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Abstract. A modal method is used to calculate the two-dimensional sloshing motion of an inviscid
liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system
of nonlinear ordinary differential equations for the time varying coefficients in the expansions of the
interface and the potential. The effects of capillarity are included in the formulation. The simplicity,
generality and power of the method are exhibited not only by recovering the earlier results obtained,
for example, by Penney and Price [1], Tadjbakhsh and Keller [2] and Faltinsenet al [3], but also by
obtaining new and interesting results of the effects of capillarity and shallow depth, which would be
difficult to obtain otherwise. For example, it is found that for the initial interface profile considered
here, parasitic capillary waves, borne by the higher number wave modes, are generated for moderate
capillarity but disappear for larger values of the parameter. The method can be extended to other
simple geometries.

Keywords. Nonlinear sloshing; modal method; capillarity.

PACS Nos 47.35.+i; 47.11.+j; 47.15.Hg

1. Introduction

We are concerned in this paper with the irrotational sloshing motion of an inviscid, incom-
pressible fluid in a rectangular container. The motion is assumed to be two-dimensional.
All lengths are normalized byL, the width of the container, time by

p
L=g, velocities byp

gL, acceleration byg, the potential byL
p

gL and the pressure byρgL. We shall take
into consideration the effects of capillarity. In what follows, the surface tensionσ appears
nondimensionally as the parameterβ = σ=ρgL2. If the surface of the liquid is assumed
to be given byy(x; t) = η(x; t) and the coordinate system is as shown in figure 1 fixed to
the possibly moving container, the governing equations and boundary conditions can be
written down as follows:

u(x;y; t) = ∇φ (1a)

∇2φ(x; t) = 0 in D = f�0:5< x< 0:5;�h< y< η(x; t)g (1b)
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φx = 0 on x=�0:5; φy = 0 on y=�h (1c,d)

ηt +uηx = v ony= η(x; t)g (1e)

φt +
(u2+v2)

2
+η(1+Ay(t))+xAx(t) = β

ηxx

(1+η2
x)

3=2

on y= η(x; t): (1f)

Equations (1a)–(1d) assert respectively that the velocity is derivable from a potential,
that the potential is harmonic, that the normal velocity on the sidewalls and the bottom
wall at y = �h vanish. The boundary condition (1d) on the interfacey = η(x; t) ensures
the integrity of the interface as it changes with time while (1e) enforces the Young–Laplace
surface tension condition with the help of the unsteady Bernoulli equation.Ax(t) andAy(t)
are the arbitrary linear accelerations that the container may undergo in thex andy direc-
tions.β = σ=ρgL2 is the inverse of the Bond number,Bo. These equations and conditions
will have to be supplemented with initial conditions on the interface and the field.

It is necessary, since we are including the effects of capillarity, to consider what happens
at the point where the liquid surface meets the solid side wall. In the static case the notion
that there is a well-defined and unique contact angle for a given liquid, gas and solid triplet
seems well founded. However, the dynamic case seems to be far less certain (see Dussan
[4]). Moreover, there seem to be theoretical difficulties in handling the contact angle condi-
tion and as a consequence most authors either fix the contact angle at some value, or ignore
it or pin the interface edge (see Hocking [5]). We too have not been able to satisfactorily
resolve this issue. Our position is that the following analysis is exactly true for a contact
angle ofπ=2 in the symmetric case and we believe this restriction can be lifted in this case.
However, in the general asymmetric and nonsymmetric case we shall not impose a contact
angle condition. Although we have no proof of this, we believe that unless the container
is very narrow the contact angle is unlikely to seriously affect the primary phenomena that
are of interest to us.

We note four sources of nonlinearity: (a) The advection termuη x in the interface
boundary condition to ensure the integrity of the boundary, (b) the kinetic energy term
in the pressure boundary condition on the interface, (c) the curvature term involvingβ

A

y = 0

A

y = -hA
x = - ½

A
x = 0

A

x = ½

y = (x,t)h

Figure 1. Sloshing of an inviscid liquid in a rectangular container of unit width. The
undisturbed liquid is of depthh, while η(x;t) is the elevation of the liquid surface from
the mean levely= 0.
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in the pressure boundary condition on the interface, (d) the domain in which the problem
has to be solved is changing and has to be determined as a part of the solution.

There is a large body of literature dealing with the problem as posed above and with
the related classical problem of wave motion in an unbounded ideal fluid. For the im-
portant linearized analysis one can refer to Lamb [6]; and to Stokes [7] and Penney and
Price [1] for the analysis of finite amplitude periodic progressive and periodic stationary
waves respectively. Tadjbakhsh and Keller [2] studied the effect of finite depth on periodic
stationary waves while Concus [8] extended their work to include the effects of surface
tension. Schwartz and Whitney [9] corrected and improved Penney and Price [1] to 25th
order. An exact solution for two-dimensional progressive waves of arbitrary amplitude
on a fluid of infinite depth, when the only restoring force is surface tension, was found
by Crapper [10]. A number of analytical and numerical studies exist on liquid sloshing
in containers undergoing horizontal, vertical and pitching motions but mostly in simple
rectangular, cylindrical and spherical geometries. We content ourselves with providing a
few references ([11–16]). Moore and Perko [17], Perko [18], Faltinsenet al [3] and La
Roccaet al [19] are some of the works that are closest in spirit to the present approach.
While all of them employ modal approaches, there are significant differences in the ways
these are derived and used. In [17] and most of [18], the interface is not defined analyti-
cally in terms of a spatial coordinate. Also, we are able to handle large curvatures and large
surface tension which these works are unable to. References [3] and [19] employ varia-
tional principles to reduce the interface boundary conditions to an infinite system of ODE’s
for the unknown coefficients of the generalized Fourier series that they assume forη andφ .
In [3], a truncated nonlinear system for just the first three modes is used to study sloshing
in a linearly accelerated and a pitching container. An assumption in obtaining this system
is that the first mode is the dominant one. Though this method is good enough to describe
certain aspects of large amplitude sloshing, it has difficulties when the first mode is not
the (only) dominant one. This happens, for example, in shallow water or when the initial
data contains higher modes. Also, the work as it stands does not incorporate surface ten-
sion effects. Thus, although it can handle large amplitude waves, it cannot capture some
of the finer features like parasitic capillary waves which are generated on steep gravity
waves.

The present work was motivated by the need to have a simple and efficient computational
procedure capable of dealing with finite amplitude sloshing in simple geometries, at least.
Although the modal approach is well known and has been used, its use in the nonlinear case
seems to have been restricted, by and large, to generating higher-order approximations to
linearized solutions. The position we take here is that (i) the linear structure and the related
modes and (ii) the fact that all the relevant functions must have Fourier series inx for each
instant in time, must have a strong bearing on the finite amplitude, nonlinear motion. This
position leads us to reducing the problem to a system of nonlinear ordinary differential
equations (7a,b) and (8a,b) for unknown functions of time, which we believe is new. We
are, with this comparatively simple system, able to solve, fairly easily problems that have
posed difficulties in the past. This is first illustrated in §3 for initial value problems in
a stationary container where we demonstrate the generation of capillary waves when the
initial amplitude is large enough; in §4 for almost periodic sloshing where we compare our
results with those of Penney and Price [1] and Tadjbakhsh and Keller [2]; and finally in §5
for sloshing in a linearly accelerating container.
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2. A modal approach to nonlinear sloshing

Noting that (i) the linearized solution is a sum of modes, (ii) the potential satisfies a linear
equation and has a simple representation in this geometry and (iii) all the field quantities
must have Fourier series representations inx at each instant of time, we seek a solution
having the following representation

η(x; t) =
∞

∑
j=1

[aj(t) coskjx+cj(t) sin l j x] (2a)

φ(x;y; t) = b0(t)+
∞

∑
j=1

"
bj(t) coskjx

(
coshkj(y+h)

sinhkjh

)

+dj(t)sinl j x

(
coshl j(y+h)

sinhl j h

)#
(2b)

wherekj = 2 jπ ; l j = (2 j �1)π ; j = 1;2;3; : : :. As indicated in figure 1,y = 0 has been
taken to coincide with the mean level of the liquid surface and as a consequence the mean
value ofη has to be zero at all times. This is why the terma0(t) has not been included
in the expansion in (2a). However, in our calculations this mean value is computed as a
measure of the accuracy of the computation. On the other hand, the termb 0(t) in (2b) is
essential for the computation of the pressure, even though it does not affect the velocity
field. Note that with the above representation the field equations and the sidewall and bot-
tom wall conditions are satisfied automatically. We only need to satisfy the two interface
conditions (1d,e) on the unknown interfacey = η(x; t). However, let us first write down
the expressions for the velocity components in the liquid

u(x;y; t) = φx =

∞

∑
j=1

�
�kjbj(t)sinkjx

�
coshkj(y+h)

sinhkjh

�

+l j dj(t)cosl j x

�
coshl j(y+h)

sinhl j h

��
(3a)

v(x;y; t) = φy =

∞

∑
j=1

�
kjbj(t)coskjx

�
sinhkj(y+h)

sinhkjh

�

+l j dj(t)sinl j x

�
sinhl j(y+h)

sinhl j h

��
: (3b)

It may be observed that the terms expressing they-dependence contain a sinhk jh
or sinhl j h in the denominator. While this is not essential, it helps to both reduce the above
expressions to the corresponding ones for the infinitely deep cavity whenh! ∞ and to
significantly reduce the size of certain matrix elements that have to be calculated later.

We are now ready to derive the main equations used in this paper. First, guided by the
procedure used to derive the linearized solution to the problem, write (1e,f) as follows:
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ηt = v(x;η ; t)�u(x;η ; t)ηx (4a)

φt(x;η ; t) =�η +βηxx�
(u(x;η ; t)2+v(x;η ; t)2)

2

+β
ηxxf1� (1+η2

x)
3=2g

(1+η2
x)

3=2
: (4b)

Now, since the above are to hold for allt > 0 on�1=2< x< 1=2, the Fourier coeffi-
cients of each side must equal those of the other side for all positivet. This suggests that
valid equalities will be obtained by multiplying each equation by cosk jx and sinl j x and
integrating from�1=2 to 1=2. Let us first define the following integrals:

µ1
i j (t) = kj

Z 1=2

�1=2
coskixcoskjx

�
sinhkj(η +h)

sinhkjh

�
dx

µ2
i j (t) = l j

Z 1=2

�1=2
coskixsin l j x

�
sinhl j(η +h)

sinhl j h

�
dx

ξ 1
i (t) =�

Z 1=2

�1=2
coskixu(x;η ; t)ηx dx

γ1
i j (t) = l j

Z 1=2

�1=2
sin lixsin l j x

�
sinhl j(η +h)

sinhl j h

�
dx

γ2
i j (t) = kj

Z 1=2

�1=2
sin lixcoskjx

�
sinhkj(η +h)

sinhkjh

�
dx

ξ 2
i (t) =�

Z 1=2

�1=2
sin lixu(x;η ; t)ηx dx

ν1
i j (t) =

Z 1=2

�1=2
coskixcoskjx

�
coshkj(η +h)

sinhkjh

�
dx

ν2
i j (t) =

Z 1=2

�1=2
coskixsin l j x

�
coshl j(η +h)

sinhl j h

�
dx

χ1
i (t) =

Z 1=2

�1=2
coskix

�
� u2+v2

2
+β

ηxxf1� (1+η2
x)

3=2g
(1+η2

x)
3=2

�
dx

δ 1
i j (t) =

Z 1=2

�1=2
sin lixsin l j x

�
coshl j(η +h)

sinhl j h

�
dx

δ 2
i j (t) =

Z 1=2

�1=2
sin lixcoskjx

�
coshkj(η +h)

sinhkjh

�
dx

χ2
i (t) =

Z 1=2

�1=2
sin lix

�
� u2+v2

2
+β

ηxxf1� (1+η2
x)

3=2g
(1+η2

x)
3=2

�
dx:

With the above definitions in hand, if we now carry out the programme suggested earlier,
namely multiply each of (4) by cosk jx and sinl j x and integrate, we obtain the following
infinite system of nonlinear ordinary differential equations for the time dependent coeffi-
cientsaj(t);bj(t);cj(t) anddj(t) in (2).
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1
2

ȧi = ∑
j
[µ1

i j bj +µ2
i j dj ]+ξ 1

i (5a)

1
2

ċi = ∑
j
[γ2

i j bj + γ1
i j dj ]+ξ 2

i (5b)

∑
j

[ν1
i j ḃj +ν2

i j ḋ j ] =�1
2
(1+βk2

i )ai + χ1
i (6a)

∑
j
[δ 2

i j ḃj +δ 1
i j ḋ j ] =�1

2
(1+β l2

i )ci + χ2
i (6b)

for i = 1;2;3; :::. It should be noted that so far no approximations have been made and so
the above equations are exact.

Naturally, in any actual calculation of finite amplitude sloshing, we will have to truncate
the representations (2) to a finite number of terms and give all the coefficients at some time
t = 0, solve the truncated systems (7) and (8) for the finite number of coefficients. We
shall take the same numberN each of significant coefficientsa j(t);bj(t);cj(t) anddj(t);
in situations where there is symmetry about the mid-plane, two sets of coefficients will
vanish and we will only have to compute forN each of the nonvanishing ones. This is in
general not true for antisymmetric data; in this case all four coefficients are required.

The number of termsN that are required to give an accurate representation of the mo-
tion depends both on the initial conditions and the amplitude of the motion. For initial
disturbances that can be represented by a small number of modes and which are of small
amplitudeN can satisfactorily be in the range 1–5; otherwise,N will have to be larger. For
the examples discussed in this paperN has been in the range 5–20, the largeN’s in many
cases being used only to check the results.

The system of ODE’s (7) and (8) can be solved by any of the standard methods normally
used such as the Runge–Kutta methods. Although we have tried these we have found that
the implicit methods such as the Adams–Moulton method are less prone to instability; most
of the results presented here have been obtained using implicit methods.

3. Symmetric sloshing in a stationary container

We begin by considering a simplified situation, one where the container is stationary, where
the fluid is initially quiescent and the interface is initially symmetric about the midplanex=
0. The resulting motion will then be symmetric about this plane and there is considerable
simplification in the analysis of the motion. Now, only the expansion coefficientsfa jg and

fbjg in (2) need to be retained while of the integrals (5) and (6) onlyfµ 1
i jg;fν1

i j g;fξ 1
i g and

fχ1
i g are significant. Now ifN terms are retained there are 2N unknowns to be determined

from the 2N coupled ODE’s (5a) and (6a).
Through out this section we will assume that the initial shape of the interface is given by

η(x;0) = η0(x) = ε cos2πx, i.e., the initial shape corresponds to the first linearized mode.
Then according to the linearized theory, the motion will be a stationary, time periodic
motion with the interface given by

ηl (x; t) = ε cosωl t cos 2πx (7)
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whereωl =
pf2π(1+4βπ 2) tanh2πhg is the linear frequency of this first mode. In figure

2 we compare the results from the linearized theory with those from the present procedure
for small amplitudes of motion when we would expect the former to hold. What is shown
in the figure are the oscillations in time of the point on the interface in the symmetry plane
and we find excellent agreement between the two results. However, a careful look at figure
2b shows that even for as small an amplitude asε = 0:004 there are noticeable differences:
in figure 2b, a discrepancy is evident in every alternate peak leading to a modulation of
the basic wave motion by nonlinearity. Naturally, this is even more evident in figure 3 for
ε = 0:01. In figure 3a the departures from linearity are apparent at both the maxima and
the minima of the oscillations. Although subharmonic modulation of the linear wave form

Figure 2. Comparison of the nonlinear modal solution (solid line) with the linearized
solution (dashed line) for the symmetric initial value problem for the interface. The
figure shows the oscillations in time of the midpoint of the liquid surface when it is
initially made up of the first symmetric, linear mode alone.β = 0:001;h = 1:5: (a)
ε = 0:002; (b) ε = 0:004:

Figure 3. Comparison of the nonlinear modal solution (solid line) with the linearized
solution (dashed line) as in figure 2.β = 0:001;h= 1:5;ε = 0:01: (a) The oscillations
of the midpoint of the free surface, (b) the free surface shape at different times over a
cycle.
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is apparent at both peaks and troughs, the excursions are always upwards, a characteristic
of these nonlinear waves. Note however that the basic frequencies are almost exactly
equal over more than 10 oscillation periods. The shape of the free surface at four times
in a period are shown in figure 3b. Although the qualitative features are similar there
are discernable differences between the linearized and nonlinear waveforms. It may be
observed that the former has genuine nodes while the latter does not. Note also that the
former is time periodic while the nonlinear waveform is not.

A question that naturally arises in the use of the modal method is that of the number
of modes required to generate an accurate solution. As pointed out earlier the nature of
the initial data bears on the answer to this question sinceN has to be greater than the
number of modes required to accurately represent the initial data. Given this constraint,
whereas in principle increasingN will lead to greater and greater accuracy, in practice we
chooseN sufficiently large to capture the phenomena of interest and then check with still
largerN to make sure that we have reasonable accuracy. Whereas 3–5 modes would be
ample for the data of figure 2, the figure actually uses 10. It is generally true, as might
be expected, that with increasing amplitude more modes are required for a given accuracy
over a given time period and that for large times the solution will at least drift in phase from
the exact solution. The latter statement is true for all numerical calculations of the sloshing
phenomenon. Unless otherwise stated all the data reported here have been obtained using
5–20 modes. It had been pointed out earlier thata0(t), the mean value ofη(x; t), should
be zero and so the departure from this is a measure of inaccuracy of the solution. For
example in figure 2 att = 30,a0 is about�6:2�10�7 and�2:5�10�6 respectively, while
at the same time in figure 3 it is about�1:6� 10�5; however if∆t, the integration time
step, is reduced from 10�3, the value used for figures 2 and 3, to 10�4;a0(30) falls to
�1:6�10�6 but with no perceptible effect on figure 3. We should also point out that, like
all computational schemes, this method fails in certain regions of the relevant parameter
space. Stability problems are encountered generally for large values ofε , β andN and
very small values ofh. In the case of free oscillations, the total energy can be monitored as
another check on the accuracy of the results. The nondimensional energy density is given
by

E =
1
2

Z
φ∇φ � dS+

1
2

Z 1=2

�1=2
η2 dx+

1
Bo

Z 1=2

�1=2

p
1+η2

x dx;

the three terms being the kinetic, potential and surface energies respectively. The integra-
tion in the first term is over the solid boundaries and the interface. For the case presented
in figure 3, the relative error in the energy is 2:4�10�5 at t = 30 with the relatively large
time step oft = 0:01:

We would now like to demonstrate a feature that results from capillarity at the liquid free
surface. Figure 4 shows the interface shapes for two large values ofε and a number of times
when surface tension is absent. The times are towards the end of the first period leading to
the first central maximum. Asε increases the wave form is more and more peaky and the
departures from linearity are very large. Typical of these nonlinear sloshing motions, the
excursions are always upwards. In figure 5 are shown the interface wave forms at 3 sets of
times for the same parameters as in figure 4a but withβ = 0:001, i.e., with capillary effects
included. Clearly visible now are capillary waves riding on the main wave form. Note that
figures 4a and 5a are similar as they correspond to peaks in the central maximum; figure
5b shows the situation at a minimum of the central maximum, while figure 5c is at an
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Figure 4. The free surface shapes in the absence of surface tension for comparatively
large initial amplitudes. Initial shape as in figure 2.β = 0;h= 1:5. (a) ε = 0:04; (b)
ε = 0:05.

Figure 5. The generation of capillary waves on the free surface. Initial conditions as in
figure 2.β = 0:001;h= 1:5;ε = 0:04.
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Figure 6. The lowest modes alone are not enough to describe the capillary waves seen
in figure 5. This figure shows the results of using the first mode alone (long dash), using
the first two modes (dash–dot), using the first three modes (short dash) and using twenty
modes (solid).

actual minimum. Although capillary waves are apparent in all the frames of figure 5 there
are qualitative differences: while plateaus and oscillations are seen in all of them, the peak
appears to be smoother in figure 5a, while a very large plateau is seen in figure 5c. Figure 6
shows that these capillary waves cannot be captured by a method which attempts to use the
first few modes alone. Whereas the overall wave form can be approximately represented
by these, the capillary fine structure does require the higher modes. This is even more
clearly shown in figure 7 where we have plotted the contributions of modes 10–20 alone to
the wave form at various times. It is these modes that primarily contribute to the high wave
number capillary waves seen in figure 5; the effective wave number is around 2π=17.

Generation of such parasitic capillaries on steep gravity waves is an important and inter-
esting topic that has been studied for the last forty years. Most of the studies have been for
spatially and/or temporally periodic and steady flows. Solutions have been found, where
under different conditions, ripples have been generated on the forward face of a propagat-
ing steep gravity wave (Longuet-Higgins [20,21], Jianget al [22]), in the wave trough as in
the steady solution of Schwartz and Vanden-Broeck [23] and symmetric ripple formation
near the crest (Schultzet al [24]). The modal approach as presented in this paper can cap-
ture many of these details. The present calculation, with an initial symmetric profile leads
to symmetric ripple formation and flattening of the crest, features that have been observed
in experiments on steep Faraday waves (Schultzet al [24]). An illuminating discussion on
the topic can be found in [25].

The effects of increasing capillarity are not uniform and are not easily predictable. This
is shown in figure 8, where forε = 0:03, the effects of increasing the surface tension
or β by three orders of magnitude, is shown. Whenβ = 0:01, the time trace (figure
8a) shows a large subharmonic modulation caused by the large amplitudes assumed by
the higher modes closest to the primary. This is borne out by figure 9 where instead
of small amplitude capillary waves riding on the primary wave, the primary wave form
itself is modified. Whenβ is increased further as in figures 8b and 8c to 0.1 and 1.0,
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Figure 7. This figure shows that the capillary waves of figure 5 are contained mostly
in modes 10 to 20. These five frames show the contribution of modes 10–20 to the free
surface at five different times. (a) t = 9:9, (b) t = 9:8, (c) t = 9:7, (d) t = 9:6 and (e)
t = 9:5:
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Figure 8. The effect of increasing surface tension on the free surface oscillations con-
sidered in figure 2.h= 1:5;ε = 0:03: (a) β = 0:01; (b) β = 0:1; (c) β = 1:

Figure 9. The large contribution of the lower modes to the free surface displacement
for moderate values of the surface tension.β = 0:01;h= 1:5;ε = 0:03:
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the picture actually simplifies. Recall that the linearized frequenciesω ln are given by
ωln =

pf2nπ(1+β (2nπ)2) tanh2nπhg. Thus for the cases considered here the fundamen-
tal periods are approximately 2.96, 1.26 and 0.4 respectively and the rapid increase in the
frequency of the oscillations is clearly seen in the figure. Now however two effects are
apparent. Although with increasingβ one might expect the nonlinear curvature term to
play a more prominent role, the transfer of energy to the higher modes actually decreases
and the nonlinear motion greatly resembles the linear motion but with a phase shift and
slight modulation. The other effect is that the excursions of the peak amplitudes seen in
figures 3–6 are absent. This is understandable as the interface acts increasingly as a tight
membrane and restricts the nonlinear excursions from taking place. A surprising feature is
that the small excursions that do take place are at the minima rather than at the maxima,
although these are very small.

In figure 9 we display the interface shape for a number of times in a cycle for the in-
teresting case considered in figure 8a. In this case sufficient energy has been pumped in
from the primary mode to the next higher modes that there are times when the first three
modes have comparable amplitudes. The wavelengths of the first three modes are 1;1=2
and 1=3 respectively and these contributions can be seen in the figure. It may be noted that
the nonuniform motion of the central point on the interface only occurs on the downward
cycle in this case. Although we do not show it here, whenε is increased, these nonuniform
motions also occur on the upward part of the cycle.

4. Almost periodic stationary waves

A question that has intrigued many workers and led to a large body of classical results
is whether nonlinear, finite amplitude, time periodic gravity waves exist. Although in lin-
earized theory every individual mode is time periodic, it not at all obvious that such nonlin-
ear waves exist. For the comparatively simpler case of spatially periodic travelling waves,
where in a frame moving with the waves the motion can be considered to be stationary,
the basic results were obtained by Stokes [7]; the mathematical proof of existence of such
waves was given by Levi-Civita [26]. On the other hand, far less has been done for sta-
tionary gravity waves and as far as we know there is still no mathematical existence proof
available for this case. In the stationary case for an infinitely deep ocean the earliest, most
direct and among the most complete results are those of Penney and Price [1]. They wrote
down expressions forη andφ that are very similar to the ones that we have used. They
then made use of a method of successive approximation, carrying out the calculations up
to 5th order, thereby being in a position to make an estimate of the wave of greatest height.
Their work did not account for capillary effects.

What we wish to do in this section is to compare our results with the classical results
of Penney and Price [1] and also with those of Tadjbakhsh and Keller [2] who also deal
with stationary, periodic waves. Although the method that has been described in §2 is
incapable of systematically generating periodic solutions on its own, it is fully capable of
checking a purported periodic solution if the initial data are available. What will be done
here is to take the formulae for the initial values forη andφ from the above mentioned
papers and use them to generate initial data for our computational procedure; it will then
be possible to compare our results with those of the earlier workers. For the convenience
of the reader these formulae have been written down in the appendix to this paper. In figure
10 are compared the oscillations in time of the central point on the liquid surface as given
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by the two computations. In figure 10a, forε p = 0:1, the results are indistiguishable for
0< t < 30; moreover the motion appears to be periodic to this level of accuracy. However,
in figure 10b, forεp = 0:4, small discrepancies can be made out fort > 10. In both cases we
see the typically nonlinear feature of only positive excursions of the maxima and minima
about the linear values. The larger amplitude case is considered again in figure 11 where
the actual interface shapes at a number of times are compared; the agreement is very good.
What these figures show is that the Penney and Price [1] result is, as might be expected,
an excellent represention of a nearly periodic stationary wave. It is by construction exactly
periodic to order 5 in their expansion. However, it cannot be exactly periodic to all orders
and so we should expect departures for large amplitudes and large times and this is exactly
what is found.

Figure 10. Comparison of the results of the present modal calculation (solid line) with
those of Penney and Price [1] (dashed line).β = 0;h= ∞: (a) εp = 0:1; (b) εp = 0:4:

Figure 11. Comparison of the results of the present modal calculation (solid line) with
those of Penney and Price [1] (dashed line).β = 0;h= ∞;εp = 0:4:
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Figure 12. Comparison of the results of the present modal calculation (solid line) with
those of Tadjbakhsh and Keller [2] (dashed line).β = 0;h= 0:03978;εp = 0:01:

Tadjbakhsh and Keller [2] consider the same problem but in attempting to solve it they
use a direct perturbation expansion in the initial amplitude of the first mode; they carry
through their calculations up to the 3rd order in the expansion parameter. They also show
that to that order their results agree with those of Penney and Price [1] when the fluid is of
infinite depth. The intriguing aspect of Tadjbaksh and Keller [2] is that they present results
for very shallow depths, whenh is less than 4% of the container width! This constitutes
a stiff test for any method of computation. First, for a moderate amplitudeε p of 0.01
we compare our results with theirs in figure 12. Comparing figure 12a with figure 10, we
note that apart from the positive excursions of the extrema, we here see a clear narrowing
of the peaks compared to the valleys. The approximation to periodicity is excellent as
is the comparison between the two calculations. However, the situation is very different
whenεp is increased to the much larger value of 0.05, the value used in figures 1 and 2
of Tadjbakhsh and Keller [2]. Figure 13 shows that the 3rd order result of Tadjbakhsh and
Keller is quite inadequate to handle such a large disturbance amplitude. Not only is the
departure from periodicity considerable but there are large discrepancies, even qualitative,
between the perturbation solution and the modal calculation using the same initial data.
We must conclude that this set of parameters is outside the range where the perturbation
solution is valid.

5. Sloshing in a linearly accelerated container

In this section, we study sloshing motions in a container undergoing sinusoidal accelera-
tions in thex-direction. Unlike in the symmetric sloshing case of §3, here we need the full
representation (2a,b) forη(x; t) andφ(x;y; t). This is because (a) the acceleration term is
anti-symmetric and (b) the anti-symmetric modes generate the symmetric ones.

We assume zero initial conditions, i.e.,η(x;0) = 0 andφ(x;y;0) = 0. The acceleration
is assumed to be given byAx(t) =�εω2

f sinω f t whereε is the displacement amplitude of
the container.
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Figure 13. Comparison of the results of the present modal calculation (solid line) with
those of Tadjbakhsh and Keller [2] (dashed line).β = 0;h= 0:03978;εp = 0:05: It is
clear that the perturbation calculation is invalid for such a large value ofεp:

Figure 14. Sloshing in a linearly accelerating container.ε = 0:01;ω f = 1:5;β = 0:001:
(a) Oscillations in time of the point on the interface at the left wall. (b) The free surface
shapes, at two arbitrary times, showing asymmetry.

Figure 14a shows the time trace of the point on the interface at the left wall when
ε = 0:01, ω f = 1:5 andβ = 0:001. A modulation of the envelope is clearly visible with
modulation frequency approximately equal to the difference between the first odd natural
linear frequency, 1.781 and the driving frequency,ω f . Figure 14b shows the free surface at
two different instants of time and it is seen that the initially flat interface evolves to neither
a symmetric nor an anti-symmetric shape but to one which is a mixture of both types of
modes.

Finally, we present some comparisons with the results of Faltinsenet al [3] who have
studied sloshing in a linearly accelerating container both experimentally and through nu-
merical computations using a three mode nonlinear system. Figure 15 shows the time trace

646 Pramana – J. Phys.,Vol. 59, No. 4, October 2002



A modal method for finite amplitude, nonlinear sloshing

atx=�0:47. Both axes have been suitably rescaled for direct comparison. This compares
very favorably with figure 6 of Faltinsenet al [3]. The present computation is performed
with only two modes.

We now discuss a case of shallow water, where due to secondary parametric resonance,
the first mode is not dominating. Figure 16 shows the time trace at the left wall for one such
case. The parameters areε = 0:01;ω f = 1:19935 andh = 0:1734. The solid line is the

Figure 15. Comparison with Faltinsenet al [3]. Oscillations in time of the pointx =
�0:47 on the interface. Excellent agreement with figure 6 of Faltinsenet al [3] is
observed.

Figure 16. Sloshing in a linearly accelerating container–shallow water case.ε =

0:01;ω f = 1:19935;h = 0:1734: Oscillations in time of the point on the interface at
the left wall using three (dashed) and four (solid) modes.
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result of using four modes in the computation, the dashed line three. The two are in very
good agreement over most of the first cycle though later on, there are clear differences. The
crest-to-trough amplitude is roughly 15 times the displacement amplitude of the container.

6. Conclusion

We have suggested in this paper a method for calculating the sloshing motion of an ideal
liquid in a rectangular container. Although the use of modes for solving the linearized
problem is classical and even their occasional use for tackling the nonlinear case is known,
we believe that the present implementation is new. Its main advantage is its simplicity
and generality. We have shown this by solving a number of difficult problems that were
considered by earlier authors and by displaying a wide range in applications of the method
over the range of parameters. Moveover, some surprising new results, especially on the
effects of capillarity, have been displayed using this powerful tool. This method can handle
situations which require the use of a large number of modes. We conclude by pointing out
that the method can be extended to other simple geometries where modes arise simply and
naturally.

Appendix

We present here the formulae of Penney and Price [1] and Tadjbaksh and Keller [2], that
were used in §4 to generate initial data for determining the periodic wave. Since the nor-
malizations in [1,2] are different from ours, we first give the relations between their vari-

ables (hatted) and ours. The relations are(x̂; ŷ; ĥ) = 2π(x;y;h); φ̂ =
(2π)3=2

ε φ ; η̂ = 2π
ε η and

t̂ = ωt:
There is an additional negative sign on the RHS of theφ equation in the case of Penney

and Price [1], with the other relations remaining unchanged. We now give the formulae for
η andφ from [1], written in our nondimensional variables. These are

η(x; t) =
1

2π

5

∑
n=1

an(t)cos2nπx

where

a1 =

�
ε +

3
32

ε3� 137
3072

ε5
�

sinωt +

�
1
16

ε3� 11
5376

ε5
�

sin3ωt

+
163

21504
ε5 sin5ωt;

a2 =
1
4

ε2+
1
16

ε4�
�

1
4

ε2� 25
192

ε4
�

cos2ωt� 67
1344

ε4cos4ωt;

a3 =

�
9
32

ε3� 1
256

ε5
�

sinωt�
�

3
32

ε3� 2195
14336

ε5
�

sin3ωt

� 16365
473088

ε5sin5ωt;
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a4 =

�
1
8
� 1

6
cos2ωt +

1
24

cos4ωt

�
ε4;

a5 =

�
145
768

sinωt� 515
3072

sin3ωt +
85

3072
sin5ωt

�
ε5

and

ω =
p

2π
�

1� 1
4

ε2� 13
128

ε4
�1=2

:

Thus, the initial condition forη is given by

η(x;0) =
1

14π
ε4cos4πx:

The initial condition forφ is given by

φ(x;y;0) =
1

(2π)3=2

5

∑
n=1

βncos2nπxe2nπy

where

β1 = ε +
5
32

ε3� 252
7168

ε5;

β2 = 0; β3 =
48

2112
ε5;

β4 = 0

and

β5 =
72

2048
ε5:

In the case of Tadjbaksh and Keller [2], the formulae are

η(x; t) =
ε

2π
sinωt cos2πx+

ε2

16π
�
ω2

0 +ω�2
0

+(ω�2
0 �3ω�6

0 )cos2ωt
�

cos4πx

+
ε3

4π
(b11sinωt cos2πx+b13sinωt cos6πx

+b31sin3ωt cos2πx+b33sin3ωt cos6πx)

where

ω =
p

2π
�

ω0+
ε2

2
ω2

�
;

ω2
0 = tanh2πh;

ω2 =
1
32

(9ω�7
0 �12ω�3

0 �3ω0�2ω5
0);
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b11 =
1
32

(3ω�8
0 +6ω0�4�5+2ω4

0);

b13 =
3

128
(9ω�8

0 +27ω�4
0 �15+ω4

0 +2ω8
0);

b31 =
1

128
(3ω�8

0 +18ω�4
0 �5)

and

b33 =
3

128
(�9ω�12

0 +3ω�8
0 �3ω�4

0 +1):

Thus, the initial condition forη becomes

η(x;0) =
ε2

16π
(ω2

0 +2ω�2
0 �3ω�6

0 )cos4πx:

The initial condition forφ is given by

φ(x;y;0) =
ε

(2π)3=2

�
ω0cos2πx

cosh2π(y+h)
sinh2πh

+
ε2

2
(α cos6πxcoshπ(y+h)+β cos2πxcosh2π(y+h))

�

where

α =
1

128cosh6πh
(1+3ω4

0)(�9ω�13
0 +25ω�9

0 �13ω�5
0 �5ω�1

0 +2ω3
0)

and

β =
1

128cosh2πh
(9ω�9

0 +62ω�5
0 �31ω�1

0 ):
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