
A Simulation-Based Algorithm for Ergodic Control of Markov Chains
Conditioned on Rare Events

S. Bhatnagar ∗†, V. S. Borkar ‡and A. Madhukar §

February 2006

Abstract

We study the problem of long-run average cost control of Markov chains conditioned on a
rare event. In a related recent work, a simulation based algorithm for estimating performance
measures associated with a Markov chain conditioned on a rare event has been developed. We
extend ideas from this work and develop an adaptive algorithm for obtaining, online, optimal
control policies conditioned on a rare event. Our algorithm uses three timescales or step-size
schedules. On the slowest timescale, a gradient search algorithm for policy updates that is based
on one-simulation simultaneous perturbation stochastic approximation (SPSA) type estimates
is used. Deterministic perturbation sequences obtained from appropriate normalized Hadamard
matrices are used here. The fast timescale recursions compute the conditional transition proba-
bilities of an associated chain by obtaining solutions to the multiplicative Poisson equation (for
a given policy estimate). Further, the risk parameter associated with the value function for a
given policy estimate is updated on a timescale that lies in between the two scales above. We
briefly sketch the convergence analysis of our algorithm and present a numerical application in
the setting of routing multiple flows in communication networks.

Key Words: Markov decision processes, optimal control conditioned on a rare event, simulation
based algorithms, SPSA with deterministic perturbations, reinforcement learning.

1 Introduction

Markov decision processes (MDPs) [5], [35] form a general framework for studying problems of

control of stochastic dynamic systems (SDS). Many times, one encounters situations involving

control of SDS conditioned on a rare event of asymptotically zero probability. This could be, e.g., a

problem of damage control when faced with a catastrophic event. For instance, in the setting of a

large communication network such as the internet, one may be interested in obtaining optimal flow

∗Corresponding author
†Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India. E-Mail:

shalabh@csa.iisc.ernet.in
‡School of Technology and Computer Science, Tata Institute of Fundamental Research, Homi Bhabha Road,

Mumbai 400 005, India. E-Mail: borkar@tifr.res.in
§Department of Electrical Engineering, Indian Institute of Science, Bangalore 560 012, India. E-Mail:

madhukar@ee.iisc.ernet.in

1

and congestion control or routing strategies in a subnetwork given that an extremal event such as a

link failure has occurred in another remote subnetwork. Our objective in this paper is to consider

a problem of this nature wherein a rare event is specifically defined to be the time average of a

function of the MDP and its associated control-valued process exceeding a threshold that is larger

than its mean. We consider the infinite horizon long-run average cost criterion for our problem and

devise an algorithm based on policy iteration for the same.

Research on developing simulation based methods for control of SDS has gathered momentum

in recent times. These largely go under the names of neuro-dynamic programming (NDP) [7]

or reinforcement learning (RL) [39] and are applicable in the case of systems for which model

information is not known or computationally forbiddingly expensive, but output data obtained

either through a real system or a simulated one is available. Our problem does not share this last

feature, but we do borrow certain algorithmic paradigms from this literature. Before we proceed

further, we first review some representative recent work along these lines. In [3], an algorithm for

long-run average cost MDPs is presented. The average cost gradient is approximated using that

associated with a corresponding infinite horizon discounted cost MDP problem. The variance of the

estimates however increases rapidly as the discount factor is brought closer to one. In [4], certain

variants based on the algorithm in [3] are presented and applications on some experimental settings

shown. In [25], a perturbation analysis (PA) type approach is used to obtain the performance

gradient based on sample path analysis. In [24], a PA-based method is proposed for solving long-

run average cost MDPs. This requires keeping track of the regeneration epochs of the underlying

process for any policy and aggregating data over these. The above epochs can however be very

infrequent in most real life systems. In [32], the average cost gradient is computed by assuming

that sample path gradients of performance and transition probabilities are known in functional

form. Amongst other RL-based approaches, the temporal difference (TD) [39] and Q-learning [42]

have been popular in recent times. These are based on value function approximations. A parallel

development is that of actor-critic algorithms based on the classical policy iteration algorithm in

dynamic programming. Note that the classical policy iteration algorithm proceeds via two nested

loops – an outer loop in which the policy improvement step is performed and an inner loop in which

the policy evaluation step for the policy prescribed by the outer loop is conducted. The respective

operations in the two loops are performed one-after-the-other in a cyclic manner. The inner loop

can in principle take a long time to converge, making the overall procedure slow in practice. In

[29], certain simulation-based algorithms that use multi-timescale stochastic approximation are

proposed. The idea is to use coupled stochastic recursions driven by different step-size schedules or

timescales. The recursion corresponding to policy evaluation is run on the faster timescale while

2

that corresponding to policy improvement is run on the slower one. Thus while both recursions

proceed simultaneously, the algorithm converges to the optimal policy. The algorithms of [29]

(as with those described in the previous paragraph) are for finite state and finite action MDPs,

under both the discounted and long-run average cost criteria. A variant of the above algorithms

for the case of finite state but compact (non-discrete) action sets, in the setting of infinite horizon

discounted cost MDPs is presented in [13], and performs gradient search in the space of stationary

deterministic policies using a simultaneous perturbation stochastic approximation (SPSA) gradient

estimate.

Standard SPSA [37] uses two simulations for estimating the performance/cost gradient regard-

less of the dimension N of the parameter vector, unlike Kiefer-Wolfowitz (K-W) based estimates

that require (N + 1) simulations for the same. This it does by randomly perturbing all parameter

components at each update epoch. The original SPSA algorithm [37] is, however, a one-timescale

Robbins-Monro variant for parameter optimization and is not directly applicable when the cost

to be optimized is for instance the long-run average of a running cost function, viz., the objective

function for a given parameter value is derived only after viewing the entire sample path / trajec-

tory of the system for that parameter value. Perturbation analysis (PA) schemes [26], [28] that

were proposed for problems such as these use largely one simulation, however, they require certain

constraining regularity conditions on the system dynamics and cost functions in order to allow

for an interchange between the ‘gradient’ and ‘expectation’ operators. Moreover, many of these

schemes update parameters only at certain regeneration epochs of the underlying process, making

them slow in practice. In [8] and [9], certain two-timescale stochastic approximation algorithms

were introduced as alternatives to PA type schemes. These do not require constraining regularity

conditions like PA, while they also update parameters at certain deterministic epochs. The key

in the algorithms of [8] and [9] is the use of two-timescale stochastic approximation, whereby on

the faster timescale, data corresponding to a given parameter update is aggregated and on the

slower timescale, the parameter is updated. These algorithms, however, use K-W estimates. In

[11], variants that use SPSA estimates were proposed and were found to show significantly better

performance. In [38], a one-simulation (one-timescale) variant of the original SPSA algorithm was

proposed, which however does not show good performance because of the presence of an ‘addi-

tional’ bias term in its gradient estimate whose contribution to overall bias tends to be high. In

[12], it was observed in a similar setting as [8], [9] and [11] that the use of deterministic perturba-

tion sequences (instead of randomized) derived using normalized Hadamard matrices significantly

alleviates this problem in the case of one-simulation SPSA with the latter subsequently showing

good performance. It was shown that perturbation sequences derived using normalized Hadamard

3

matrices satisfy the desired properties on such sequences that result in all bias terms getting can-

celled at regular intervals. Further, the space of perturbations derived as above has a cardinality

of 2log2(N+1) as against 2N when randomized perturbations are used (the perturbation vectors in

both spaces being {±1}N -valued). To sum up, the use of normalized Hadamard matrix based

perturbations in the setting as described above has the inherent advantage that one may use a

fast one-simulation SPSA based algorithm that updates all parameter components at each update

epoch (the epochs themselves being deterministically spaced. In particular, the algorithms in [12]

update the parameter once every L epochs for a given, arbitrarily chosen integer L) while working

with a more general class of systems than what the PA based methods allow.

The works cited above represent some recent developments in the general area of simulation

based optimization and control of SDS. We now review some of the work that is more directly

related to the problem we study in this paper. In [21], a simulation-based algorithm for estimating

performance measures of a Markov chain conditioned on a rare event of zero probability has been

developed. This is based on the result that the transition probabilities of the Markov chain condi-

tioned on a rare event as above are the same as those of another irreducible chain on the same state

space whose transition probabilities are absolutely continuous w.r.t. those of the former chain. The

calculation of these calls for the solution of an associated multiplicative Poisson equation, an ob-

ject familiar from risk-sensitive control and large deviations theory [33], [2]. The simulation based

algorithm in [21] recursively obtains the solution to this multiplicative Poisson equation and uses

the same to learn, online, the new transition probabilities. In [1], a reinforcement learning based

importance sampling scheme for estimating expectations associated with rare events has also been

proposed.

A related work is [36], in which a simulation based technique for optimizing certain performance

measures in discrete event systems conditioned on rare events is presented. The problem there is

formulated as a constrained optimization problem with an importance sampling estimate in the

objective function that is obtained by assuming the underlying processes to be regenerative. The

constraint there corresponds to the occurrence of the given rare event. The above problem is

then solved as a two-stage stochastic programming problem. Our work is fundamentally different

from [36] in many ways. First, we consider the problem of obtaining an optimal control policy

conditioned on a rare event and not just one of optimizing certain performance metrics within a

parameterized class as with [36]. Next, even though we assume that our underlying process for any

given stationary policy is ergodic Markov and hence regenerative, we do not use the regenerative

structure per se in obtaining estimates of performance as [36] does. For the latter, one needs in

particular to keep track of regeneration epochs of the underlying process that can be very infrequent

4

in the case of most systems. Finally, we use a stochastic approximation based recursive procedure

that incorporates reinforcement learning type estimates, unlike (as already mentioned) [36] that

formulates the problem as a stochastic program.

Our work can be viewed as an extension of [21] that addresses the important problem of optimal

control of a Markov chain conditioned on a rare event. In our framework, the results of [21]

correspond to policy evaluation for a fixed stationary deterministic policy. We develop and use a

simulation-based algorithm to find the optimal randomized policy ‘on top of’ the algorithm of [21].

Our algorithm uses three timescales or step-size schedules and iterates in the space of stationary

randomized policies. The policy itself, however, is updated on the slowest timescale. The value

function updates for finding the solution to the multiplicative Poisson equation for a given policy,

based on which the transition probabilities of an associated chain are obtained, are performed on

the fastest timescale. The risk parameter associated with the multiplicative Poisson equation is

updated on a timescale that is faster than the one on which policy is updated, but slower than that

on which value function is updated. Finally, there is another recursion that is used for averaging the

cost function with the latter average used in the policy update step. This proceeds on the fastest

scale as well (same as the one on which the value function is updated). We show in the analysis that

the difference in timescales of the various recursions results in the desired algorithmic behavior.

For policy updates, we use a one-simulation SPSA based recursion with normalized Hadamard

matrices [12]. Finally, we present numerical experiments using our algorithm in the setting of

routing multiple flows in communication networks conditioned on a rare event. We observe that

our algorithm exhibits good performance in this setting. It must be noted here that adaptive

importance sampling (IS) schemes require storage of transition probabilities and our algorithm is

no different in this regard. Thus it may not be applicable (as is also the case with other IS methods)

in scenarios that involve very large state spaces for which storage of such information is not possible.

Nevertheless, feature based methods as in RL may still be applied for ease of computation in the

case of problems with state and action spaces that are moderately large but for which storage of

vectors of the size of state space is not a major concern. Further, in many cases such as queueing

networks, the transition probabilities are easy to compute and transitions easy to simulate using

simple local dynamic laws. In such scenarios, storage of transition probability matrices may also

not be a major concern as these are known to be highly sparse.

The rest of the paper is organized as follows: Section 2 presents the problem formulation and

gives the basic results. Section 3 presents the simulation-based algorithm. Its convergence analysis

is also briefly sketched here. The numerical results are presented in Section 4. Finally, Section 5

presents the concluding remarks.

5

2 Problem Formulation and Basic Results

Consider a Markov decision process (MDP) {Xn, n ≥ 0} on a finite state space S = {1, 2, . . . , s}.

For Xn = i, i ∈ S, let A(i) be the set of feasible controls or actions. We assume A(i) has the form

A(i) = {a1
i , a

2
i , . . ., a

Ni

i }. Let A = ∪i∈SA(i) denote the action space (which is also finite). Let {Zn,

n ≥ 0} denote the associated control-valued sequence such that Zn ∈ A(Xn) ∀n. Suppose p(i, j, a)

denotes the transition probability from state i to state j under action a ∈ A(i). Then the evolution

of {Xn} is governed by

Pr(Xn+1 = j | Xn = i, Zn = a,Xn−1 = in−1, Zn−1 = an−1, . . . , X0 = i0, Z0 = a0) = p(i, j, a),

for any i0, . . . , in−1, i, j, a0, . . . , an−1, a, in appropriate sets.

A sequence of functions π = {µ1, µ2, . . .} with each µn : S → A, n ≥ 1, is said to be an

admissible policy if µn(i) ∈ A(i), ∀i ∈ S. This corresponds to the control choice Zn = µn(Xn) ∀n.

An admissible policy π = {µ1, µ2, . . .} with each µn = µ, n ≥ 1, is said to be a stationary

deterministic policy (SDP). By a common abuse of notation, we simply refer to µ itself as the SDP.

By a randomized policy (RP) ψ, we mean a sequence ψ = {φ1, φ2, . . .} with each φn : S → P(A),

n ≥ 1. Here P(A) is the set of all probability vectors on A such that for each i ∈ S, n ≥ 1,

φn(i) ∈ P(A(i)), with P(A(i)) being the set of all probability vectors on A(i). A stationary

randomized policy (SRP) is an RP ψ for which φn(i) = φ ∀n ≥ 1. By an abuse of notation, we

refer to φ itself as the SRP. The a−th component of φ(i), φ(i)(a) is the probability of choosing

action a when in state i. Thus this corresponds to picking Zn with probability distribution φ(Xn)

at time n, independent of all other random variables realized till n. We have

Assumption (A) Under any SDP µ, the process {Xn} forms an irreducible Markov chain.

Let Eµ[·] denote the expectation w.r.t. the stationary distribution of {Xn} under SDP µ. Let

g : S × A → R be a given function such that Eµ[g(Xn, µ(Xn))] < α < ∞ for a given constant α,

for every SDP µ. The rare event that we consider corresponds to

lim
n→∞

1

n

n−1
∑

m=0

g(Xm, µ(Xm)) ≥ α.

The choice of the function g(·, ·) and α will be, in practice, dictated by the application. For example,

in reliability, one may want to look at the stationary probability of crossing a very large threshold,

say, N . Then g(Xm, µ(Xm)) can be chosen to be I{Xm ≥ N}, where I{·} is the indicator function

and α could be a convenient upper bound on the stationary expectation.

Let h : S × A × S → R denote the cost function that we assume is bounded. For any SDP µ,

6

let for any (initial state) X0 ∈ S,

J(µ) = lim
n→∞

1

n

n−1
∑

m=0

h(Xm, µ(Xm), Xm+1)

be the long-run average cost. Let D be the set of all possible stationary deterministic policies. The

aim is to find

µ∗ = arg min
µ∈D

J(µ),

conditioned on the rare event lim
n→∞

1

n

n−1
∑

m=0

g(Xm, µ(Xm)) ≥ α, ∀µ ∈ D. Let pµ,∗(i, j) = lim
n→∞

P (X1 =

j | X0 = i, Z0 = µ(i),
1

n

n−1
∑

m=0

g(Xm, µ(Xm)) ≥ α) denote the transition probabilities under SDP µ

conditioned on a rare event (as defined above). We now present the basic results for a given SDP

µ. These have been directly adapted from [21] for a fixed SDP and are stated here for the sake

of completeness. Some of these results are also available in the context of risk sensitive control of

Markov chains, see for instance, [2], [27], [33]. We briefly explain the risk sensitive control problem

in order to put things in perspective. Suppose (that instead of the original) the aim is simply to

find an SDP µ that minimizes Jζ(µ) defined by

Jζ(µ) = lim
n→∞

1

n
ln

(

E

[

exp(
n−1
∑

m=0

ζg(Xm, µ(Xm)))

])

,

where ζ denotes the risk parameter. The cases ζ > 0 and ζ < 0 correspond to the risk-averse and

risk-preferring cases, respectively. For a given µ, Jζ(µ) is obtained [2], [27] as the solution to the

multiplicative Poisson equation: For i ∈ S,

V
µ
ζ (i) =

exp(ζg(i, µ(i)))

ρ
µ
ζ

∑

j

p(i, j, µ(i))V µ
ζ (j), i ∈ S, (1)

where V µ
ζ (·) is a bounded function (that is unique up to a multiplicative constant) and ρ

µ
ζ corre-

sponds to exp(Jζ(µ)) or that Jζ(µ) = ln ρµ
ζ . Note that solution of this equation is an eigenvalue

problem for the positive matrix [[exp(ζg(i, µ(i)))p(i, j, µ(i))]]i,j∈S , and V µ
ζ , resp. ρµ

ζ , are its Perron-

Frobenius eigenvector and eigenvalue.

For the problem considered in this paper, as shown in [21], the multiplicative Poisson equation

also arises via the conditional transition probabilities pµ,∗(i, j) (for given SDP µ), see (2) below.

In fact, for any given i ∈ S, upon summing over all j ∈ S on both sides of (2), one obtains the

multiplicative Poisson equation (1). For any SDP µ and risk parameter ζ, Jζ(µ) = ln ρµ
ζ corresponds

to the infinite horizon risk-sensitive cost. As in [21], we fix the choice of V µ
ζ (·) by setting V µ

ζ (i0) = ρ
µ
ζ

for a given i0 ∈ S in order to obtain unique V µ
ζ (i) ∀i ∈ S.

7

Theorem 1 [21]

(a) The map ζ → ρ
µ
ζ is convex for each SDP µ and there exists a unique ζµ

∗
4
= arg maxζ≥0(ζα−

ln(ρµ
ζ)) for any µ.

(b) pµ,∗(i, j), i, j ∈ S is given by

pµ,∗(i, j) =
exp(ζµ

∗ g(i, µ(i)))p(i, j, µ(i))V µ
∗ (j)

ρ
µ
∗V

µ
∗ (i)

(2)

(c) The regular conditional law of the MDP {Xm, m ≥ 0} under SDP µ, conditioned on the

event {X0 = x,
1

n

n−1
∑

k=0

g(Xk, µ(Xk)) ≥ α} converges to the law of a Markov chain starting at x with

transition probabilities pµ,∗(·, ·).

In the above, ρµ
∗

4
= ρ

µ
ζµ
∗

and V µ
∗

4
= V

µ
ζµ
∗
, respectively. It can be shown (cf. Lemma 2 of [21]) using

a generalization of Theorem 6.3 of [33] that as n→ ∞,

Px(
1

n

n−1
∑

m=0

g(Xm, µ(Xm)) ≥ αn) ∼
V

µ
∗ (x) exp(−n(ζµ

∗ α− ln(ρµ
∗))) exp(kζµ

∗)

ζ
µ
∗

√

2πnλµ
∗

where αn = α−
k

n
and λµ

∗ =

√

∂2 ln ρµ
ζ

∂ζ2
|ζ=ζ∗ . The result in Theorem 1(b) follows in a straight-

forward manner from the above. Thus the transition probabilities pµ,∗(·, ·) depend on the risk

parameter ζµ
∗ given in Theorem 1(a).

For a given ζ > 0 and SDP µ, let {Xζ,µ
n , n ≥ 0} represent a Markov chain on S with (suitably

normalized) transition probabilities

pµ,ζ(i, j)
4
=

exp(ζg(i, µ(i)))p(i, j, µ(i))V µ
ζ (j)

ρ
µ
ζV

µ
ζ (i)

, i, j ∈ S.

In particular, we consider here the corresponding risk-averse case (ζ > 0). The risk-preferring case

(ζ < 0) is easier to handle and is not considered in this paper. In view of Assumption (A), {X ζ,µ
n } is

irreducible. Let ηµ
ζ (·) denote its unique stationary distribution. We now have the following lemma

whose proof follows as in Proposition 4.9 of [33].

Lemma 1
∂ ln(ρµ

ζ)

∂ζ
=
∑

i∈S

η
µ
ζ (i)g(i, µ(i)).

In classical Markov decision theory, one is minimizing expectation and not conditional expecta-

tion of the ergodic cost and one can prove that it suffices to consider only SDPs. Such a result is not

proved here, so it is our choice to restrict to these. Finally, in principle, the requirement that the

rare event condition hold for all SDPs µ (see the problem definition above) is not strictly needed

in order for the theory to go through. However, one expects this to be true in typical applications.

In the next section, we present an adaptive algorithm for finding optimal µ and ζ by building on

the basic results of Theorem 1 – Lemma 1.

8

3 The Adaptive Algorithm

Given an SRP φ : S → P(A), one can identify φ(i) with a parameter vector θi = (θ1
i , . . ., θ

Ni−1
i)T ,

where θj
i ≥ 0 are the probabilities of picking actions aj

i , j = 1, . . . , Ni−1. Thus
Ni−1
∑

j=1

θ
j
i ≤ 1. Further,

θNi

i (the probability of selecting action aNi

i) is directly obtained from the above representation of

φ(i) as θNi

i = 1 −
Ni−1
∑

j=1

θ
j
i . Let θ = (θ1 . . ., θs)

T = (θ1
1, . . ., θ

N1−1
1 , θ1

2, . . ., θ
N2−1
2 , . . ., θ1

s , . . .,

θNs−1
s)T . Let pθi(i, j), i, j ∈ S, be defined by pθi(i, j) = θ1

i p(i, j, a
1
i) + . . . + θNi

i p(i, j, aNi

i). Thus

pθi(i, j) correspond to the transition probabilities of the resulting Markov chain under SRP φ.

Suppose gθi(i) = θ1
i g(i, a

1
i) + . . . + θNi

i g(i, aNi

i) and hθi(i, j) = θ1
i h(i, a

1
i , j) + . . . + θNi

i h(i, aNi

i , j),

respectively, denote the expected values of the function g(·, ·) and the single-stage cost h(·, ·, ·)

under SRP φ. Define three step-size sequences {a(n)}, {b(n)} and {c(n)} satisfying

Assumption (B)

∑

n

a(n) =
∑

n

b(n) =
∑

n

c(n) = ∞,
∑

n

(a(n)2 + b(n)2 + c(n)2) <∞, (3)

c(n) = o(b(n)), b(n) = o(a(n)). (4)

Examples of {a(n)}, {b(n)} and {c(n)} that satisfy (3)-(4) are a(n) =
1

n3/5
, b(n) =

1

n4/5
,

c(n) =
1

n
, and a(n) =

log n

n
, b(n) =

1

n
, c(n) =

1

n log n
, respectively. Let

Ti = {xi
4
= (x1

i , . . . , x
Ni−1
i)T | xj

i ≥ 0, j = 1, . . . , Ni − 1, and
Ni−1
∑

j=1

x
j
i ≤ 1}

denote the policy simplex in state i onto which, after each policy update recursion, the vector of

probabilities corresponding to the first Ni − 1 actions is projected. The probability xNi
i of selecting

the Ni−th action in state i is then set according to xNi
i = 1 −

Ni−1
∑

j=1

x
j
i .

For any i ∈ S, let 4j
i (n), j = 1, . . . , Ni − 1, n ≥ 0, be ±1-valued variables. These shall

constitute the perturbations in SPSA type gradient estimates. Exact values of these for any given

n are obtained using a normalized Hadamard matrix based construction as in [12] (see below). Let

4i(n) = (41
i (n), . . ., 4Ni−1

i (n))T denote the vector of perturbations at the nth epoch. In general,

an m ×m (m ≥ 2) matrix H is said to be a Hadamard matrix of order m if its entries belong to

{1,−1} and HTH = mIm, where Im is the m×m identity matrix. A Hadamard matrix is said to

be normalized if all the elements in its first column are 1. The construction used in [12] that we

also use here is the following:

9

• For k = 1, let

H2 =

[

1 1
1 −1

]

• For general k > 1,

H2k =

[

H2k−1 H2k−1

H2k−1 −H2k−1

]

.

For an (Ni − 1)-dimensional parameter vector as above, the order of the Hadamard matrix used

is Mi = 2dlog2(Ni)e. It is easy to see that Ni − 1 < Mi. Next form a matrix Ĥi in the following

manner: Remove the first column from the normalized Hadamard matrix constructed above. Next

pick any (Ni−1) of the remaining (Mi−1) columns and all Mi rows to form the new matrix. If only

(Ni−1) columns remain after deleting the first column above, then pick all the remaining columns.

Thus Ĥi is an Mi × (Ni − 1) matrix. Let the Mi rows of this matrix be represented by Ĥi(1),

. . ., Ĥi(Mi), respectively. Finally, the perturbation sequence 4i(n) is cyclically moved through the

sequence {Ĥi(1), . . ., Ĥi(Mi)} of vectors by setting 4i(0) = Ĥi(n mod Mi + 1). In what follows,

we present an adaptive single simulation stochastic approximation based algorithm that performs

asynchronous updates. Suppose νi(n) denotes the number of times that state i is visited by the

MDP {Xm} in n epochs. Then, one can write, νi(n) =
n
∑

m=1

I{Xm = i}. We generate new 4i(n)

only for those instants n for which state i is visited by the chain i.e., Xn = i. For all other instants,

θi(n) and 4i(n) are held fixed. Let 4i(n)−1 denote the vector 4i(n)−1 = (
1

41
i (n)

, . . . ,
1

4Ni−1
i (n)

)T .

We now present our algorithm.

3.1 The Algorithm

Suppose δ > 0 is a given constant and Γi : RNi−1 → RNi−1 be the projection from RNi−1 to the

simplex Ti. Let θi(n), n ≥ 0 denote the nth update of θi. Let θ̄i(n) = Γi(θi(n) + δ4i(n)), where

4i(n), n ≥ 0 are obtained using normalized Hadamard matrices as explained earlier. We analo-

gously denote θ̄i(n) as the vector θ̄i(n) = (θ̄1
i (n), . . ., θ̄Ni−1

i (n))T and let θ̄Ni
i (n) = 1 −

Ni−1
∑

j=1

θ̄
j
i (n).

The simulated MDP {Xn} is governed by the perturbed randomized policy in the following manner:

If Xn = i, then an action from the set A(i) is selected according to the randomized policy θ̄i(n).

Let Yi(n), n ≥ 0 be quantities defined via the recursions below that are used for averaging the

cost function. Let Vn(i), i ∈ S denote the nth update of value function and ζn the nth update

of the risk parameter, respectively. We also let θj
i (0) =

1

Ni
, ∀j = 1, . . . , Ni, i ∈ S, implying that

the simulation is started with a policy that assigns equal weightage to every feasible action in each

10

state. Other initial values for the same could be selected as well. The algorithm is described as

follows:

The Algorithm

• Step 0 (Initialize): Fix θi(0)
4
= (θ1

i (0), . . . θ
Ni−1
i (0))T , i ∈ S, as the vectors of initial proba-

bilities for selecting actions in states i with θNi

i (0) = 1 −
Ni−1
∑

j=1

θ
j
i . Fix integers L and (large)

P arbitrarily. Fix a (small) constant δ > 0. Set n := 0 and m := 0. Generate Mi ×Mi,

normalized Hadamard matrices (Hi) where Mi = 2dlog2(Ni)e, i ∈ S. Let Ĥi, i ∈ S, be Mi ×Ni

matrices formed from Hi by choosing any Ni of its columns other than the first and let Ĥi(p),

p = 1, ...,Mi denote the Mi rows of Ĥi. Now set ∆i(0) := Ĥi(1), ∀i ∈ S. Set θ̄i(0) = Γi(θi(0)

+δ∆i(0)), i ∈ S as the initial value of the perturbed randomized policy. Alternatively, denote

θ̄i(0) = (θ̄1
i (0), . . . , θ̄

Ni−1
i (0)) and let θ̄Ni

i (0) = 1 −
Ni−1
∑

j=1

θ
j
i (0). Obtain initial transition proba-

bilities pθ̄i(0)(i, j), i, j ∈ S by setting pθ̄i(0)(i, j) = θ̄1
i (0)p(i, j, a

1
i) + . . .+ θ̄Ni

i (0)p(i, j, aNi

i). Set

p
θ̄i(0)
0 (i, j)

4
= pθ̄i(0)(i, j) as the transition probabilities of the new Markov chain. Set g θ̄i(0)(i)

= θ̄1
i (0)g(i, a

1
i) + . . .+θ̄Ni

i (0)g(i, aNi

i) and hθ̄i(0)(i, j) = θ̄1
i (0)h(i, a

1
i , j) + . . .+θ̄Ni

i (0)h(i, aNi

i , j),

respectively. Set V0(i), ∀i ∈ S as the initial estimates of the cost-to-go function. Also, set

ζ0 = 0. Fix a state i0 ∈ S to be a given reference state and set Yi(0) = 0, ∀i ∈ S.

• Step 1: For all states XnL+m = i ∈ S, simulate the corresponding next states XnL+m+1

according to transition probabilities p
θ̄i(n)
n (i, ·). For all i ∈ S, perform the following updates:

VnL+m+1(i) = VnL+m(i) + a(νi(n))I{XnL+m = i}(
exp(ζnL+mg

θ̄i(n)(i))

VnL+m(i0)
VnL+m(XnL+m+1)×

(
pθ̄i(n)(i,XnL+m+1)

p
θ̄i(n)
n (i,XnL+m+1)

) − VnL+m(i)) (5)

ζnL+m+1 = ζnL+m + b(n)
(

α− g
θ̄XnL+m+1

(n)(XnL+m+1)
)

(6)

Yi(nL+m+ 1) = Yi(nL+m) + a(νi(n))I{XnL+m = i}
(

hθ̄i(n)(i,XnL+m+1)

(

pθ̄i(n)(i,XnL+m+1)

p
θ̄i(n)
n (i,XnL+m+1)

)

− Yi(nL+m)

)

(7)

If m = L− 1, set nL := (n+ 1)L, m := 0 and go to Step 2;

else, set m := m+ 1 and repeat Step 1.

11

• Step 2: For all i ∈ S,

θi(n+ 1) = Γi

(

θi(n) − c(νi(n))I{XnL = i}
Yi(nL)4i(νi(n))−1

δ

)

. (8)

Set n := n+ 1. If n = P , go to Step 3;

else, for all i ∈ S, set ∆i(n) := Ĥ(n mod Mi + 1) as the new Hadamard matrix generated

perturbation. Set θ̄i(n) = (Γi(θi(n) +δ∆i(n)), i ∈ S as the new perturbed randomized policy.

For all i, j ∈ S, set pθ̄i(n)(i, j), = θ̄1
i (n)p(i, j, a1

i) + . . . + θ̄Ni

i (n)p(i, j, aNi

i). Set gθ̄i(n)(i) =

θ̄1
i (n)g(i, a1

i) + . . .+ θ̄Ni
i (n)g(i, aNi

i) and hθ̄i(n)(i, j) = θ̄1
i (n)h(i, a1

i , j) + . . .+ θ̄Ni
i (n)h(i, aNi

i , j),

respectively. Finally, for all i, j ∈ S, update estimates p
θ̄i(n)
n (i, j) of the transition probabilities

for the new chain according to

pθ̄i(n)
n (i, j) =

exp(ζnLg(i, θ̄i(n)))

VnL(i)VnL(i0)
pθ̄i(n)(i, j)VnL(j).

Normalize p
θ̄i(n)
n (i, j) such that p

θ̄i(n)
n (i, j) ≥ 0, ∀i, j and

∑

j∈S p
θ̄i(n)
n (i, j) = 1, ∀i.

Go to Step 1.

• Step 3 (termination): Terminate algorithm and output θ̄i(P), i ∈ S as the final randomized

policy.

Remark 1: As described in the algorithm, it is observed that updating the slowest timescale

recursion (8) every (given) L ≥ 1 visits to state i, i ∈ S, and keeping the randomized policy fixed in

between, enhances performance. This, in effect, amounts to an additional averaging over and above

that resulting from the use of different step-size schedules, see also, [11], [12] for certain simulation

based parametric optimization algorithms that use a similar ‘additional’ averaging. As observed in

[38], [12], the one-simulation SPSA algorithms that use randomized perturbation sequences do not

show good performance because of the presence of extra bias terms in the gradient estimates of

these. As described in Section 1 (see also the discussion after Eq.(16) below), the use of normalized

Hadamard matrices significantly improves performance since all bias terms get cancelled after

regular deterministic intervals that are, in general, also significantly shorter in duration as compared

to the case when randomized perturbations are used. Finally, even though we present our algorithm

for the case when the number of iterations P is fixed apriori, it can be easily modified to allow

for stopping criteria based on desired accuracy levels, a scenario that we consider in our numerical

experiments in Section 4. The convergence analysis that follows carries through for this case with

minor modifications.

12

3.2 Sketch of Convergence Analysis

The convergence analysis uses the following basic principle of two timescale, or more generally

multiple timescale, stochastic approximation [15]: Each iteration in such a scheme can be analyzed

separately by treating other iteration(s) on slower timescale(s) as quasi-static, i.e., freezing the

parameter(s) updated by the latter; while treating other iteration(s) on faster timescale(s) as quasi-

equilibrated, i.e., averaging the parameter(s) updated by the latter w.r.t. their equilibrium behavior,

arrived at similarly by treating all slower components as constants and all faster components as

equilibrated. For simplicity of presentation, we show here the analysis for the case corresponding

to L = 1. The extension to the general case is straightforward [11], [12]. Let us first consider the

synchronous version of the algorithm. Recursions (5)-(8) can be written as follows: For all i ∈ S,

Vn+1(i) = Vn(i) + a(n)

(

exp(ζng
θ̄i(n)(i))

Vn(i0)
Vn(Xn+1)

(

pθ̄i(n)(i,Xn+1)

p
θ̄i(n)
n (i,Xn+1)

)

− Vn(i)

)

, (9)

ζn+1 = ζn + b(n)
(

α− g
θ̄Xn+1

(n)(Xn+1)
)

, (10)

Yi(n+ 1) = Yi(n) + a(n)

(

hθ̄i(n)(i,Xn+1)

(

pθ̄i(n)(i,Xn+1)

p
θ̄i(n)
n (i,Xn+1)

)

− Yi(n)

)

, (11)

θi(n+ 1) = Γi

(

θi(n) − c(n)
Yi(n)4i(n)−1

δ

)

. (12)

Iteration (9):

It can be shown that iteration (9) for fixed ζn and θ̄i(n) viz., ζn ≡ ζ and θ̄i(n) ≡ θ̄i, respectively,

asymptotically tracks the trajectories of the ordinary differential equation (ODE): For i ∈ S,

.
xt(i) =

exp(ζgθ̄i(i))

xt(i0)

∑

j∈S

pθ̄i(i, j)xt(j) − xt(i). (13)

The ODE (13) has a unique asymptotically stable fixed point in the positive quadrant (which is

invariant under the ODE) which corresponds to the solution to the multiplicative Poisson equation.

To see how this comes by, we use the fact that

E

[

exp(ζgθ̄i(i))

Vn(i0)
Vn(Xn+1)

(

pθ̄i(i,Xn+1)

pθ̄i
n (i,Xn+1)

)

| Xn = i

]

=
exp(ζgθ̄i(i))

Vn(i0)

∑

j∈S

pθ̄i(i, j)Vn(j).

Thus (9) can be rewritten as

Vn+1(i) = Vn(i)

13

+ a(n)





exp(ζgθ̄i(i))

Vn(i0)

∑

j∈S

pθ̄i(i, j)Vn(j)) − Vn(i)





+ a(n)





exp(ζng
θ̄i(n)(i))

Vn(i0)
Vn(Xn+1)

(

pθ̄i(n)(i,Xn+1)

p
θ̄i(n)
n (i,Xn+1)

)

−
exp(ζgθ̄i(i))

Vn(i0)

∑

j∈S

pθ̄i(i, j)Vn(j))



 .

This is seen as a noisy discretization of the ODE (13) with decreasing stepsize a(n) and a ‘martingale

difference’ or ‘noise’ error term. The contribution to the net error due to the former vanishes

asymptotically because a(n) → 0 and so doe the contribution of the latter ‘almost surely’ following a

standard martingale argument. This is a commonly used technique in reinforcement learning based

algorithms [29], [13] with the idea being to replace conditional averages by evaluation at actual or

simulated transitions and, then exploit the incremental nature of stochastic approximation scheme

to do the averaging for you.

Iteration (10):

The iteration (10) is a stochastic gradient scheme that, for fixed θ̄i(n) ≡ θ̄i, can be seen, from

the first part of Theorem 1 and Lemma 1, to asymptotically track the point ζ θ̄
∗ corresponding to

the given policy above (using again martingale type arguments and the latter part of (3) on {b(n)}

now).

Note from (4) that c(n) = o(b(n)) and c(n) = o(a(n)), respectively. This implies that recursions

(9) and (10), respectively, proceed on faster timescales as compared to (12). Moreover, since

b(n) = o(a(n)) as well, (9) proceeds on a faster scale than (10). Using standard analysis of multi-

timescale stochastic approximations [15], one can show that the iterations (10) and (12) appear to

be quasi-static when viewed from the timescale on which (9) is updated. Moreover, when viewed

from either of the timescales on which (10) or (12) are updated, the recursion (9) appears to be

essentially equilibrated. Similarly, when viewed from the timescale on which (10) is performed, the

recursion (9) appears to be equilibrated while, as already stated, (12) appears to be quasi-static.

The above justifies selecting time-invariant quantities ζn ≡ ζ and θ̄i(n) ≡ θ̄i (resp. θ̄i(n) ≡ θ̄i) in

the convergence analysis of recursion (9) (resp. (10)).

Iteration (11):

The iteration (11) proceeds on the fastest timescale {a(n)} as well and is merely used to perform

averaging of the cost function. The updates from this recursion are then used in the gradient

estimate for average cost in the slow timescale recursion (12).

14

Iteration (12):

Iteration (12) does policy update. Note that here one is interested in finding the minimizing

policy parameters (i.e., the probabilities) for the long-run average cost albeit conditioned on the

rare event. Thus one is interested in finding the gradient of the average cost. This is achieved by

our slow timescale iteration as explained below.

For a bounded, continuous vi(·) : RNi−1 → RNi−1, define

Γ̄i(vi(y)) = lim
η↓0

(

Γi(y + ηvi(y)) − Γi(y)

η

)

.

Suppose θ = (θ1
1, . . . , θ

N1−1
1 , . . ., θ1

s , . . . , θ
Ns−1
s)T be a given SRP. Let Ĵ(θ) denote the long-run

average cost under SRP θ. Let ∇j
i Ĵ(θ) denote the derivative of Ĵ(θ) w.r.t. θj

i , j = 1, . . . , Ni − 1,

and let ∇iĴ(θ) correspond to ∇iĴ(θ) = (∇1
i Ĵ(θ), . . ., ∇Ni−1

i Ĵ(θ))T . The policy update can be

shown to track (in the limits as P → ∞ and δ → 0) the trajectories of the ODE: For i ∈ S,

.
θi(t) = Γ̄i(−∇iĴ(θ)). (14)

The proof broadly proceeds as follows. A standard analysis of (11) [9], [11] using the fact that

the chain under each stationary policy is irreducible (and hence positive recurrent) shows that

‖ Yi(n) − Ĵ(θ̄(n)) ‖→ 0 as n→ ∞. (15)

Here θ̄(n) = (θ̄1(n), . . . , θ̄s(n))T . Suppose for all i ∈ S, θi(n) ∈ T 0
i , where T 0

i corresponds to the

interior of the simplex Ti. Then for δ sufficiently small, θi(n) +δ4i(n) ∈ T 0
i as well. Hence θ̄i(n)

= Γi(θi(n) +δ4i(n)) = θi(n) +δ4i(n). Moreover, since c(n) → 0 as n→ ∞, ‖ Ĵ ‖<∞ and δ > 0,

one can ensure by choosing n large enough that

Γi

(

θi(n) − c(n)
Ĵ(θ̄(n))4i(n)−1

δ

)

= θi(n) − c(n)
Ĵ(θ(n) + δ4(n))4i(n)−1

δ
.

Using a Taylor series expansion of Ĵ(θ(n) +δ4(n)) around θ(n), one obtains

Ĵ(θ(n) + δ4(n)) = Ĵ(θ(n)) + δ
s
∑

l=1

Nl−1
∑

j=1

4j
l (n)∇j

l Ĵ(θ(n)) +O(δ2).

For a given k ∈ {1, . . . , Ni − 1},

Ĵ(θ(n) + δ4(n))

δ4k
i (n)

=
Ĵ(θ(n))

δ4k
i (n)

+ ∇k
i Ĵ(θ(n)) +

Ni−1
∑

j=1,j 6=k

4j
i (n)∇j

i Ĵ(θ(n))

4k
i (n)

+
s
∑

l=1,l 6=i

Nl−1
∑

j=1

4j
l (n)∇j

l Ĵ(θ(n))

4k
i (n)

+O(δ). (16)

15

The first term in the RHS above corresponds to the ‘additional’ bias term, described earlier, whose

overall contribution to bias depends on the magnitude of δ and the frequency with which 4k
i (n)

change sign as a function of n, for all k and i. It can be shown (cf. Theorem 2.5 of [12]) that for

any n ≥ 0,
n+Mi
∑

m=n

1

4k
i (m)

= 0, ∀k = 1, . . . , Ni, and
n+Mi
∑

m=n

4j
i (m)

4k
i (m)

= 0, ∀j 6= k, j, k ∈ {1, . . . , Ni},

respectively. Note that because of the use of Hadamard matrices, Mi is typically small, as a result

of which the bias contributed by the above terms is not significant in general.

One can also show in a similar manner as Corollary 2.6 of [12] that

‖
n+M̄
∑

m=n

s
∑

l=1,l 6=i

Nl−1
∑

j=1

c(m)

c(n)

4j
l (m)∇j

l Ĵ(θ(m))

4k
i (m)

‖→ 0 as n→ ∞,

where M̄ = max(M1, . . . ,Ms). (Recall that Mi is the number of rows in the Ĥi, i = 1, . . . , s, matrix

defined earlier.) Thus (12) can be seen to be analogous to the recursion

θi(n+ 1) = Γi(θi(n) − c(n)(∇iĴ(θ(n)) + ξ1(n) +O(δ))), (17)

where ξ1(n) = o(n). In general, one can write Γi(θi(n) +δ4i(n)) = θi(n) +δ4i(n) +δri(n) where

ri(n) correspond to error terms because of the projection operator, such that ‖ ri(n) ‖ ≤ ‖ 4i(n) ‖

with equality only when ri(n) = −4i(n). In the latter case,

‖
n+Mi
∑

m=n

c(m)

c(n)

Ĵ(θ(m))

δ4k
i (m)

‖→ 0 as n→ ∞, ∀δ > 0. (18)

Finally, we consider the case of any other θi(n) lying on the boundary of Ti. Suppose the

correction term ri(n)
4
= (r1i (n), . . ., rNi−1

i (n))T , i ∈ S. Now ∃ j ∈ {1, . . . , Ni − 1} for which if

sign of 4j
i (n) is such that the vector θi(n) +δ4i(n) points outwards from the boundary, then

r
j
i (n) = −4j

i (n). For simplicity, suppose all other 4l
i(n) are such that components θl

i(n) + δ4l
i(n)

lie inside their respective regions. Then again one can see that (17) is valid. Also, for k = j, (18)

continues to hold. Now the function Ĵ(·) itself serves as a Liapunov function for the ODE (14)

which has K
4
= {θ ∈ T1 × T2 × · · · × Ts | Γ̄i(∇iĴ(θ)) = 0 ∀i ∈ S} as its asymptotically stable fixed

points. A standard argument now shows that the iterations (12) converge to K almost surely in the

limits as P → ∞ and δ → 0. The equilibria for the projected gradient scheme here correspond to

Kuhn-Tucker points with the stable ones being local minima. By ‘avoidance of traps’ results [19],

[22], the scheme converges to one of these with probability one. (Strictly speaking, this requires

some additional conditions on the noise component of the iterations that can be ensured by adding

independent noise if necessary. Most often, as here, it is empirically observed that the existing

noise suffices.)

16

For the asynchronous case that we actually work with, the step-size sequences are {a(νi(n))},

{b(νi(n))} and {c(νi(n))}, respectively, and the parameters corresponding to state i are updated

only at instants when the MDP {Xn} under the running policy visits state i. It can be shown

(cf. [16], [17], [18], [20]) that the iterate (5) for fixed ζ and θ̄ as before, asymptotically tracks

trajectories of the (combined) ODE

.
xt = Π(t)



















exp(ζgθ̄1 (1))
xt(i0)

∑

j∈S p
θ̄1(1, j)xt(j) − xt(1)

.

.

.
exp(ζgθ̄s(s))

xt(i0)

∑

j∈S p
θ̄s(s, j)xt(j) − xt(s)



















.

Here Π(t) is an s × s scaling matrix which is a positive scalar in [0, 1] times the identity matrix

under some additional technical conditions on the stepsize sequence (see (i) − (iv), p. 842, [16]).

Hence this ODE is a time-scaled version of the synchronous ODE. One thus obtains the same result

here as before with the only difference being that the convergence to the desired limit points can

now become slower as compared to the synchronous case. We now present our numerical results.

4 Numerical Results

The problem of routing multiple flows in communication networks has been well studied during

the last few decades [6] with several approaches having been proposed for static and dynamic

optimization of routing. In [40], [6], gradient based projection algorithms for optimal routing have

been studied. More recently, [31], [34], [41], reinforcement learning techniques have also been

applied to the problem of routing. We consider here an application of our algorithm to finding

optimal routes for flows in communication networks, conditioned on a rare event. The basic setting

is shown in Fig. 1. Nodes A and B are connected via two links. We assume that the system is

slotted with time slots of equal length. Customers/flows arrive at the beginning of time slots at A,

and have to be sent to B. There are two routes R1 and R2 from A to B. An arrival occurs with

probability p in a given time slot independent of others. At the beginning of a time slot, decision

on whether to route these arrivals onto R1 or R2 is made by a controller (at Node A). Thus, all

new arrivals at the beginning of a time slot are routed either to R1 or R2. However, we also assume

that both R1 and R2 can accommodate at most M customers (or flows) at any given instant. All

flows that cannot be accommodated in a given slot immediately leave the system. Suppose each

flow at any given instant (or a slot boundary) finishes service w.p. q1 on R1 and w.p. q2 on R2,

respectively, independent of other flows. Further, if a flow does not finish service in a time slot,

its service extends to the next slot independently of the number of flows in either route and the

17

number of slots the given flow has been in service for. The above process is repeated again in

subsequent slots. Thus the number of slots that a customer is in service at node j, j = 1, 2 equals

i with probability (1 − qj)
i−1qj , for i ≥ 1. Let X

(1)
n (resp. X

(2)
n) denote the number of flows on

R1 (resp. R2) in time slot n. Let {A(n)} with A(n) ∈ {a1, a2} ∀n ≥ 1, denote the associated

action-valued process, where ai corresponds to the action of routing new flows in a time slot on

the route Ri, i = 1, 2. Then under a given SDP, {Xn}, where Xn = (X
(1)
n , X

(2)
n), n ≥ 0, forms a

discrete time Markov chain with state transition equation given by
(

X
(1)
n+1

X
(2)
n+1

)

=

(

min[X
(1)
n −Q1(n) + I{A(n) = a1}B(n),M]

min[X
(2)
n −Q2(n) + I{A(n) = a2}B(n),M]

)

,

where the departures from routes R1 and R2 during time slot n are denoted as Q1(n) and Q2(n),

respectively, and satisfy 0 ≤ Qj(n) ≤ Nj(n), j = 1, 2. Also, B(n) denotes the number of new arrivals

at Node A, at the beginning of time slot (n+1). Note that since there are only two actions associated

with each state here, the parameter vector θi(n) of the randomized policy is simply θi(n) = θ1
i (n).

The simplex Ti associated with each state here corresponds to the interval [0, 1] ∀i. The projection

map Γi is thus defined by Γi(x) = max(0,min(x, 1)) ∀i. Also, θ̄i(n) = Γi(θ
1
i (n) +δ41

i (n)). The

sequences {41
i (n), n ≥ 0}, i ∈ S are generated using normalized Hadamard matrices. These turn

out to be simply 41
i (n) = (−1)n. The step-sizes are chosen as a(n) = b(n) = c(n) = 1, n = 0, 1,

and for n ≥ 2,

a(n) =
log(n)

n
, b(n) =

1

n
, c(n) =

1

n log(n)
.

The single-stage cost in state i under policy θ̄i(n) is given by hθ̄i(n)(i,Xn+1) = |X
(1)
n+1 − N1|

+|X
(2)
n+1 − N2|, where N1 and N2 are given thresholds and (as before) Xn+1 = (X

(1)
n+1, X

(2)
n+1)

corresponds to the state at the next instant. The cost function thus aims to keep the number

of flows along R1 to be near threshold N1 and those along R2 to be near N2 for some 0 ≤ N1,

N2 ≤ M . Here the parameters N1 and N2 may be set arbitrarily. Note that since all new arrivals

in a time slot are routed to either R1 or R2, N1 and N2 should be judiciously chosen. A value of

N1 or N2 close to zero would lead to under-utilization while a value close to M would result in

leaving less room for accommodating future flows on the corresponding route. The last is required,

for instance, in cases where there are different categories of traffic flows in the network each having

a possibly different pay off (a scenario not considered in this paper). Any other choice for the cost

function may be used as well.

The function g·(·) used for defining the rare event is given as gθ̄Xn (Xn) = I{X
(2)
n > N}, where

N is another (given integer) threshold. Thus g·(·) equals one if X
(2)
n ∈ {N + 1, . . . ,M} and is zero

otherwise. The long-run average lim
n→∞

1

n

n−1
∑

m=0

gθ̄Xm (Xm) in this case corresponds to the stationary

18

probability of the number of flows at the second node exceeding N . For any given SDP, the latter

quantity would depend on the resulting transition probability matrix for the process {Xn} under

that SDP. We consider two different settings for our experiments that we refer to as settings (a)

and (b), respectively. The input parameters for the two settings are given in Table 1 below.

Note that in the algorithm in Section 3.1, the number of iterations P is fixed apriori. However,

for obtaining more accurate estimates, we use a different stopping criterion for the algorithm that

is based on an accuracy parameter ε as explained below and not one based on a fixed value of P .

For a given ε > 0, let kε be the transition number of the Markov chain at which the estimate of

ρ
µ∗

ζ ≡ V
µ∗

ζ (i0) converges to within ε of its previous value 100 times in succession. We let the value

of ε to be 5 × 10−9 for setting (a) and 5 × 10−8 for setting (b), respectively. The above values of

ε (for the two settings) will in fact be denoted as ε̄. More experiments using other values of ε are

subsequently discussed.

In Figs. 2 and 4, we show the optimal policies θ∗(·) for the two settings. The corresponding

value functions are shown in Figs. 3 and 5. We observed from the optimal policies in both settings

that for states (i1, i2), for given i1, the value of θ∗(·) i.e., the probability of selecting action a1, on

the whole seems to increase, starting from a low value, as i2 is increased from 0 to M . Thus, in

general, for low values of i2, for given i1, the preferred action is a2 (i.e., to route customers on the

second link) while for higher values of i2, the preferred action becomes a1. This is along expected

lines given the form of the associated cost function. The value function V ∗(·) (in both settings)

takes low values for low values of (i1, i2) and gradually increases (overall) when either i1 or i2 is

increased. What is more interesting, however, is that there is a step-increase in these values as soon

as the set of rare event states is reached and it stays high over those states. This is not surprising

since the conditional probabilities of the rare event states will be higher as we are conditioning on

the rare event.

In Table 2, values of various performance metrics under the optimal policy are shown. Note that

ζ∗ corresponds to the converged value of the risk parameter obtained from the recursion (6). The

quantities Eθ∗
X [X(1)] and Eθ∗

X [X(2)] denote the mean numbers of flows on the two routes. These,

in general, depend on the parameters p, q1, q2, M and θ∗, and in the present case, can be seen to

be less than the thresholds N1 and N2, in either setting. The mean cost Eθ∗
X [hθ̄i(i,X(1), X(2))], is

higher in Setting (b) as compared to Setting (a) since the values of thresholds N1 and N2 in the

former setting are higher.

Next, we performed some additional experiments along similar lines as [21], [23], to estimate

19

Table 1: Input Parameters for the two settings

Input Parameter Setting (a) Setting (b)

Link Capacity, M 10 20

Ni N1 = 3, N2 =
5

N1 = 6, N2 =
12

N 7 13

α 0.25 0.25

Arrival probability, p 0.65 0.85

Departure probability, qi q1 = 0.7,
q2 = 0.52

q1 = 0.7,
q2 = 0.52

δ 0.01 0.01

L 11 11

n (see Equation (19)) 50 150

ζ0 0 0

V0(i), ∀i ∈ S 1 1

Yi(0), ∀i ∈ S 0 0

Initial policy ∀i ∈ S θ1
i (0) =
θ2
i (0) = 0.5

θ1
i (0) =
θ2
i (0) = 0.5

Reference state, i0 (2, 2) (2, 2)

the rare event probability p̂n (see below) under both settings.

p̂n = Px(
1

n

n−1
∑

m=0

gθ∗
Xm (Xm) ≥ α). (19)

The values of n are described in Table 1 for the two settings. An importance sampling estimator

for this probability is the average of the i.i.d. samples

I{
1

n

n−1
∑

m=0

gθ∗(Xm) ≥ α}
p

θ∗
X0 (X0, X1)p

θ∗
X1 (X1, X2) · · · p

θ∗
Xn−2 (Xn−2, Xn−1)

p
θ∗
X0
∗ (X0, X1)p

θ∗
X1
∗ (X1, X2) · · · p

θ∗
Xn−2

∗ (Xn−2, Xn−1)
.

In practice, one is able to obtain the above estimate only upto a certain specified degree of accuracy

as obtained from the quantity ε (see above). There is however a tradeoff involved in the choice of

ε. The variance of the estimates tends to be high if ε is not chosen to be small enough, which may

affect their accuracy. On the other hand, as the value of ε is decreased beyond a point, the amount

of computational effort required increases rapidly.

We run the algorithm for different values of ε. For each value of ε, we obtain an estimate pε
∗(·, ·)

of pθ∗
∗ (·, ·) that is then used to generate i.i.d. samples for the estimate of the rare event probability

p̂n (see above). The mean and variance of the rare event probability are then determined using the

batch means method. The simulation is terminated when the 95% confidence interval (cf. [30]) of

probability lies within 5% of its estimated mean value. Let Tε denote the total computational effort

20

Table 2: Performance under optimal policy

Performance Metric Setting (a) Setting (b)

ζ∗ 1.652923e+00 7.370684e-01

ζ∗α− ln(ρζ∗) 2.456064e-01 5.742653e-02

Eθ∗
X [X(1)] 1.092038e+00 2.836020e+00

Eθ∗
X [X(2)] 4.183547e+00 8.720516e+00

Eθ∗
X [hθ̄i(i,X(1), X(2))] 5.488044e+00 1.096857e+01

Table 3: Rare Event Probability Experiments

Parameters/Performance Metrics Setting (a) Setting (b)

ε̄ 5.000000e-09 5.000000e-08

kε̄ 11287258742 1247427803

pε̄ 5.785067e-07 1.704158e-05

ε∗ 5.000000e-05 1.000000e-04

kε∗ 9292162 1197983

Tε∗ 2760999897 92719997

(kε∗ + Tε∗) 2770292059 93917980

pε∗ 5.446732e-07 1.574290e-05

involved in terms of the number of simulated transitions of the MDP that are generated during

this process. We show in Figs. 6 and 8, plots of kε, Tε and (kε + Tε) as functions of ε for settings

(a) and (b), respectively. The total computational effort (in terms of (kε + Tε)) is found to be the

least for ε ≡ ε∗ = 5 × 10−5 in setting (a) and for ε ≡ ε∗ = 10−4 in setting (b), respectively. Also,

Figs. 7 and 9 show the plots of the rare event probability p̂n (described in the figures as pε) obtained

for different accuracy levels ε. The values of ε in the above figures are shown on the log scale for

convenience.

In Table 3, we describe the values of the various parameters and metrics obtained for the rare

event probability experiments. The quantities kε∗ , Tε∗ and (kε∗ + Tε∗), respectively, correspond to

the case when ε = ε∗ is chosen for both settings. Also ε̄ = 5 × 10−9 (resp. ε̄ = 5 × 10−8) is the

lowest value of ε for which the simulations were run for setting (a) (resp. setting (b)). This level of

accuracy was obtained in about 1.18× 1010 iterations in setting (a) and about 3.05× 109 iterations

in setting (b). As stated previously, the value of ε̄ is used as the accuracy parameter in the earlier

experiments (cf. Figs. 2 to 5 and Table 2). In Table 3, pε∗ (resp. pε̄) corresponds to the value of p̂n

obtained when ε = ε∗ (resp. ε = ε̄). Note that these values are much lower for setting (a) than for

setting (b) (see also Figs. 7 and 9). As a consequence of the above, the values of kε∗ and Tε∗ are

seen to be much less for setting (b) as compared to the corresponding values of these for setting

(a).

21

5 Conclusions

We developed an adaptive simulation based stochastic approximation algorithm for ergodic control

of Markov chains conditioned on a rare event of zero probability. Our algorithm uses coupled

recursions that are driven by different timescales. We briefly sketched the convergence analysis of

our algorithm and presented numerical experiments on a setting involving routing multiple flows

in communication networks. The results obtained demonstrate the usefulness of the proposed

algorithm in obtaining optimal policies conditioned on a rare event and in estimating the rare

event probability. The numerical setting considered here was, however, a simple setting designed

to demonstrate the usefulness of the proposed algorithm. More complex settings involving, say,

networks with multiple nodes and more routes with large numbers of flows on each should be tried

in order to study the scalability of the proposed algorithm. The SPSA technique, in general, is

known to be highly scalable as has been demonstrated through several applications over the last

decade. In the simulation based optimization framework, SPSA based multi-timescale algorithms

have been found to perform well computationally in the case of high-dimensional parameter settings

studied in [11] and [12] (by more than an order of magnitude over related K-W based algorithms).

Implementations involving such high-dimensional settings (along the lines described above) need

to be studied for the proposed algorithm in the setting of this paper. Recently, in [14], certain

Newton-based multiscale SPSA algorithms that estimate both the gradient and Hessian of the

average cost have been developed in the simulation optimization setting. Similar algorithms for the

setting considered here may also be developed.

One may extend these ideas further by applying these for optimal control conditioned on multi-

ple rare events. For problems with large action spaces, one may consider suitable parameterizations

of the policy space. One may also use feature based methods for problems with moderately large

state spaces. Our adaptive algorithm can be used to derive optimal parameterized policies using

features in place of states. It must be noted here that adaptive importance sampling techniques

require storage of transition probabilities and our algorithm is no different in this regard. Hence

it cannot directly be applied in the case of problems with very large state spaces where storage

of such information itself is computationally infeasible. However, in many cases such as queueing

networks, the transition probabilities are easy to compute and transitions easy to simulate using

simple local dynamic laws. Further, storage of transition probability matrices may not be a major

concern in such scenarios since these are known to be highly sparse. Developing similar algorithms

in general scenarios involving very large state spaces would be an interesting research direction to

pursue.

22

Acknowledgements

The first author was supported by grant number SR/S3/EE/43/2002-SERC-Engg. from the De-

partment of Science and Technology, Government of India. The second author was supported by

grant number III.5(157)/99-ET from the Department of Science and Technology, Government of

India.

References

[1] Ahamed, T.P.I., Borkar, V.S. and Juneja, S. (2006) “Adaptive importance sampling technique

for Markov chains using stochastic approximation”, To appear in Operations Research.

[2] Balaji, S. and Meyn, S.P. (2000) “Multiplicative ergodicity and large deviations for an irre-

ducible Markov chain”, Stochastic Processes and their Appl., 90:123-144.

[3] Baxter, J. and Bartlett, P.L. (2001) “Infinite-horizon policy-gradient estimation”, Journal of

Artificial Intelligence Research, 15:319-350.

[4] Baxter, J., Bartlett, P.L. and Weaver, L. (2001) “Experiments with infinite-horizon, policy-

gradient estimation”, Journal of Artificial Intelligence Research, 15:351-381.

[5] Bertsekas, D.P. (2001) Dynamic Programming and Optimal Control, second edition, Athena

Scientific, Belmont, MA.

[6] Bertsekas, D.P. and Gallager, R. (1991) Data Networks, Prentice Hall, New Jersey.

[7] Bertsekas, D.P. and Tsitsiklis J.N. (1996) Neuro-Dynamic Programming, Athena Scientific,

Belmont, MA.

[8] Bhatnagar, S. and Borkar, V.S. (1997) “Multiscale stochastic approximation for parametric

optimization of hidden Markov models”, Probability in the Engineering and Informational

Sciences, 11:509-522.

[9] Bhatnagar, S. and Borkar, V.S. (1998) “A two time scale stochastic approximation scheme for

simulation based parametric optimization”, Probability in the Engineering and Informational

Sciences, 12:519-531.

[10] Bhatnagar, S. and Borkar, V.S. (2003) “Multiscale chaotic SPSA and smoothed functional

algorithms for simulation optimization”, Simulation, 79(10):568-580.

23

[11] Bhatnagar, S., Fu, M.C., Marcus, S.I. and Bhatnagar, S. (2001) “Two timescale algorithms

for simulation optimization of hidden Markov models”, IIE Transactions, 33(3):245-258.

[12] Bhatnagar, S., Fu, M.C., Marcus, S.I. and Wang, I-J. (2003) “Two-Timescale simultaneous per-

turbation stochastic approximation using deterministic perturbation sequences”, ACM Trans-

actions on Modelling and Computer Simulation, 13(2):180-209.

[13] Bhatnagar, S. and Kumar, S. (2004) “A simultaneous perturbation stochastic approximation

based actor-critic algorithm for Markov decision processes”, IEEE Transactions on Automatic

Control, 49(4):592-598.

[14] Bhatnagar, S. (2005) “Adaptive multivariate three-timescale stochastic approximation algo-

rithms for simulation based optimization”, ACM Transactions on Modeling and Computer

Simulation, 15(1):74-107.

[15] Borkar, V.S. (1997) “Stochastic approximation with two timescales”, System and Control

Letters, 29:291-294.

[16] Borkar, V.S. (1998) “Asynchronous stochastic approximations”, SIAM J. Control and Opti-

mization, 36:840-851. (Erratum in ibid. (2000), 38:662-663.)

[17] Borkar, V.S. (2001) “A sensitivity formula for risk-sensitive cost and the actor-critic algo-

rithm”, Systems and Control Letters, 44:339-346.

[18] Borkar, V.S. (2002) “Q-learning for risk-sensitive control”, Mathematics of Operations Re-

search, 27:294-311.

[19] Borkar, V.S. (2003) “Avoidance of traps in stochastic approximation”, Systems and Control

Letters, 50:1-9 and ibid., 55(2):174-175, Feb. 2006.

[20] Borkar, V.S. and Meyn, S.P. (2002) “Risk-sensitive optimal control for Markov decision pro-

cesses with monotone cost”, Mathematics of Operations Research, 27:192-209.

[21] Borkar, V.S., Juneja, S. and Kherani, A.A. (2004) “Performance analysis conditioned on rare

events: an adaptive simulation scheme”, Communications in Information and Systems, 3:259-

278.

[22] Brandiere, O. (1998) “Some pathological traps for stochastic approximation”, SIAM

J. Contr. and Optim., 36:1293-1314.

24

[23] Bucklew, J. (1990) Large Deviations Techniques in Decision, Simulation and Estimation, John

Wiley, New York.

[24] Cao, X.-R. (1998) “The relations among potentials, perturbation analysis, and Markov decision

processes”, Discrete Event Dynamic Systems, 8:71-87.

[25] Cao, X.-R. and Guo, X. (2004) “A unified approach to Markov decision problems and perfor-

mance sensitivity analysis with discounted and average criteria: multichain cases”, Automatica,

40:1749-1759.

[26] Chong, E.K.P. and Ramadge, P.J. (1994) Stochastic optimization of regenerative systems using

infinitesimal perturbation analysis. IEEE Trans. on Autom. Contr., 39(7):1400-1410.

[27] Hernández-Hernández, D. and Marcus, S.I. (1996) “Risk sensitive control of Markov processes

in countable state space”, Systems and Control Letters, 29:147-155 and Corrigendum, 34:105-

106, 1998.

[28] Ho, Y.-C. and Cao, X.-R. (1991) Perturbation Analysis of Discrete Event Dynamical Systems,

Kluwer, Boston.

[29] Konda, V.R. and Borkar, V.S. (1999) “Actor-critic like learning algorithms for Markov decision

processes”, SIAM Journal on Control and Optimization, 38(1):94-123.

[30] Law, A.M. and Kelton, W.D. (2000) Simulation Modeling and Analysis, 3rd edition, McGraw-

Hill, New York.

[31] Marbach, P., Mihatsch, O. and Tsitsiklis, J.N. (2000) “Call admission control and routing in

integrated services networks using neuro-dynamic programming”, IEEE J. Selected Areas in

Communications, 18(2):197-208.

[32] Marbach, P. and Tsitsiklis, J.N. (2001) “Simulation-based optimization of Markov reward

processes” IEEE Transactions on Automatic Control, 46:191-209.

[33] Kontoyiannis, I. and Meyn, S.P. (2003) “Spectral theory and limit theorems for geometrically

ergodic Markov processes”, Annals of Applied Probability, 13:304-362.

[34] Nowe, A., Steenhaut, K., Fakir, M. and Veerbeck, K. (1998) “Q-learning for adaptive load

based routing”, Proceedings of the IEEE International Conference on Systems, Man and Cy-

bernetics, San Diego, California, USA.

25

[35] M.L.Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John

Wiley, New York, 1994.

[36] Rubinstein, R.Y. (1997) “Optimization of computer simulation models with rare events”, Eu-

ropean Journal of Operations Research, 19(1):89-112.

[37] Spall, J.C. (1992) “Multivariate stochastic approximation using a simultaneous perturbation

gradient approximation”, IEEE Trans. Autom. Contr., 37(3):332-341.

[38] Spall, J.C. (1997) “A one-measurement form of simultaneous perturbation stochastic approx-

imation”, Automatica, 33:109-112.

[39] Sutton, R. and Barto, A. (1998) Reinforcement Learning: An Introduction, MIT Press, Cam-

bridge, MA.

[40] Tsitsiklis, J.N. and Bertsekas, D.P. (1986) “Distributed asynchronous optimal routing in data

networks”, IEEE Transactions on Automatic Control, AC-31:325-332.

[41] Varadarajan, S., Ramakrishnan, N. and Thirunavukkarasu, M. (2003) “Reinforcing reachable

routes”, Computer Networks, 43(3):389-416.

[42] Watkins, C. and Dayan, P. (1992) “Q-learning”, Machine Learning, 8:279-292.

Figure 1: The Model

26

θ*(.)

 0
 2

 4
 6

 8
 10

X(2)
 0

 2
 4

 6
 8

 10

X(1)

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Figure 2: Setting (a): Optimal Policy θ∗(·)

V*(.)

 0
 2

 4
 6

 8
 10

X(2)
 0

 2
 4

 6
 8

 10

X(1)

 0
 2
 4
 6
 8

 10
 12
 14
 16

Figure 3: Setting (a): Value Function V ∗(·)

27

θ*(.)

 0
 5

 10
 15

 20
X(2)

 0

 5

 10

 15

 20

X(1)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Figure 4: Setting (b): Optimal Policy θ∗(·)

V*(.)

 0
 5

 10
 15

 20
X(2)

 0

 5

 10

 15

 20

X(1)

 1
 1.5

 2
 2.5

 3
 3.5

 4

Figure 5: Setting (b): Value Function V ∗(·)

28

 0
 2e+09
 4e+09
 6e+09
 8e+09
 1e+10

 1.2e+10
 1.4e+10
 1.6e+10

 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

It
e

ra
ti
o

n
s

ε

(kε+Tε)
Tε
kε

Figure 6: Setting (a): Plot of kε, Tε and (kε + Tε) w.r.t. ε

 4.9e-07
 5e-07

 5.1e-07
 5.2e-07
 5.3e-07
 5.4e-07
 5.5e-07
 5.6e-07
 5.7e-07
 5.8e-07
 5.9e-07

 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

P
ro

b
a
b
il
it
y
 o

f
R

a
re

 E
v
e

n
t

ε

pε

Figure 7: Setting (a): Variation of pε with ε

29

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

It
e

ra
ti
o

n
s

ε

(kε+Tε)
Tε
kε

Figure 8: Setting (b): Plot of kε, Tε and (kε + Tε) w.r.t. ε

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 1.6e-05

 1.8e-05

 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

P
ro

b
a
b
il
it
y
 o

f
R

a
re

 E
v
e

n
t

ε

pε

Figure 9: Setting (b): Variation of pε with ε

30

