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The fluid mechanics of phase change
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Abstract. The phenomena of evaporation and condensation are subject
to the laws of fluid mechanics. While the usual continuum equations hold
in the bulk of the vapour, the exchange processes near the interfaces have
to be modelled more accurately by the laws of molecular dynamics. When
an inert gas is present, the mass fluxes are diffusion-controlled and tend
to be small; the fluxes are much greater in the kinetic-controlled pure
vapour case. Strange phenomena, namely, jumps in the temperature and
possible inversion in the temperature field, are predicted by the theory
for the pure vapour case. While the jumps have been found experimentally,
the whole phenomenon has yet to be fully undérstood and remains an
interesting field for fluid mechanical investigations.
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1. The phase change problem

Itis aremarkable fact that to this day the phenomena of evaporation and condensation
are poorly understood from a fundamental point of view. This is because of the fact
that, even though continuum fluid mechanics governs fluid transport over most of
the field, the exchange processes near the liquid boundaries are molecular processes
that are still poorly understood. The actual rates of evaporation can then be considered
to be determined by the nature of the coupling between these fields. It is found that
there still exist controversial, and apparently paradoxical, features in the phase change
process that have yet to be resolved. y

First let us look at the phenomenon qualitatively by considering a liquid in a

~ closed beaker (figure 1) in equilibrium with its vapour. In this condition, the liquid

and vapour temperatures have to be equal and the vapour pressure has to equal the
saturation vapour pressure at that temperature. Although the two phases are in
‘equilibrium’, the phase boundary is really, in a sense, in a state of flux. Molecules
are being ejected from the liquid surface into the vapour and vapour molecules are
bombarding the liquid surface, which must under sufficient magnification appear to
be ill-defined; the net flux of vapour will, however, be zero. This we call ‘equilibrium’.
Note that when an inert gas is present, the vapour molecules have to ‘diffuse’ past
the inert gas molecules. Also, by continuity, the flux of inert gas molecules hitting
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Figure 1. The equilibrium situation,

the liquid surface must be equal to the flux ejected by the liquid. Again, the nature
of the boundary is, in reality, very complex. The ‘non-equilibrium’ situation occurs
when T, # T, or p, # p, and a net flux of vapour either leaves the liquid (evaporation)
or flows into it (condensation). The situations where the vapour is pure and where
it is contaminated by an inert gas are quite different.

2. The gas mixture case

In some ways the gas mixture case (figure 2) is simpler to understand. This is because,
generally, even a small quantity of the inert gas is sufficient to permit diffusion to
dominate the phenomenon; and, diffusion being a relatively slow process, the fluxes
are small. The earliest investigation of this situation is due to Maxwell (1890). If ",
is the total mass of vapour crossing the spherical surface of radius r, Maxwell wrote

T, =4, = — 4mr’ D,,(dp;/dr), ‘ (1)

where D, is the diffusion coefficient, and integrated this, assuming p,(r =r,) = p, to
obtain for the total mass flow

FU=FUO=4nr0Dui(pL"puoo)' (2)

vapour+inert gas
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& Figure 2. The gas-mixture case for a droplet.
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This analysis is very crude because (i) it ignores the mean motion of the vapour—gas
mixture, and (ii) the assumption that the vapour pressure at the droplet surface p,(ro)
is equal to saturation vapour pressure p; is seriously in error. This is corrected (i)
by taking into account the mean motion of the gas and vapour to conclude that

T, = Too {1 + (P, + PoooV[2(Prce + P} 3)

Objection (ii) is removed in an ad hoc manner. It is assumed that the continuum
equations hold upto a distance A (of the order of the mean free path A) from the
drop; within this region transport is assumed to take place in a collisionless manner.
With a few additional assumptions

T, = yo{1 = [A/(ro + A)1 + (Dyi/ro,)(2n/R, TL)! 2} @

where «,, is the mass accomodation coefficient. For a more satisfactory treatment,
one has to deal with the Boltzmann equation over the whole field. This was done in
Shankar (1970) using a moment method; the resulting formula reduced to a version
of (4) in the continuum limit and to the correct free molecule limit in that case. See
also Onishi (1986) for a more recent computation of the gas mixture case.

3. The pure vapour case

When there is no inert gas present to slow down the vapour molecules, the
phenomenon is controlled by the kinetic processes close to the liquid—vapour interface.
The boundary conditions in this, the more subtle case, are shown in figure 3 for the
general unsteady, half-space problem. The complete vapour conditions (pye,s Ty €tC)
are known far from the interface; but at the liquid surface only the temperature and
pressure (Tp,p.) of the molecules leaving the liquid are known. That is the full
distribution function (df) is known far from the lzquzd but only half the df is available
at the liquid surface.

The first person to correctly solve this problcrn was Marble (1969) who used a
clever continuum analysis. He assumed that the continuum gas dynamic equations
held in the main; near the liquid surface he patched on a Knudsen layer, where the
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transport was kinetic. In this manner, for small deviations from equilibrium, he
obtained for the mass flux

mv = 0.145pL(27rRu "I-‘L.)ll2 Ap/pO’ (5)

where Ap = p; — p,.,. Note that this holds in the continuum limit; in the free molecule
limit the mass flux is given by the Hertz—Knudsen formula (Hertz 1882; Knudsen 1915)

ity = (1/21) p1 (2nR, T )(Ap/po — AT/2Tp). (6)

A more rational approach to this problem was given in Shankar (1968) and Shankar
& Marble (1971) where the Boltzmann equation was solved approximately for the
whole field with the proper boundary conditions. In the free molecule limit the mass
flux was shown to reduce to the Hertz—Knudsen formula. In the continuum limit
one obtained

i, = pr(2nR, Ty )2 {(5/6m)'/[(5/3) + On/8)(5/67)*>1} (Ap/ps)
~(0-148p,(27R, TL)I/z(AP/Po), (7

which shows that Marble’s (1969) calculation was very good indeed. It should be
emphasised that the fluxes given by (7) represent transport at speeds that are orders
of magnitude larger than those obtaining under diffusion control.

4. The anomalous temperature distribution

It was Pao (1971) who first showed that there was something very strange about the
gas dynamic field in the evaporating or condensing vapour. Consider the two-
dimensional case of two plane liquid surfaces separated by a distance H. Pao (1971)
pointed out that the vapour temperature would suffer large jumps at the interface;
large enough, in fact, for the temperature gradient in the bulk of the fluid to oppose
the applied temperature gradient. It may be mentioned that this curious result was
implicit in Shankar (1968, 1970) and Shankar & Marble (1971) but the earlier
investigators had failed to examine the temperature field. o
In the linearized case, the temperature distribution is given approximately by

T) = T,o + [(T,, — T,o)/lexp(H/8) — 1) (exp(y/5) — 1), (82)
Too=Too=T,1— Ty =B+ VAT, 9=+ 1)(T,, — T, ,)/9 = KAYL(,gb)
o=k, (B+1)=L/R,T,,, (&)

where 0 and 1 refer to the hot and cold liquid planes, say, and L is the latent heat
of vaporization. Note that (8b) implies that the vapour is colder than the liquid at
the hot interface and hotter than the liquid at the cold interface. In fact, if K in (8b)
is large enough, the temperature gradient in the bulk of fluid (see (8a)) will actually
oppose the applied temperature difference.

For a pure monoatomic vapour, the above theory predicts that the jumps can be
as much as twice the applied temperature difference. Internal degrees of freedom
(Aoki & Cercignani 1983) and contamination (Shankar & Deshpande 1990) can
drastically reduce the jumps but not remove them.
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It was only in 1988 that an experiment (Shankar & Deshpande 1990) was carried
out to try to confirm the above controversial theoretical results. Mercury, in spite of
its dangerous and toxic nature, was chosen as the working fluid because of (i) its
monoatomic nature in the vapour state, (i) its low latent heat, and (iii) its good
thermal conductivity in the liquid state. Figure 4 shows one sample of the results
obtained. Large temperature jumps were, indeed, found for the first time near the
vapour-liquid interfaces, but the anomalous temperature distribution could neither
be confirmed nor rejected. It is still not certain how much surface contamination,
vapour contamination or some other more subtle effects, contributed to this negative
result, | :

It is interesting to note that, in the experiments, the temperature profiles often
appeared to depart in character from that predicted by the linearized theories. A

doubt that arose was whether nonlinearity could be playing a larger role than

previously assumed. Since these discrepancies occurred in the bulk of the fluid it was
felt that it might be worthwhile to study the behaviour of the nonlinear, viscous gas
dynamic equations under rather general boundary conditions. Not only were
temperature profiles qualitatively similar to the experimental results obtained
(Shankar & Deshpande 1991) but other new features were seen. For example (figure S),
one can get large temperature undershoots and overshoots, which are quite unexpected.
These results show that the complex roles of nonlinearity and viscosity have so far
been underestimated. : '

6. Conclusion

It should be clear from the above that the ubiquitous phenomenon of liquid-vapour
phase change is principally a fluid mechanical one. What is surprising is that even
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in its simplest manifestation, i.e. in one-dimension with a single species, the resulting
field is complex in structure and elusive in real understanding. This is due at least
in part to our current poor understanding of the exchange processes taking place at

" the interfaces. For a better appreciation, more work will have to be done, both

theoretical and experimental, to determine more clearly the actual nature of the
complex molecular interactions taking place at the interfaces.

I would like to acknowledge my indebtedness to my colleague, Dr M D Deshpande,
with whom I have collaborated on some of the work reported here. I also thank Prof
R Narasimha, who has consistently supported our endeavours.
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