average cost criterion for our problem and
devise an algorithm based on policy iteration for the same.

Research on developing simulation based methods for control of SDS has gathered momentum
in recent times. These largely go under the names of neuro-dynamic programming (NDP) [7]
or reinforcement learning (RL) [39] and are applicable in the case of systems for which model
information is not known or computationally forbiddingly expensive, but output data obtained
either through a real system or a simulated one is available. Our problem does not share this last
feature, but we do borrow certain algorithmic paradigms from this literature. Before we proceed
further, we first review some representative recent work along these lines. In [3], an algorithm for
long-run average cost MDPs is presented. The average cost gradient is approximated using that
associated with a corresponding infinite horizon discounted cost MDP problem. The variance of the
estimates however increases rapidly as the discount factor is brought closer to one. In [4], certain
variants based on the algorithm in [3] are presented and applications on some experimental settings
shown. In [25], a perturbation analysis (PA) type approach is used to obtain the performance
gradient based on sample path analysis. In [24], a PA-based method is proposed for solving long-
run average cost MDPs. This requires keeping track of the regeneration epochs of the underlying
process for any policy and aggregating data over these. The above epochs can however be very
infrequent in most real life systems. In [32], the average cost gradient is computed by assuming
that sample path gradients of performance and transition probabilities are known in functional
form. Amongst other RL-based approaches, the temporal difference (TD) [39] and Q-learning [42]
have been popular in recent times. These are based on value function approximations. A parallel
development is that of actor-critic algorithms based on the classical policy iteration algorithm in
dynamic programming. Note that the classical policy iteration algorithm proceeds via two nested
loops — an outer loop in which the policy improvement step is performed and an inner loop in which
the policy evaluation step for the policy prescribed by the outer loop is conducted. The respective
operations in the two loops are performed one-after-the-other in a cyclic manner. The inner loop
can in principle take a long time to converge, making the overall procedure slow in practice. In
[29], certain simulation-based algorithms that use multi-timescale stochastic approximation are
proposed. The idea is to use coupled stochastic recursions driven by different step-size schedules or

timescales. The recursion corresponding to policy evaluation is run on the faster timescale while



that corresponding to policy improvement is run on the slower one. Thus while both recursions
proceed simultaneously, the algorithm converges to the optimal policy. The algorithms of [29]
(as with those described in the previous paragraph) are for finite state and finite action MDPs,
under both the discounted and long-run average cost criteria. A variant of the above algorithms
for the case of finite state but compact (non-discrete) action sets, in the setting of infinite horizon
discounted cost MDPs is presented in [13], and performs gradient search in the space of stationary
deterministic policies using a simultaneous perturbation stochastic approximation (SPSA) gradient
estimate.

Standard SPSA [37] uses two simulations for estimating the performance/cost gradient regard-
less of the dimension N of the parameter vector, unlike Kiefer-Wolfowitz (K-W) based estimates
that require (N + 1) simulations for the same. This it does by randomly perturbing all parameter
components at each update epoch. The original SPSA algorithm [37] is, however, a one-timescale
Robbins-Monro variant for parameter optimization and is not directly applicable when the cost
to be optimized is for instance the long-run average of a running cost function, viz., the objective
function for a given parameter value is derived only after viewing the entire sample path / trajec-
tory of the system for that parameter value. Perturbation analysis (PA) schemes [26], [28] that
were proposed for problems such as these use largely one simulation, however, they require certain
constraining regularity conditions on the system dynamics and cost functions in order to allow
for an interchange between the ‘gradient’ and ‘expectation’ operators. Moreover, many of these
schemes update parameters only at certain regeneration epochs of the underlying process, making
them slow in practice. In [8] and [9], certain two-timescale stochastic approximation algorithms
were introduced as alternatives to PA type schemes. These do not require constraining regularity
conditions like PA, while they also update parameters at certain deterministic epochs. The key
in the algorithms of [8] and [9] is the use of two-timescale stochastic approximation, whereby on
the faster timescale, data corresponding to a given parameter update is aggregated and on the
slower timescale, the parameter is updated. These algorithms, however, use K-W estimates. In
[11], variants that use SPSA estimates were proposed and were found to show significantly better
performance. In [38], a one-simulation (one-timescale) variant of the original SPSA algorithm was
proposed, which however does not show good performance because of the presence of an ‘addi-
tional” bias term in its gradient estimate whose contribution to overall bias tends to be high. In
[12], it was observed in a similar setting as [8], [9] and [11] that the use of deterministic perturba-
tion sequences (instead of randomized) derived using normalized Hadamard matrices significantly
alleviates this problem in the case of one-simulation SPSA with the latter subsequently showing

good performance. It was shown that perturbation sequences derived using normalized Hadamard



matrices satisfy the desired properties on such sequences that result in all bias terms getting can-
celled at regular intervals. Further, the space of perturbations derived as above has a cardinality
of 2108:(N+1) a5 against 2V when randomized perturbations are used (the perturbation vectors in
both spaces being {£1}"V-valued). To sum up, the use of normalized Hadamard matrix based
perturbations in the setting as described above has the inherent advantage that one may use a
fast one-simulation SPSA based algorithm that updates all parameter components at each update
epoch (the epochs themselves being deterministically spaced. In particular, the algorithms in [12]
update the parameter once every L epochs for a given, arbitrarily chosen integer L) while working
with a more general class of systems than what the PA based methods allow.

The works cited above represent some recent developments in the general area of simulation
based optimization and control of SDS. We now review some of the work that is more directly
related to the problem we study in this paper. In [21], a simulation-based algorithm for estimating
performance measures of a Markov chain conditioned on a rare event of zero probability has been
developed. This is based on the result that the transition probabilities of the Markov chain condi-
tioned on a rare event as above are the same as those of another irreducible chain on the same state
space whose transition probabilities are absolutely continuous w.r.t. those of the former chain. The
calculation of these calls for the solution of an associated multiplicative Poisson equation, an ob-
ject familiar from risk-sensitive control and large deviations theory [33], [2]. The simulation based
algorithm in [21] recursively obtains the solution to this multiplicative Poisson equation and uses
the same to learn, online, the new transition probabilities. In [1], a reinforcement learning based
importance sampling scheme for estimating expectations associated with rare events has also been
proposed.

A related work is [36], in which a simulation based technique for optimizing certain performance
measures in discrete event systems conditioned on rare events is presented. The problem there is
formulated as a constrained optimization problem with an importance sampling estimate in the
objective function that is obtained by assuming the underlying processes to be regenerative. The
constraint there corresponds to the occurrence of the given rare event. The above problem is
then solved as a two-stage stochastic programming problem. Our work is fundamentally different
from [36] in many ways. First, we consider the problem of obtaining an optimal control policy
conditioned on a rare event and not just one of optimizing certain performance metrics within a
parameterized class as with [36]. Next, even though we assume that our underlying process for any
given stationary policy is ergodic Markov and hence regenerative, we do not use the regenerative
structure per se in obtaining estimates of performance as [36] does. For the latter, one needs in

particular to keep track of regeneration epochs of the underlying process that can be very infrequent



in the case of most systems. Finally, we use a stochastic approximation based recursive procedure
that incorporates reinforcement learning type estimates, unlike (as already mentioned) [36] that
formulates the problem as a stochastic program.

Our work can be viewed as an extension of [21] that addresses the important problem of optimal
control of a Markov chain conditioned on a rare event. In our framework, the results of [21]
correspond to policy evaluation for a fized stationary deterministic policy. We develop and use a
simulation-based algorithm to find the optimal randomized policy ‘on top of’ the algorithm of [21].
Our algorithm uses three timescales or step-size schedules and iterates in the space of stationary
randomized policies. The policy itself, however, is updated on the slowest timescale. The value
function updates for finding the solution to the multiplicative Poisson equation for a given policy,
based on which the transition probabilities of an associated chain are obtained, are performed on
the fastest timescale. The risk parameter associated with the multiplicative Poisson equation is
updated on a timescale that is faster than the one on which policy is updated, but slower than that
on which value function is updated. Finally, there is another recursion that is used for averaging the
cost function with the latter average used in the policy update step. This proceeds on the fastest
scale as well (same as the one on which the value function is updated). We show in the analysis that
the difference in timescales of the various recursions results in the desired algorithmic behavior.
For policy updates, we use a one-simulation SPSA based recursion with normalized Hadamard
matrices [12]. Finally, we present numerical experiments using our algorithm in the setting of
routing multiple flows in communication networks conditioned on a rare event. We observe that
our algorithm exhibits good performance in this setting. It must be noted here that adaptive
importance sampling (IS) schemes require storage of transition probabilities and our algorithm is
no different in this regard. Thus it may not be applicable (as is also the case with other IS methods)
in scenarios that involve very large state spaces for which storage of such information is not possible.
Nevertheless, feature based methods as in RL may still be applied for ease of computation in the
case of problems with state and action spaces that are moderately large but for which storage of
vectors of the size of state space is not a major concern. Further, in many cases such as queueing
networks, the transition probabilities are easy to compute and transitions easy to simulate using
simple local dynamic laws. In such scenarios, storage of transition probability matrices may also
not be a major concern as these are known to be highly sparse.

The rest of the paper is organized as follows: Section 2 presents the problem formulation and
gives the basic results. Section 3 presents the simulation-based algorithm. Its convergence analysis
is also briefly sketched here. The numerical results are presented in Section 4. Finally, Section 5

presents the concluding remarks.



2 Problem Formulation and Basic Results

Consider a Markov decision process (MDP) {X,,, n > 0} on a finite state space S = {1,2,...,s}.
For X, =1,i€ S, let A(7) be the set of feasible controls or actions. We assume A(7) has the form
A(i) = {a},a2, ..., a'}. Let A = U;cgA(i) denote the action space (which is also finite). Let {Z,,
n > 0} denote the associated control-valued sequence such that Z,, € A(X,,) Vn. Suppose p(i, j, a)
denotes the transition probability from state i to state j under action a € A(7). Then the evolution

of {X,,} is governed by
PT(Xn—l-l =7 | Xy =12y, =0,Xp1=1n-1,%p-1= Qn_1,...,X0 = 10,20 = aO) = p(iaja (Z),

for any ig,...,%—1, ¢, J, GQ,---,0n_1, @, iN appropriate sets.

A sequence of functions 7 = {u1, pe,...} with each p, : S — A, n > 1, is said to be an
admissible policy if p, (i) € A(7), Vi € S. This corresponds to the control choice Z, = p,(X,) Vn.
An admissible policy m = {1, pg,...} with each p, = p, n > 1, is said to be a stationary
deterministic policy (SDP). By a common abuse of notation, we simply refer to y itself as the SDP.
By a randomized policy (RP) ¢, we mean a sequence ¢ = {¢1, ¢2,...} with each ¢, : S — P(A),
n > 1. Here P(A) is the set of all probability vectors on A such that for each i € S, n > 1,
¢on(i) € P(A(1)), with P(A(:)) being the set of all probability vectors on A(i). A stationary
randomized policy (SRP) is an RP 1 for which ¢,(i) = ¢ Vn > 1. By an abuse of notation, we
refer to ¢ itself as the SRP. The a—th component of ¢(i), ¢(i)(a) is the probability of choosing
action a when in state i. Thus this corresponds to picking Z,, with probability distribution ¢(X,,)

at time n, independent of all other random variables realized till n. We have
Assumption (A) Under any SDP p, the process {X,,} forms an irreducible Markov chain.

Let E,[] denote the expectation w.r.t. the stationary distribution of {X,} under SDP u. Let
g:SxA— R be a given function such that E,[g(X,, 1(X5))] < o < oo for a given constant a,

for every SDP . The rare event that we consider corresponds to

n—1

1
Jim =S 9(Xm, p(Xom)) = o

m=0
The choice of the function g(+,-) and a will be, in practice, dictated by the application. For example,
in reliability, one may want to look at the stationary probability of crossing a very large threshold,
say, N. Then g(X,,, u(X,,)) can be chosen to be I{X,, > N}, where I{-} is the indicator function
and a could be a convenient upper bound on the stationary expectation.

Let h: S x Ax S — R denote the cost function that we assume is bounded. For any SDP u,



let for any (initial state) Xo € S,

n—1
m=0

be the long-run average cost. Let D be the set of all possible stationary deterministic policies. The

aim is to find

p = argmin (1),

» e P
conditioned on the rare event T}Lngo - Zog(Xm,u(Xm)) > a, VY € D. Let p*(i,5) = nlgrolo P(X; =
m=

1 n—1
Jj | Xo =120 = u(), — Z 9(Xm, (X)) > «) denote the transition probabilities under SDP p
n m=0

conditioned on a rare event (as defined above). We now present the basic results for a given SDP
i. These have been directly adapted from [21] for a fixed SDP and are stated here for the sake
of completeness. Some of these results are also available in the context of risk sensitive control of
Markov chains, see for instance, [2], [27], [33]. We briefly explain the risk sensitive control problem
in order to put things in perspective. Suppose (that instead of the original) the aim is simply to

find an SDP p that minimizes J¢ (1) defined by

n—oo N,

n—1
Je(p) = lim Lo (E [exp(z Cg(Xm,u(Xm)))D :
m=0

where ( denotes the risk parameter. The cases ( > 0 and ¢ < 0 correspond to the risk-averse and
risk-preferring cases, respectively. For a given u, J¢(u) is obtained [2], [27] as the solution to the
multiplicative Poisson equation: For i € S,

exp(Cg(i, u(i)))

VE(i) =
¢ () P

S bl o m@)VEG), i € S, 1)
J

where VCM (+) is a bounded function (that is unique up to a multiplicative constant) and p’g corre-
sponds to exp(J¢(p)) or that Je(pn) = In pg . Note that solution of this equation is an eigenvalue
problem for the positive matrix [[exp(Cg(i, u(i)))p(i, j, 1(9))]]i,jes, and VY, resp. pf, are its Perron-
Frobenius eigenvector and eigenvalue.

For the problem considered in this paper, as shown in [21], the multiplicative Poisson equation
also arises via the conditional transition probabilities p**(i, j) (for given SDP ), see (2) below.
In fact, for any given ¢ € S, upon summing over all j € S on both sides of (2), one obtains the
multiplicative Poisson equation (1). For any SDP 1 and risk parameter ¢, J¢(p) = In p’é corresponds
to the infinite horizon risk-sensitive cost. Asin [21], we fix the choice of VC“ (+) by setting V<“ (ig) = péf
for a given 49 € S in order to obtain unique V(i) Vi € S.
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Theorem 1 [21]
(a) The map ¢ — ,04 is convex for each SDP p and there exists a unique ¢/’ = arg max¢>o(Ca —
In(p C)) for any u.
(b) p**(i,7), i,j € S is given by
exp(¢g (i, u(i)))p(i, 4, w(8)) Vi (5)

¥ (3, 7)) = : )
P E ©)
(¢) The regular conditional law of the MDP {X,,, m > 0} under SDP p, conditioned on the
n—1
event {Xo ==z, — Z 9( Xk, 1(Xk)) > a} converges to the law of a Markov chain starting at « with
n
k=0

transition probabilities (-, ).

In the above, pk = pgu and V/* 2 VC‘Z,

a generalization of Theorem 6.3 of [33] that as n — oo,

respectively. It can be shown (cf. Lemma 2 of [21]) using

1 . S Vi (z) exp(—n(¢Fa — In(pk))) exp(k¢L)

- Z X)) = an) ~ L

” m=0 C vV 2mnAk

k L 07Inpg . : .
where o), = o — - and M\ = ac |c=¢+. The result in Theorem 1(b) follows in a straight-

forward manner from the above. Thus the transition probabilities p**(-,-) depend on the risk
parameter (4 given in Theorem 1(a).
For a given ¢ > 0 and SDP y, let {X$*, n > 0} represent a Markov chain on S with (suitably

normalized) transition probabilities

oy o exp(Cgli, u(i))p(i, 4, n(@) VE ()
pNC(ij) - p;g‘/gu( )

, 1,7 € 8.

In particular, we consider here the corresponding risk-averse case (¢ > 0). The risk-preferring case
(¢ < 0) is easier to handle and is not considered in this paper. In view of Assumption (A), {X$#} is
irreducible. Let 7]’; () denote its unique stationary distribution. We now have the following lemma
whose proof follows as in Proposition 4.9 of [33].

an (4))-

€S
In classical Markov decision theory, one is minimizing expectation and not conditional expecta-

O1In( pC

Lemma 1

tion of the ergodic cost and one can prove that it suffices to consider only SDPs. Such a result is not
proved here, so it is our choice to restrict to these. Finally, in principle, the requirement that the
rare event condition hold for all SDPs p (see the problem definition above) is not strictly needed
in order for the theory to go through. However, one expects this to be true in typical applications.
In the next section, we present an adaptive algorithm for finding optimal p and ¢ by building on

the basic results of Theorem 1 — Lemma 1.



3 The Adaptive Algorithm

Given an SRP ¢ : S — P(A), one can identify ¢(i) with a parameter vector 6; = (6}, ..., 1T,
Ni—1

where 6/ > 0 are the probabilities of picking actions a}, j = 1,..., N;—1. Thus Z 6] < 1. Further,
j=1

HlN ‘ (the probability of selecting action af-v ") is directly obtained from the above representation of

N;—1 )
o(i) as 0] =1 — 3 0. Let 0 = (61 ..., 0,)7 = (01, ..., 007, 03, ..., 05271, 0L, L.,
7j=1

oN—T. Let pf(i,j), i,j € S, be defined by p%(i,) = 0}p(i,j,a}) +...+ 6, p(i,j,a’"). Thus
p% (i, ) correspond to the transition probabilities of the resulting Markov chain under SRP .
Suppose ¢% (i) = 0lg(i,al) +... + 0 g(i,a;*) and h%(i,5) = O}h(i,al, ) +... + 0 h(i,a)", ),
respectively, denote the expected values of the function g(-,-) and the single-stage cost h(,,")

under SRP ¢. Define three step-size sequences {a(n)}, {b(n)} and {c(n)} satisfying

Assumption (B)

c(n) = o(b(n)), b(n) = o(a(n)) (4)
. 1 1
Examples of {a(n)}, {b(n)} and {c(n)} that satisfy (3)-(4) are a(n)= 375 b(n) = vy
1 1 1
c(n) = o and a(n) = ogn’ b(n) = - c(n) = nlog respectively. Let
YaN . N;—1 )
T, ={x; = (m%,...,xi\@—l)T |z} >0,j=1,...,N; — 1, and Z z] <1}
j=1

denote the policy simplex in state ¢ onto which, after each policy update recursion, the vector of

probabilities corresponding to the first /N; — 1 actions is projected. The probability a:fv ¢ of selecting
Ni—1

the N;—th action in state ¢ is then set according to val =1- Z xf
=1

For any i € S, let Ag (n), j=1,...,N;—1, n > 0, be]jzl—valued variables. These shall
constitute the perturbations in SPSA type gradient estimates. Exact values of these for any given
n are obtained using a normalized Hadamard matrix based construction as in [12] (see below). Let
Ni(n) = (Ak(n), ..., Aﬁv"_l(n))T denote the vector of perturbations at the nth epoch. In general,
an m x m (m > 2) matrix H is said to be a Hadamard matrix of order m if its entries belong to
{1,-1} and HT"H = mlI,,, where I, is the m x m identity matrix. A Hadamard matrix is said to

be normalized if all the elements in its first column are 1. The construction used in [12] that we

also use here is the following:



e For k=1, let
1 1

e For general k > 1,
H k—1 H k—1
Hyo = | 72 2 :
2k [ H2k71 —HQkfl ]

For an (N; — 1)-dimensional parameter vector as above, the order of the Hadamard matrix used
is M; = 2Mtee2(N1 1 is easy to see that N; — 1 < M;. Next form a matrix H; in the following
manner: Remove the first column from the normalized Hadamard matrix constructed above. Next
pick any (N; —1) of the remaining (M; —1) columns and all M; rows to form the new matrix. If only
(N; — 1) columns remain after deleting the first column above, then pick all the remaining columns.
Thus H; is an M; x (N; — 1) matrix. Let the M; rows of this matrix be represented by [:Ii(l),

‘e ﬁz(Mz), respectively. Finally, the perturbation sequence A;(n) is cyclically moved through the
sequence {H;(1), ..., H;y(M;)} of vectors by setting A;(0) = H;(n mod M; 4+ 1). In what follows,
we present an adaptive single simulation stochastic approximation based algorithm that performs

asynchronous updates. Suppose v;(n) denotes the number of times that state ¢ is visited by the
n
MDP {X,,} in n epochs. Then, one can write, v;(n) = Z I{X,, =i}. We generate new A;(n)

m=1
only for those instants n for which state i is visited by the chain i.e., X,, = . For all other instants,

1 1
0;(n) and A\;(n) are held fixed. Let 2A;(n)~! denote the vector A;(n)~! = (Al( ) AN ))T
i\ i n

We now present our algorithm.

3.1 The Algorithm

Suppose § > 0 is a given constant and T'; : RVi~1 — RNi~1 be the projection from RY:~! to the
simplex T;. Let 6;(n), n > 0 denote the nth update of 6;. Let 0;(n) = [';(0:(n) + dA;(n)), where

Ai(n), n > 0 are obtained using normalized Hadamard matrices as explained earlier. We analo-
Ni-1

gously denote 6;(n) as the vector 8;(n) = (6}(n), ..., 61 (n))T and let 8 (n) =1 — Z 6! (n).
j=1

The simulated MDP {X,,} is governed by the perturbed randomized policy in the following_manner:
If X,, = i, then an action from the set A(i) is selected according to the randomized policy ;(n).
Let Y;(n), n > 0 be quantities defined via the recursions below that are used for averaging the
cost function. Let V,(i), ¢ € S denote the nth update of value function and (,, the nth update
of the risk parameter, respectively. We also let 9{(0) = %, Vi =1,...,N;, i € S, implying that

(2
the simulation is started with a policy that assigns equal weightage to every feasible action in each

10



state. Other initial values for the same could be selected as well. The algorithm is described as

follows:
The Algorithm

e Step 0 (Initialize): Fiz 0;(0) 2 (01(0),...6N Y ONT, i € S, as the vectors of initial proba-
Ni-1
bilities for selecting actions in states i with GZNZ'(O) =1- Z 6. Fiz integers L and (large)
j=1
P arbitrarily. Fiz a (small) constant 6 > 0. Set n := 0 and m := 0. Generate M; x M;,

normalized Hadamard matrices (H;) where M; = 2Mogs(NI)I 4 = §. Let H;, i€ S, be M; x N;
matrices formed from H; by choosing any N; of its columns other than the first and let ffi(p),
p=1,..., M; denote the M; rows of H;. Now set Ay(0) := H;(1), Vi € S. Set 6;(0) = I';(6;(0)
+35A;(0)), i € S as the initial value of the perturbed randomized policy. Alternatively, denote

7

Ni—1
0;(0) = (6(0),... ,éfvi_l(O)) and let éfvi 0)=1- Z 67(0). Obtain initial transition proba-
=1

— ~ 7]7 -
bilities p% (0 (i, 5), i,7 € S by setting p%© (i, 7) = 61 (0)p(i, j,al) + ...+ 6. (0)p(i, j,a?). Set
0:(0); - 2
pO (Zaj) -
= 010)g(i,a}) +... 40, (0)g(i,al") and KO (i, j) = 8} (0)h(i,a}, j) +... 40, (0)h(i,al, ),
respectively. Set Vy(i), Yi € S as the initial estimates of the cost-to-go function. Also, set

pfi©® (1,7) as the transition probabilities of the new Markov chain. Set g% () (1)

Co = 0. Fiz a state ig € S to be a given reference state and set Y;(0) = 0,Vi € S.

e Step 1: For all states Xprp+m = @ € S, simulate the corresponding next states Xnrym+1

according to transition probabilities pff(n) (i,-). For all i € S, perform the following updates:

) ) o exp(Cnrn+m 0i(n) 7
Vit oms1 (1) = Vi om(i) + a(ui () [{Xnpsm = ip(ERCnLemd @) o
VaL+m(i0)
p 1y AnL+m .
R (5)
Pn (Z»XnL+m+1)
Gttt = Gazam +b(n) (@ = g™ n1tm i1 (X)) (6)

YiinL+m+1) =Y;(nL +m) + a(v;(n)) I{Xnr+m =i}
P

9. . i7 Xn m
(Wm (i, XnLsm+1) < RO *”) — Yi(nL + m)) (7)
P (Z7 XnL+m+1)

Ifm=L-1, setnL:=(n+1)L, m:=0 and go to Step 2;

else, set m :=m —+ 1 and repeat Step 1.

11



e Step 2: For alli € S,

(8)

n n -1
bi(n+1) =T; (f)i(n)—c(m( DI X, = iy D) Dilvi(n) )

)
Setn:=n+1. If n =P, go to Step 3;

else, for alli € S, set Aj(n) =
perturbation. Set 0;(n) = (I';(0

0l -1 nNV; - . N 0:(n) () —
For all i,j € S, set p%™(i,j), = 0}(n)p(i,j.al) +... + 0" (n)p(i,j,a"). Set g% (i) =

0 (n)g(i,ab) +...+8Y (W)g(i,a) and BF™(i,§) = LRG0, 9) + ...+ 0N ()i al, ),
z(n)
(i

(n mod M; + 1) as the new Hadamard matriz generated

i(n) +0A;(n)), i €S as the new perturbed randomized policy.

respectively. Finally, for alli,j € S, update estimates pr "~ (i, 7) of the transition probabilities

for the new chain according to

i, ) = eXIx)/(CL(Lz?X(fo@(S)))p O, J)Var()-

Normalize py, 0i(n )( J) such that pgf(n)(i,j) >0, Vi,j and Zjespz (n)( j) =1,Vi.

Go to Step 1.

e Step 8 (termination): Terminate algorithm and output 0;(P), i € S as the final randomized
policy.

Remark 1: As described in the algorithm, it is observed that updating the slowest timescale
recursion (8) every (given) L > 1 visits to state ¢, i € S, and keeping the randomized policy fixed in
between, enhances performance. This, in effect, amounts to an additional averaging over and above
that resulting from the use of different step-size schedules, see also, [11], [12] for certain simulation
based parametric optimization algorithms that use a similar ‘additional’ averaging. As observed in
[38], [12], the one-simulation SPSA algorithms that use randomized perturbation sequences do not
show good performance because of the presence of extra bias terms in the gradient estimates of
these. As described in Section 1 (see also the discussion after Eq.(16) below), the use of normalized
Hadamard matrices significantly improves performance since all bias terms get cancelled after
regular deterministic intervals that are, in general, also significantly shorter in duration as compared
to the case when randomized perturbations are used. Finally, even though we present our algorithm
for the case when the number of iterations P is fixed apriori, it can be easily modified to allow
for stopping criteria based on desired accuracy levels, a scenario that we consider in our numerical
experiments in Section 4. The convergence analysis that follows carries through for this case with

minor modifications.
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3.2 Sketch of Convergence Analysis

The convergence analysis uses the following basic principle of two timescale, or more generally
multiple timescale, stochastic approximation [15]: Each iteration in such a scheme can be analyzed
separately by treating other iteration(s) on slower timescale(s) as quasi-static, i.e., freezing the
parameter(s) updated by the latter; while treating other iteration(s) on faster timescale(s) as quasi-
equilibrated, i.e., averaging the parameter(s) updated by the latter w.r.t. their equilibrium behavior,
arrived at similarly by treating all slower components as constants and all faster components as
equilibrated. For simplicity of presentation, we show here the analysis for the case corresponding
to L = 1. The extension to the general case is straightforward [11], [12]. Let us first consider the
synchronous version of the algorithm. Recursions (5)-(8) can be written as follows: For all i € S,

(")(z,Xn ) ’
)—H> - Vn<Z)> ) 9)

0:(n

Vi1 (6) = Vi (i) + a(n) (eXp(C"ge,i(n) (2)) Vio(Xs1) (

Va(io) pn" (i Xnt1)
Gutr = G+ b(n) (@ = g™n 1O (X1) ) (10)
_ 0;(n) i
Yi(n + 1) = Y(n) + a(n) (W% 1) (W) - mn)) , (1)
(1 Xnt1)

0,(n+1) =T, <9i(n) o) FIEA) ) | (12)

Iteration (9):

It can be shown that iteration (9) for fixed ¢, and 0;(n) viz., ¢, = ¢ and ;(n) = 0;, respectively,
asymptotically tracks the trajectories of the ordinary differential equation (ODE): For i € S,

x4 (1) = SPLI ) (o™ ( Zp (1, 7)xe(g) — o (3). (13)

$t(20 JjES

The ODE (13) has a unique asymptotically stable fixed point in the positive quadrant (which is
invariant under the ODE) which corresponds to the solution to the multiplicative Poisson equation.

To see how this comes by, we use the fact that

0;
Vi (Xn+1) (M) | X, = Z] = eXp Zp i, 1)V,

Pn (Z7Xn+1) jeS

exp(Cg% (1))

E Vi (i0)

-~

Thus (9) can be rewritten as

13



+ a(n) (eXp C(g Zp i )Va(4)) — V(i))

jeSs

ex 9i(n) ( Bi(n) (4 ex
. a(n)( p(Cus” <>>Vn(XnH)<pM<,XnH>> PG (0) 5 i 5y, )>

Va(io) oo™ (6, Xoui) ey

This is seen as a noisy discretization of the ODE (13) with decreasing stepsize a(n) and a ‘martingale
difference’ or ‘noise’ error term. The contribution to the net error due to the former vanishes
asymptotically because a(n) — 0 and so doe the contribution of the latter ‘almost surely’ following a
standard martingale argument. This is a commonly used technique in reinforcement learning based
algorithms [29], [13] with the idea being to replace conditional averages by evaluation at actual or
simulated transitions and, then exploit the incremental nature of stochastic approximation scheme

to do the averaging for you.
Iteration (10):

The iteration (10) is a stochastic gradient scheme that, for fixed 6;(n) = ;, can be seen, from
the first part of Theorem 1 and Lemma 1, to asymptotically track the point Cf corresponding to
the given policy above (using again martingale type arguments and the latter part of (3) on {b(n)}
now).

Note from (4) that ¢(n) = o(b(n)) and ¢(n) = o(a(n)), respectively. This implies that recursions
(9) and (10), respectively, proceed on faster timescales as compared to (12). Moreover, since
b(n) = o(a(n)) as well, (9) proceeds on a faster scale than (10). Using standard analysis of multi-
timescale stochastic approximations [15], one can show that the iterations (10) and (12) appear to
be quasi-static when viewed from the timescale on which (9) is updated. Moreover, when viewed
from either of the timescales on which (10) or (12) are updated, the recursion (9) appears to be
essentially equilibrated. Similarly, when viewed from the timescale on which (10) is performed, the
recursion (9) appears to be equilibrated while, as already stated, (12) appears to be quasi-static.
The above justifies selecting time-invariant quantities ¢, = ¢ and 6;(n) = 6; (resp. ;(n) = 6;) in

the convergence analysis of recursion (9) (resp. (10)).
Iteration (11):

The iteration (11) proceeds on the fastest timescale {a(n)} as well and is merely used to perform
averaging of the cost function. The updates from this recursion are then used in the gradient

estimate for average cost in the slow timescale recursion (12).
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Iteration (12):

Iteration (12) does policy update. Note that here one is interested in finding the minimizing
policy parameters (i.e., the probabilities) for the long-run average cost albeit conditioned on the
rare event. Thus one is interested in finding the gradient of the average cost. This is achieved by
our slow timescale iteration as explained below.

For a bounded, continuous v;(+) : RYi=1 — RNi=1  define

. B im<ri(y+nw(y)) —Fi(y)>.
n
Suppose 0 = (9%,...,9{“71, oo 01 0T be a given SRP. Let j(&) denote the long-run
average cost under SRP 6. Let ng(@) denote the derivative of J(#) w.r.t. Hg, j=1,...,N;—1,
and let V;J(#) correspond to V;J(0) = (VIJ(8), ..., Vf-vi*lj(Q))T. The policy update can be
shown to track (in the limits as P — oo and 0 — 0) the trajectories of the ODE: For i € S,

0i(t) = Ti(=Vi (0)). (14)
The proof broadly proceeds as follows. A standard analysis of (11) [9], [11] using the fact that

the chain under each stationary policy is irreducible (and hence positive recurrent) shows that
| Yi(n) = J(@n)) = 0 as n — . (15)

Here 6(n) = (61(n),...,05(n))T. Suppose for all i € S, 0;(n) € T?, where T? corresponds to the
interior of the simplex T;. Then for § sufficiently small, 6;(n) +6A;(n) € T? as well. Hence 6;(n)
= T(0i(n) +02(n)) = 0;(n) +62;(n). Moreover, since ¢(n) — 0 as n — oo, || J ||< co and § > 0,

one can ensure by choosing n large enough that

J(6(n))Ag(n) = 7(0(n ) A (n) !
I, <9i<n>_c(n)J(0( ))5&( ) )Z@i(n)—c(n)J(a( )+5A5( )it

Using a Taylor series expansion of J(0(n) +6/\(n)) around 6(n), one obtains

s N;j—

J(O(n) +5An)) = J(O(n) +6 Z N (n)V]J(6(n)) + O(6?).
=1 j=1
For a given k € {1,...,N; — 1},
J(O(n) +6A(n) _ J(O(n)) k7 n)V{J(6(n))
SAF)  sakm) T Z#,g £F(n)
s N;—1 j
— A7 (n)V]J(0(n))
+l:1#l 2 N +0(9). (16)



The first term in the RHS above corresponds to the ‘additional’ bias term, described earlier, whose
overall contribution to bias depends on the magnitude of § and the frequency with which A¥(n)

change sign as a function of n, for all £ and i. It can be shown (cf. Theorem 2.5 of [12]) that for

n+M; n+M; A7J
1 A
any n > 0, g W:O, vk =1,...,N;, and E Aki ; 0,Vj # k, 5,k € {1,...,N;},

respectively. Note that because of the use of Hadamard matrices, M; is typically small, as a result
of which the bias contributed by the above terms is not significant in general.

One can also show in a similar manner as Corollary 2.6 of [12] that

n+M s N—1 i3
c(m) Ay (m)VyJ(6(m))
I E E E o) ~F(m) |— 0 as n — oo,
m=n [=1l#i j=1 ¢

where M = max (M, ..., M,). (Recall that M; is the number of rows in the H;,i=1,..., s, matrix

defined earlier.) Thus (12) can be seen to be analogous to the recursion
Bi(n + 1) = Ti(8;(n) — c(n) (Vi (0(n)) + &1(n) + O(9))), (17)

where £1(n) = o(n). In general, one can write I';(6;(n) +0A:i(n)) = 0;(n) +0A;(n) +dr;(n) where
r;(n) correspond to error terms because of the projection operator, such that || r;(n) || < || Ai(n) |

with equality only when 7;(n) = —A;(n). In the latter case,

n+M; o
" e(m) J(0(m))
| Z c(n) SAK(m)

m=n

|— 0 as n— o0, Vé>0. (18)

Finally, we consider the case of any other 6;(n) lying on the boundary of T;. Suppose the
correction term 7;(n) 2 (ri(n), ..., N *n)T, i e S. Now 3 j € {1,...,N; — 1} for which if
sign of AJ( ) is such that the vector 6;(n) +0A;(n) points outwards from the boundary, then
7 (n) = —AJ(n). For simplicity, suppose all other Al(n) are such that components 4(n) + §AL(n)
lie inside their respective regions. Then again one can see that (17) is valid. Also, for k = j, (18)
continues to hold. Now the function J(-) itself serves as a Liapunov function for the ODE (14)
which has K 2 {0 €Ty xTy x---xTs | Ti(ViJ(0) =0 Vi € S} as its asymptotically stable fixed
points. A standard argument now shows that the iterations (12) converge to K almost surely in the
limits as P — oo and § — 0. The equilibria for the projected gradient scheme here correspond to
Kuhn-Tucker points with the stable ones being local minima. By ‘avoidance of traps’ results [19],
[22], the scheme converges to one of these with probability one. (Strictly speaking, this requires
some additional conditions on the noise component of the iterations that can be ensured by adding
independent noise if necessary. Most often, as here, it is empirically observed that the existing

noise suffices.)
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For the asynchronous case that we actually work with, the step-size sequences are {a(v;(n))},
{b(vi(n))} and {c(vi(n))}, respectively, and the parameters corresponding to state i are updated
only at instants when the MDP {X,} under the running policy visits state 7. It can be shown
(cf. [16], [17], [18], [20]) that the iterate (5) for fixed ¢ and § as before, asymptotically tracks
trajectories of the (combined) ODE

ex 0 0 . .
ey 5 o p% (1, )2 (j) — (1)
;= 11(¢)

oo (o) 5 o p% (s, 9)e(j) — e(s)
Here II(t) is an s x s scaling matrix which is a positive scalar in [0, 1] times the identity matrix
under some additional technical conditions on the stepsize sequence (see (i) — (iv), p. 842, [16]).
Hence this ODE is a time-scaled version of the synchronous ODE. One thus obtains the same result
here as before with the only difference being that the convergence to the desired limit points can

now become slower as compared to the synchronous case. We now present our numerical results.

4 Numerical Results

The problem of routing multiple flows in communication networks has been well studied during
the last few decades [6] with several approaches having been proposed for static and dynamic
optimization of routing. In [40], [6], gradient based projection algorithms for optimal routing have
been studied. More recently, [31], [34], [41], reinforcement learning techniques have also been
applied to the problem of routing. We consider here an application of our algorithm to finding
optimal routes for flows in communication networks, conditioned on a rare event. The basic setting
is shown in Fig. 1. Nodes A and B are connected via two links. We assume that the system is
slotted with time slots of equal length. Customers/flows arrive at the beginning of time slots at A,
and have to be sent to B. There are two routes R; and R from A to B. An arrival occurs with
probability p in a given time slot independent of others. At the beginning of a time slot, decision
on whether to route these arrivals onto R; or Rs is made by a controller (at Node A). Thus, all
new arrivals at the beginning of a time slot are routed either to R; or Re. However, we also assume
that both R; and Ry can accommodate at most M customers (or flows) at any given instant. All
flows that cannot be accommodated in a given slot immediately leave the system. Suppose each
flow at any given instant (or a slot boundary) finishes service w.p. g1 on R; and w.p. g2 on Ra,
respectively, independent of other flows. Further, if a flow does not finish service in a time slot,

its service extends to the next slot independently of the number of flows in either route and the
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number of slots the given flow has been in service for. The above process is repeated again in
subsequent slots. Thus the number of slots that a customer is in service at node j, j = 1,2 equals
i with probability (1 — g;)""'g;, for i > 1. Let Xr(ll) (resp. Xy(f)) denote the number of flows on
Ry (resp. R2) in time slot n. Let {A(n)} with A(n) € {ai,a2} ¥n > 1, denote the associated
action-valued process, where a; corresponds to the action of routing new flows in a time slot on
the route R;, i = 1,2. Then under a given SDP, {X,}, where X,, = (Xfll),Xff)), n > 0, forms a
discrete time Markov chain with state transition equation given by
( X, ) _ ( min[X" — Q1 (n) + I{A(n) = a1} B(n), M] )
X,(L%zl B min[Xq(f) — Q2(n) + I{A(n) = a}B(n),M] )’

where the departures from routes Ry and Rs during time slot n are denoted as Q1(n) and Q2(n),
respectively, and satisfy 0 < Q;(n) < N;(n), j = 1,2. Also, B(n) denotes the number of new arrivals
at Node A, at the beginning of time slot (n+1). Note that since there are only two actions associated
with each state here, the parameter vector 6;(n) of the randomized policy is simply 0;(n) = 6} (n).
The simplex T; associated with each state here corresponds to the interval [0, 1] Vi. The projection
map T; is thus defined by T;(z) = max(0, min(x, 1)) Vi. Also, §;(n) = T;(6}(n) +6Ak(n)). The
sequences {A}(n), n > 0}, i € S are generated using normalized Hadamard matrices. These turn
out to be simply Al(n) = (—1)". The step-sizes are chosen as a(n) = b(n) = c¢(n) = 1, n = 0,1,

and for n > 2,
1

nlog(n)’
The single-stage cost in state ¢ under policy ;(n) is given by A% (i, X, 1) = |X7(i21 — N
—HXﬁZl — N3|, where Ny and Ny are given thresholds and (as before) X,41 = (Xr(bizl, Xr(z,izl)

corresponds to the state at the next instant. The cost function thus aims to keep the number

~—

_ log(n

an) bln) = - c(n) =

n

of flows along R; to be near threshold N; and those along Ry to be near No for some 0 < Ny,
Ny < M. Here the parameters N7 and N2 may be set arbitrarily. Note that since all new arrivals
in a time slot are routed to either Ry or Ry, N1 and Ny should be judiciously chosen. A value of
N7 or Ny close to zero would lead to under-utilization while a value close to M would result in
leaving less room for accommodating future flows on the corresponding route. The last is required,
for instance, in cases where there are different categories of traffic flows in the network each having
a possibly different pay off (a scenario not considered in this paper). Any other choice for the cost
function may be used as well.

The function ¢'(-) used for defining the rare event is given as g0xn (Xn) =1 {X,(lz) > N}, where
N is another (given integer) threshold. Thus ¢'(-) equals one if x? e {N+1,...,M} and is zero

n—1
otherwise. The long-run average nhngo — Z gPxm (X,,) in this case corresponds to the stationary
—oon
m=0
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probability of the number of flows at the second node exceeding N. For any given SDP, the latter
quantity would depend on the resulting transition probability matrix for the process {X,,} under
that SDP. We consider two different settings for our experiments that we refer to as settings (a)
and (b), respectively. The input parameters for the two settings are given in Table 1 below.

Note that in the algorithm in Section 3.1, the number of iterations P is fixed apriori. However,
for obtaining more accurate estimates, we use a different stopping criterion for the algorithm that
is based on an accuracy parameter € as explained below and not one based on a fixed value of P.
For a given ¢ > 0, let k¢ be the transition number of the Markov chain at which the estimate of
p‘g* = VC“ ’ (79) converges to within € of its previous value 100 times in succession. We let the value
of € to be 5 x 107 for setting (a) and 5 x 108 for setting (b), respectively. The above values of
€ (for the two settings) will in fact be denoted as €. More experiments using other values of € are
subsequently discussed.

In Figs. 2 and 4, we show the optimal policies §*(-) for the two settings. The corresponding
value functions are shown in Figs. 3 and 5. We observed from the optimal policies in both settings
that for states (i1,2), for given i1, the value of 8*(-) i.e., the probability of selecting action aj, on
the whole seems to increase, starting from a low value, as io is increased from 0 to M. Thus, in
general, for low values of i9, for given i1, the preferred action is ay (i.e., to route customers on the
second link) while for higher values of iy, the preferred action becomes a;. This is along expected
lines given the form of the associated cost function. The value function V*(:) (in both settings)
takes low values for low values of (i1,i2) and gradually increases (overall) when either i; or iy is
increased. What is more interesting, however, is that there is a step-increase in these values as soon
as the set of rare event states is reached and it stays high over those states. This is not surprising
since the conditional probabilities of the rare event states will be higher as we are conditioning on
the rare event.

In Table 2, values of various performance metrics under the optimal policy are shown. Note that
¢* corresponds to the converged value of the risk parameter obtained from the recursion (6). The
quantities E9% [X(M] and E% [X(®)] denote the mean numbers of flows on the two routes. These,
in general, depend on the parameters p, q1, g2, M and #*, and in the present case, can be seen to
be less than the thresholds N and No, in either setting. The mean cost E% [hgi (1, XM, X)), is
higher in Setting (b) as compared to Setting (a) since the values of thresholds N; and Ny in the
former setting are higher.

Next, we performed some additional experiments along similar lines as [21], [23], to estimate
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Table 1: Input Parameters for the two settings
Setting (a) Setting (b) |

H Input Parameter

Link Capacity, M 10 20

N; Ny =3, No = | Ny =6, Ny =
) 12

N 7 13

e 0.25 0.25

Arrival probability, p 0.65 0.85

Departure probability, g; q = 071qgq = 0.7
qo = 0.52 qo = 0.52

0 0.01 0.01

L 11 11

n (see Equation (19) ) 50 150

Co 0 0

Vo(i), Vie S 1 1

Y;(0), Vie S 0 0

Initial policy Vi€ S 61(0) =16.(0) =
62(0) = 0.5 62(0) = 0.5

Reference state, ig (2,2) (2,2)

the rare event probability p, (see below) under both settings.

R 1 n—1 .
Pr= Pa(=- 37 9" (X) > @), (19)
m=0

The values of n are described in Table 1 for the two settings. An importance sampling estimator

for this probability is the average of the i.i.d. samples

152, pgﬁ(O(Xo,Xl)pe}l (Xl,Xz)'”pe}"‘Q(X —2,Xn—1)
1{5299 (Xm) > a} 7 o 7 n 7.
m=0 P 0 (Xo, X1)p (X1, Xo) -+ i T (X2, Xne1)

In practice, one is able to obtain the above estimate only upto a certain specified degree of accuracy
as obtained from the quantity € (see above). There is however a tradeoff involved in the choice of
€. The variance of the estimates tends to be high if € is not chosen to be small enough, which may
affect their accuracy. On the other hand, as the value of € is decreased beyond a point, the amount
of computational effort required increases rapidly.

We run the algorithm for different values of €. For each value of €, we obtain an estimate pS (-, -)
of p?”(-,-) that is then used to generate i.i.d. samples for the estimate of the rare event probability
Pn (see above). The mean and variance of the rare event probability are then determined using the
batch means method. The simulation is terminated when the 95% confidence interval (cf. [30]) of

probability lies within 5% of its estimated mean value. Let T, denote the total computational effort
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Table 2: Performance under optimal policy

Performance Metric

Setting (a) |

Setting (b) ||

c* 1.652923¢+00 | 7.370684e-01
C*a—1In(pe+) 2.456064¢-01 | 5.742653¢-02
EO% [ x™M)] 1.092038e-+00 | 2.836020e+00
E% [ X )] 4.183547e+00 | 8.720516e-+00
E%[n0i (i, X1, X )] 5.488044e-+00 | 1.096857e+01

Table 3: Rare Event Probability Experiments

Parameters/Performance Metrics

|

Setting (a) ‘

Setting (b) ‘

é 5.000000e-09 | 5.000000e-08
ke 11287258742 | 1247427803
D 5.785067¢-07 | 1.7041586-05
¢ 5.000000e-05 | 1.000000e-04
oer 9292162 1197983
T, 2760999897 92719997
(kee + To) 2770292059 93917980
Der 5.446732¢-07 | 1.574290¢-05

involved in terms of the number of simulated transitions of the MDP that are generated during
this process. We show in Figs. 6 and 8, plots of k¢, T, and (k. + T¢) as functions of € for settings
(a) and (b), respectively. The total computational effort (in terms of (k. + T¢)) is found to be the
least for e = ¢* = 5 x 107° in setting (a) and for € = ¢* = 10~* in setting (b), respectively. Also,
Figs. 7 and 9 show the plots of the rare event probability p,, (described in the figures as p¢) obtained
for different accuracy levels e. The values of € in the above figures are shown on the log scale for
convenience.

In Table 3, we describe the values of the various parameters and metrics obtained for the rare
event probability experiments. The quantities ke«, Tex and (ke + Tex ), respectively, correspond to
the case when € = ¢* is chosen for both settings. Also € = 5 x 107 (resp. € = 5 x 107%) is the
lowest value of e for which the simulations were run for setting (a) (resp. setting (b)). This level of
accuracy was obtained in about 1.18 x 10!V iterations in setting (a) and about 3.05 x 10? iterations
in setting (b). As stated previously, the value of € is used as the accuracy parameter in the earlier
experiments (cf. Figs. 2 to 5 and Table 2). In Table 3, pe+ (resp. pe) corresponds to the value of p,
obtained when € = €* (resp. € = €). Note that these values are much lower for setting (a) than for
setting (b) (see also Figs. 7 and 9). As a consequence of the above, the values of ke and T+ are

seen to be much less for setting (b) as compared to the corresponding values of these for setting

().
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5 Conclusions

We developed an adaptive simulation based stochastic approximation algorithm for ergodic control
of Markov chains conditioned on a rare event of zero probability. Our algorithm uses coupled
recursions that are driven by different timescales. We briefly sketched the convergence analysis of
our algorithm and presented numerical experiments on a setting involving routing multiple flows
in communication networks. The results obtained demonstrate the usefulness of the proposed
algorithm in obtaining optimal policies conditioned on a rare event and in estimating the rare
event probability. The numerical setting considered here was, however, a simple setting designed
to demonstrate the usefulness of the proposed algorithm. More complex settings involving, say,
networks with multiple nodes and more routes with large numbers of flows on each should be tried
in order to study the scalability of the proposed algorithm. The SPSA technique, in general, is
known to be highly scalable as has been demonstrated through several applications over the last
decade. In the simulation based optimization framework, SPSA based multi-timescale algorithms
have been found to perform well computationally in the case of high-dimensional parameter settings
studied in [11] and [12] (by more than an order of magnitude over related K-W based algorithms).
Implementations involving such high-dimensional settings (along the lines described above) need
to be studied for the proposed algorithm in the setting of this paper. Recently, in [14], certain
Newton-based multiscale SPSA algorithms that estimate both the gradient and Hessian of the
average cost have been developed in the simulation optimization setting. Similar algorithms for the
setting considered here may also be developed.

One may extend these ideas further by applying these for optimal control conditioned on multi-
ple rare events. For problems with large action spaces, one may consider suitable parameterizations
of the policy space. One may also use feature based methods for problems with moderately large
state spaces. Our adaptive algorithm can be used to derive optimal parameterized policies using
features in place of states. It must be noted here that adaptive importance sampling techniques
require storage of transition probabilities and our algorithm is no different in this regard. Hence
it cannot directly be applied in the case of problems with very large state spaces where storage
of such information itself is computationally infeasible. However, in many cases such as queueing
networks, the transition probabilities are easy to compute and transitions easy to simulate using
simple local dynamic laws. Further, storage of transition probability matrices may not be a major
concern in such scenarios since these are known to be highly sparse. Developing similar algorithms
in general scenarios involving very large state spaces would be an interesting research direction to

pursue.
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Figure 6: Setting (a): Plot of k., T¢ and (ke + T¢) w.r.t. €
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Figure 7: Setting (a): Variation of p, with €
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Figure 8: Setting (b): Plot of ke, Te and (ke + T¢) w.r.t. €
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Figure 9: Setting (b): Variation of p. with e
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