
DECEMBER 1986 LIDS-P-1595
(Revised Version)

ERGODIC CONTROL OF MULTIDIMENSIONAL DIFFUSIONS I.
THE EXISTENCE RESULTS

by

Vivek S. Borkar
Mrinal K. Ghosh

Tata Inst. of Fundamental Research
Bangalore Centre
P.O. Box 1234,

Bangalore 560012, INDIA

ABSTACT

The existence of optimal stable Markov relaxed controls for the ergodic
control of multidimensional diffusions is established by direct
probabilistic methods based on a characterization of a.s. limit sets of
empirical measures. The optimality of the above is established in the
strong (i.e., almost sure) sense among all admissible controls under very
general conditions.

KEY WORDS

Ergodic control, Markov controls, optimal controls, empirical measures,
invariant probability measures

Research of the first author supported in part by ARO Contract No. DAAG29-
84-K-0005 and AFOSR 85-0227.

Current address: Laboratory for Information and Decision Systems, Bldg.
35, MIT, Cambridge, MA 02139.



2

I. INTRODUCTION

The 'ergodic' or 'long run average cost' control problem for

multidimensional diffusions is one of the few classical problems of

stochastic control that still eludes a completely satisfactory treatment.

The problem can be formulated as follows: Let U be a compact metric space

called the control set. Let X(') be an Rn-valued controlled diffusion

process on some probability space satisfying the stochastic differential

equation

dX(t) = m(X(t), u(t))dt + a(X(t))dW(t), X(O) = XO, (1.1)

for t>O, where

(i) m(,') = [ml(','),...,mn(',')]T:RnxU ->Rn is continuous and

satisfies for all x,y a Rn, ueU,

IIm(x,u) - m(y,u) S< K IIx-yI

iIm(x,u) l < K

for some constant K>O.

(ii) v(') = [[.ij(')]]:Rn -3Rn x n satisfies for x,yeRn,

I! (x)-a(y) I I< K x-y |, I (x)11 < K

I ITxl1 2 Ž> 1IIx1 2 (uniform ellipticity)

for some constants X>O, K>O,

(iii) X0 is a prescribed random variable,

(iv) W(') = [Wl(h),... ,Wn( )]T is a standard n-dimensional Wiener

process independent of XO , and,

(v) u(') is a U-valued process with measurable sample paths

satisfying the following 'nonanticipativity' condition: For
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and t>)sy0, W(t)-W(s) is independent of u(y).

A process u(') as above will be called an admissible control. Of

special interest is the case when u(') = v(X(')) for some measurable v:Rn ->

U. In this case, (1.1) will have a strong solution [29] implying in

particular that u(') is admissible. X(') will then be a homogeneous Markov

process. Hence we call such a u(') or, by abuse of terminology, the

function v itself, a Markov control. A Markov control will be said to be

stable if the corresponding process is positive recurrent and thus has a

unique invariant measure. (The uniqueness is ensured by our uniform

ellipticity condition. See, e.g. [6], [18] or [28], Ch. 30-32). If u(') =

v(X('), ') for some measurable v:RnxR+ --U, the corresponding process will

also be a Markov process, albeit not a homogeneous one. Call such a u(') or

again, by abuse of terminology, the map v itself, an inhomogeneous Markov

control. The admissibility of these once again follows from the existence

of strong solutions for the corresponding s.d.e. as in [29].

Let c:RnxU -4U be a continuous function called the cost function. We

assume that

c(-,') > -K (1.2)

for some constant K. In the ergodic control problem, one typically seeks to

minimize

lim sup - I E[c(X(s),u(s))]ds (1.3)
t -_> t0
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or a.s. minimize

lim sup t I c(X(s),u(s))ds (1.4)
t -yX O

over all admissible controls. An admissible control is said to be optimal

in the mean if it minimizes (1.3) and a.s. optimal if it a.s. minimizes

(1.4). The primary aims of the ergodic control problem are:

(i) to show the existence of a stable Markov control which is

optimal in an appropriate sense (cf. above definitions of

optimality), and,

(ii) to characterize the same via the dynamic programming equation

(the 'Hamilton-Jacobi-Bellman' equation).

The first attempt in this direction is perhaps [24], Ch. VI, where a

one dimensional compact state space was considered. Subsequent works

considered the multidimensional case as well. An extensive survey of these

appears in [25]. Here, we shall briefly recall the focus of some recent

works. The traditional appraoch to this problem, inherited from earlier

developments in discrete time and discrete state space situations, is to

start with the Hamilton-Jacobi-Bellman equation and arrive at an existence

result for optimal stable Markov control using this equation, the equation

itself being approached by a 'vanishing discount' limit argument from the

corresponding H.J.B. equation for the infinite horizon discounted cost

control problem. The most recent development in this direction is [27]

where the H.J.B. equation is studied under a condition on the gradient of

the cost. Another recent work [12] also focuses on the H.J.B. equation, but



treats it as a limiting case of finite horizon problems instead of

discounted cost problems on infinite time horizon. The only direct proof of

existence of an optimal stable Markov control by probabilistic compactness

arguments seems to be [21], which also considers the corresponding maximum

principle.

These works share one or more of the following limitations:

(a) Optimality in the mean and not a.s. optimality is considered.

(b) Optimality is established only within the class of Markov

controls and not with respect to all admissible controls.

(c) The system model is often more restrictive than the above,

e.g. it is sometimes assumed that a = the identity matrix and

m(x,u) = u.

(d) Either a blanket stability assumption is imposed or a

condition on the cost function which penalizes instability is

assumed.

It is clear that some condition on cost or stability must be necessary

to give the desired existence of an optimal stable Markov control. For

example, consider the case

c(x,u) = exp(-llxll 2 ).

Then the cost of any stable Markov control is a.s. positive while that of an

unstable Markov control is a.s. zero, making the latter optimal.

In this paper, we extend the approach of [7], [8], [11], to

multidimensional diffusions. In the one dimensional case, this was

partially done in 51], [9]. These works, however, use many specificities of

the one dimensional case in a crucial manner. Here we address only the
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first of the two issues mentioned above viz. the existence of stable optimal

Markov controls, thus subsuming the results of [9]. The second issue viz.

the dynamic programming equations will be treated in a subsequent

publication [15]. The advantages of our approach are the following:

(1) a.s. optimality (as opposed to optimality in the mean) of a

stable Markov control is established in the class of all

admissible controls.

(2) The approach has a more probabilistic flavour than the

previous ones and brings out certain features of the problem

(e.g., asymptotics for the empirical measures) not apparent

in the latter.

The main disadvantge of our approach is that we have to work with the

larger class of relaxed controls. This means that we assume U to be of the

form P(V) = the space of probability measures on some compact metrix space V

with the topology of weak convergence and c,m to be of the form

c(xu) = J (x,y)u(dy), mi(xu)= | mi(x,y)u(dy), l<i<n

for some f:RnxV -)R and m:RnxV -)Rn, m(-,') = [E(M,'), ..., Fn(',')l, which

satisfy the same hypotheses as c, m resp., but with V replacing U. Note

that any V-valued process v(') can be identified with a U-valued process

u(') defined by u(t) = the Dirac measure at v(t) for t>O. Thus relaxed

controls subsume controls in the ordinary sense. In fact, if c has no

explicit control dependence and m(x,U) is convex for each x, each relaxed

control can be identified with a control in the ordinary sense by a
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straightforward application of the selection theorem in Lemma 1.1 [3], as

was pointed out in [9]. In [5], it was shown in the one dimensional case

that the dynamic programming equations allow one to do away with the relaxed

control framework. Analogous development in the multidimensional case will

be reported in [15].

The use of relaxed controls is tantamount to compactifying the space of

control trajectories in a certain precise sense. A nice exposition of this

can be found in [2], Section 1.9, pp. 31-36. The concept of relaxed

controls was first introduced in deterministic control theory in [31]. Its

use in stochastic control dates back to [141].

For a stable markov control v, we shall denote by Iv the corresponding

unique invariant probability measure for X('). We assume throughout this

paper that at least one stable Markov control v exists such that

fc(x v(X)) v(dx) < A.

Thus

a = inf J c(x,v(x))lv(dx) (1.5)
v stable Markov

is well-defined. We shall prove our existence result under two sets of

assumptions. In the first one, we assume that c is near-monotone in the

sense that it satisfies
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lim inf inf c(x,u) > a (1.5)

The terminology is suggested by the fact that (1.5) is always satisfied when

c(x,u) = k(I[xII) for a monotone increasing k:R + --R. Such costs discourage

unstable behaviour for obvious reasons and arise often in practice.

The second case we shall consider is a Liapunov-type stability

condition the details of which are left to Section III. For the time being,

we only mention that in particular it implies the stability of all Markov

controls.

The plan of the paper is as follows: Section II establishes a

characterization of a.s. limit sets for empirical measures of the joint

state and control process along the lines of [9]. This leads to the

existence result in the near-monotone case. Section III gives a full

statement of the Liqpunov condition mentioned above and uses it to prove

certain moment bounds for a class of stopping times to be defined later,

which in turn implies that all Markov controls are stable and the set of

their invariant probability measures is compacts.in P(Rn). (P(S) will always

denote the space of probability measures on a Polis space S with the

topology of weak convergence.) Section IV proves the existence of an

optimal stable Markov controls under the conditions of Section III.
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II. EXISTENCE IN THE NEAR-MONOTONE CASE

The key result of this section is Lemma 2.2, which characterizes the

a.s. limit sets of the process of empirical measures we are about to define.

This immediately leads to the desired existence result for a near-monotone

cost (Theorem 2.1).

Let Rn = RnU f} be the one point compactification of Rn and let H =

(AxBIA,B Borel subsets of Rn, V resp.) For t>O, define the empirical

measure Pt on H by

Vt(AxB) = t I[X(s)eAJu(s,B)ds

for X('), u(') as in (1.1), with

u(s,B) = fdu(s), B V.

For each fixed sample point and fixed t, Pt extends uniquely to a St 8

P(RnxV). This defines the process of empirical measures Vt, t>O, taking

values in P(RnxV). Since the latter is a compact space (because RnxV is

compact), [(t] converges to a sample point dependent compact subset of

P(RnxV) as t --.

Each a e P(RnxV) can be decomposed as

q(A) = 6(n)n'(A (RnxV)) + (1-86())nO(A ([=]xV)) (2.1)

for A Borel in RnxV, where 86()e[O,11, a' e P(RnxV) and " sa P(-]JxV). This
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decomposition can be rendered unique by imposing a fixed choice of a' e

P(Rnxv) (resp. ' a8 P({=}xV)) when &(a) = 0 (resp. 1). Disintegrate a' as

follows:

JIn f(x,y)I'f(dx,dy) = J f(x,y)v (x,dy)n (dx) (2.2)

for all bounded continuous f:RnxV ->R, where * is the image of a' under the

projection RnxV - Rn and v (x,') e U for xeRn is the regular conditional

law. Then the map x -4 v (x,'):R n -3 U can be identified with a Markov

control which we also denote by vn (i.e., v (x) a U is defined by vY(x) =

vn(x,'), the r.h.s. defined as above.) Note that this vI is defined only

n -a.s. We pick any one representative of this a.s. - equivalence class.

Throughout this paper, this choice of a representative is immaterial

wherever the above decomposition is used.

Thus we have associated with seP(RnxV), the objects 6(q) s [0,1],

1' 8 P(RnxV), o' a P(_}1xV), R* 8 P(Rn), v,:R n -4U a Markov control. If in

addition v=vq is stable, we also have its unique invariant probability

measure nv . This notation plays an important role in what follows.

Let CO = the Banach space of twice continuously differentiable maps

Rn -4R which, along with their first and second partial derivatives vanish

at infinity, with the norm

n n

If = suplf(x)I + sup ' (x)I + sup I (x) -
Sa x . iifx ax

x i=1 x i,j=i X i J



For any fsC2, let

n n 2

(Lf)(x,u) = af (x)ml(xu) + L- (x) c k (X) x) da (x)ax. 1 2ax
i=1 i,j,k=1

and for any Markov control v,

(Lvf) (x) = (Lf)(x,y)v(x,dy)

where the meaning of the right hand side is obvious.

Let G be a countable dense subset of C2 . Then G is also countable

dense in CO = fs8C(Rn)jlim f(x)=O} with supremum norm. In particular,

this implies that it is a convergence determining class and hence a

separating class for P(Rn) (i.e., ffdpn -3 ffdes for fsG, {fn,

n=1,2,...,}) C P(Rn), implies gn 4- A, in P(Rn) and ffdt = ffdy for fsG,

g,ysP(Rn) implies g=y.)-

Lemma 2.1. If VeP(Rn) satisfies

fLvfdv = 0 for fsG (2.3)

for some Markov control v, then p=nv . (Recall that qv is the unique

invariant probability measure under v, whose stability is thus a part of the

conclusion.)
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Proof. This follows in a straightforward manner from Theorem 9.19, pp. 252-

253, [13], and the density of G in C2 .

Lemma 2.2. Outside a set of zero probability, each limit point V of {Vt}

for which &(y)>O, satisfies

* = qv (2.4)

Remarks. Note that we do not claim pathwise tightness of {yt}, which would

correspond to 8(M) = 1 a.s. This cannot be true in general, e.g. for an

unstable Markov control. Thus we must allow for the possibility 8(v) < 1,

which necessitates the compactification of the state space as done above.

Proof. For fsG, Ito's formula gives

f(X(t))-f(X(O)) = J Lf(X(s),y)u(s,dy)ds

+ <Vf(X(s)),c(X(s))dW(s)> (2.5)

By standard time change arguments (See, e.g., Sect. 6.1 of [13] or Sections

3.1, 4.4 of [17]), the stochastic integral term above can be shown to be of

the form B(ct) for a standard Brownian motion B(') and a process of time

change v satisfying
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lim sup *t/t < - a.s.
t -yc

Since

B(= t )
lim =0 a.s. on (lim t = ( }

t ->c t t --t c

and < - a.s. on (lim t < } ,
t -_co

we have

B(rt)
lim -0 a.s.
t -~=

Hence

lim - J J Lf(X(s),y)u(s,dy)ds = lim JLfdyt = 0 a.s.
t -- V t - f3

Since G is countable, we can find a set N of zero probability outside which

the above limit holds for all fsG. Then outside N, each limit point V of

{Vt} with 6(y) > 0 must satisfy

JLf dy' = 0 for feG.

The claim follows from Lemma 2.1. Q.E.D.
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Lemma 2.3. Under a stable Markov control v,

lim t c(X(s),v(X(s)))ds = fc(x,v(x))vq(dx).
t - 0

See [6] for a proof using the ergodic theorem.

Lemma 2.4. For a near-monotone c, there exists a stable Markov control v

such that

Jc(x,v(x))lv(dx) = a.

Proof. Let [vn) be a sequence of stable Markov controls such that

Jc(x,vn(x))lv (dx) S a.

Define Pn s P(RnxV) by

n (x,y)pn(dx,dy) = J If(x,y)vn(x,dy) v (dx)

for bounded continuous f:RnxV ->R. Let p, be a limit point of npn and let



V = Vp .co p

For faG, we have

fLvnfdqv = L dp = Lf dPn = O n=,2,...

Letting n -*' along an appropriate subsequence,

JLfpW = O.

By Lemma 2.1 and the decomposition (2.1),

PO = qv if &(p=) >) .

Now, the near-monotonicity of c implies that for some s)0,

lim inf inf c(x,u) > a + a.

I IlX I U8V

Using this, one can construct continuous maps cm:Rnxv ->R, m21, such that

cm ( ',u) = a+8, m>1,

cm(x,u) t c(x,u) on Rn x V.
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Thus

fcdp' > cmdpn.

Lettings n -OX,

lim $dp n = a > (fcmdp')&(p) + (1-6(p=))(a+s)

Letting m -O on the right hand side,

a > (fdp')6((p) + (1-&(p.))(a+s)

If 6(p,) > 0,

rdp" = fc(x,v.(x))1 1 v (dx) > a

by the definition of a. Hence we must have 6(p.) = 1 and

fSdp' = c(x,v.(x))tv (dx) = a. Q.E.D.

As remarked earlier, v, is defined p* - a.s. and it does not matter

which representative we pick.

Theorem 2.1. For a near-monontone c, there exists a stable a.s. optimal

Markov control.
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Proof. Using Lemma 2.2 and arguments similar to those employed in the proof

of the above lemma, one can show that

lim inf f c(X(s), u(s))ds > a a.s.
t _y> t O

The claim now follows from Lemmas 2.3., 2.4. Q.E.D.
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III. TIGHTNESS OF INVARIANT PROBABILITY MEASURES

In this and the next section, we study the situation where the near-

monotonicity condition on the cost is dropped, but instead we impose a

Liapunov-type stability condition which among other things, will be shown to

imply that all the Markov controls are stable and their invariant

probability measures form a compact set in P(Rn). This, in fact, is the

principal result of this section (Theorem 3.1, Cor. 3.2), the proof of the

existence of an a.s. optimal Markov control being left to Section IV.

Before we give a precise statement of this condition, we mention the

following technical lemma:

Lemma 3.1. Let X0 = xeRn, t>O, u(') an admissible control. Then the law of

X(t) has a density p(t,x,') with respect to the Lebesgue measure on Rn,

satisfying

C1 exp(-c2jjx-ylj/t) < p(t,x,y) < c 3 exp(-c4 11x-yll 2/t) (3.1)

for some constants ci > 0, i=1,2,3,4, independent of x,t,u(').

Proof. If u(') is an inhomogeneous Markov control, this is precisely the

estimate of [1]. For arbitrary u('), the law of X(t) is the same as that

under some inhomogeneous Markov control by the results of [101 and we are

done. Q.E.D.

The Liapunov-type condition we use is the following:
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Assumption A. There exists a twice continuously differentiable function

w: Rn - R satisfying:

(i) lim w(x) = +~ uniformly in I|XII, (3.2)

(ii) there exist a)O, 80>0 such that whenever I|xil > a,

Lw(x,u) < -80 for all usU, (3.3)

lvwl2 > 8o0 (3.4)

T

(iii) / Ir_4xT(x) |exp(-|x-y||2/t)dxdt ( <, VTWo (3.5)

where c4 is as in Lemma 3.1.

Remarks. (a) (3.5) is a mild technical condition that ensures (by virtue

of Lemma 3.1) that the stochastic integral

J <Vw(X(t)), e(X(t))dW(t)>, TO,

is always well-defined.

(b) We have chosen the above formulation of a Liapunov-type condition

because it is easily stated and still quite general. Other variants are

possible (see, e.g., [21] for one). For the general theory of stochastic

Liapunov functions, see 191]. The key consequence of the above assumption

for our purposes is Lemma 3.2 below. Thus any condition that implies Lemma

3.2 will suffice. In fact, the crudeness of estimates used in proving the
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lemma shows that there is ample scope for improvement.

(c) As an example, consider n=l, o(') - 1, m(x,u) < -e for x

sufficiently large and > 8 for -x sufficiently large for some 8>O. Then

w(x) = x2 will do the job.

Let B1, B2 Rn be concentric balls centered at zero with radii rl, r2

and boundaries 8B1, 6B2 resp., where we choose r2 > rl > a such that for

some a1 > 0, f{xlw(x)J ( al1 is nonempty and contained in B1. Let

Let a2 = max Iw(x) and a3 = a1 - a2.
x&6B 2

Lemma 3.2. Let X0 = xs6B2 and v = inf{t>OIX(t)s&B1}. Then

sup E[ 2 ] < X (3.6)

where the supremum is over all xeSB2 and all admissible u(I).

Proof. For t>O,

P(_>t) = P( min W(X(s)) > al, _ > t)
se[O,t]

< P( min J<Vw(X(s)), a(X(s))dW(s)> > a3 + sot)
ysO(,t] 0

by (3.3). Using the random time change argument we used earlier,

<Vw(X(s)), a(X(s))dW(s)> = B(Q(t))

for a standard Brownian motion B(') with
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5(t) = TI T(I(s))Vw(X(s)) 112 ds > stot-

(Recall that X is the ellipticity constant for aaT.) Thus

P(_>t) < P(B(Xest) > sot + a3)

= (2kSo t)-1/2 exp(-y 2/2X80t)dy

a3+O t

It is not hard to verify from this that

fntP(_>t)dt < K <

where the constant K is independent of the choice of x in 6B2 and of u(1).

The claim follows. Q.E.D.

Now take X0 = x e B2 and define T' = infft>OIX(t) 8 6B2 }. We have the

following companion result to the above, which, however, does not need

Assumption A.

Lemma 3.3.

sup E[((') 2] < ( (3.7)

where the supremum is over x e B2 and admissible u(').

In order to prove this result, we need another technical lemma, Lemma
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3.4 below, which will also be useful elsewhere in this paper. Let {Ft}

denote the natural filtration of X(').

Lemma 3.4. For any {Ft}-stopping time x, the regular conditional law of

X(v+') given F= on ({<=} is a.s. the law of a controlled diffusion of the

same type as (1.1).

Proof. The results of [301 (See Theorem 4.3 and the final comments on page

632) allow us to assume without any loss of generality that {Ft} is the

canonical filtration on C([O,=); Rn) and u(') is of the form

u(t) = G(t,X('))

for some measurable G: [O,)xC(0O,=); R d) -* U which is progressively

measurable with respect to [Ft}. By Lemma 1.3.3, pp. 33, of [26], a version

of the regular conditional law of X(c+') given FT on [v<-} will be a.s.

given by the law of a controlled diffusion X(') as in (1.1), but with

initial condition X(s) and control V(') given by I(t) = G(v+t, X(')) with T

and the restriction of X(') to [0,v] being held fixed as parameters. Q.E.D.

From here on, Mi(S), S Rn , i=1,2, will denote the set of X(') as in

(1.1) under Markov/arbitrary admissible controls resp. with initial law

supported in S.

Proof of Lemma 3.3. By the results of [10], the law of X(t) for -any t>O

coincides with that under some inhomogeneous Markov control and thus by the

uniform ellipticity assumption on acT, is absolutely continuous with respect
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to the Lebesgue measure (Recall (3.1).) Let XI') M2 (B2 ,)' -

inf{t>OiX(t)eB 2}. Then for t>O,

P(v=t) < P(X(t) 8 8B2) = 0

and thus P(==t) = 0. Fix t>O. Let {Xn()} be a sequence in M2(B2) such

that if [{n} denote the corresponding first exit times from B2,

p(,n > t) t sup P(z>t).
X(') a M2(B2)

As in the proof of Theorem 3.1, [20], one can argue that Xn(') -+X (') in

law along a subsequence (denoted In} again by abuse of notation) where

X@(') e M2(B2). (The only difference with Theorem 3.1 of [201 is the

varying initial law. This can, however, by easily accommodated since the

initial laws are supported on B2 and hence are tight.) By Skorohod's

theorem ([17], pp. 9), we may assume that this convergence is a.s. on a

common probability space. (See [201 for an analogous argument.) Let =O =

inf[t>OIXM(t) 8 B2
} and 7 = inf[t->OIX=(t) a8 B2 }. Path continuity of

{Xn(')} and simple geometric considerations show that for any sample point,

any limit point of {(n} in [0,=] must lie in [t, ]J. By our uniform

ellipticity condition on =aT, I == a.s. Thus =n a.s Since

P(v==t) = O, P(Jn>t) -4P(T->t). Since

P(T=>t) < P(X (t) 8 B2) < 1,
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we have

B = sup P(T>t) < 1.
X(' ) 2( 2)

Hence for X(') a M2(6B1 )CM 2 (B2 ),

P(T>nt) = E[I{>ntl}]

= E[E[I(>nt]/F (n_)t]I{>(n-1)t}]

< BE[I({>(n-1)t}]

by Lemma 3.4. Iterating the argument,

P(v>nt) n< n

The rest is easy. Q.E.D.

Define the extended real-valued stopping times

I1 = inf{t>OjX(t)eSB 1} (3.8)

gn = inf(t>n jX(t)e6B2 (3.9)

n+1 = inf[t->n X(t)e6B11 (3.10)

for n=1,2,..., where as usual the quantity on the left is set equal to +- if

the set on the right is empty.
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Let v be a Markov control and X(') the corresponding process with

initial law supported on dB1. By the above three lemmas, E£il], E£til < o

for all i with v1=0. Then X(=i), i-1,2,..., is a 6B1-valued Markov chain

having a unique invariant probability measure (say, q) as argued in [18].

Corollary 3.1. The measure ReP(Rn) defined by

=2
ffdi = E[f f(X(t))dt]/E['2], faCb(R ),

with the law of X(O) = q, coincides with nv. (In particular, v is stable).

For a proof, see [18].

Let (vn} be a sequence of Markov controls and Xn(') the corresponding

diffusions as in (1.1) for some initial laws and suppose that Xn(') ->X=(')

in law for some process X"(').

Lemma 3.5. X"(') is a diffusion satisfying (1.1) for some Markov control.

Proof. Let Tnt t>s, denote the transition semigroup for Xn('), n.1. Let

f 8 C2 (Rn) with compact support and g e Cb(RnxRnx...Rn ( m times))

for same m>1. Then for tls2t >t >ml . t1 O, E[(f(Xn(t)) -

Tn f(xn(s)))g(xn(t1),...,xn(tm))] = O,n=1,2,... For each n, Tn tf(-)

satisfies the appropriate backward Kolmogorov equation. From standard

p.d.c. theory (See [22], Ch. III, or [32], pp. 133-134), if follows that

Tn tf('), n=1,2,..., are equicontinuous. Since they are clearly bounded,

they form a sequentially precompact set in C(Rn) with the topology of
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uniform convergence on compacts. Let T ,tf(') be a limit point of the same

in C(Rn). Passing to the limit in the above as n -3 a, it is easily seen

(e.g., using Skorohod's theorem) that E (f(X(t)) -

Tstf(X (s)))g(X (tl),...,X (tm))] = 0. Since f,g,{ti} were arbitrary, a

standard argument using the monotone class theorem establishes the Markov

property of X=('). By Theorem 3.1 of [201, X=(') satisfies (1.1) for some

u('). Argue as in [15], pp. 184-5, to conclude that u(') must be on the

form u(') = v(X ('),') for some measurable map v:RnxR+ --)U. Since Tn tf

-depends on t,s only through t-s for each f and n=1,2,..., the same must be

true for T ,tf in view of the above limiting argument. It follows that

X@(') is a time-homogeneous Markov process and hence u(') is in fact a

Markov control. QED

Theorem 3.1. The set f{vlv Markov control) is compact in P(Rn).

Proof. Let {vn) be a sequence of Markov controls and Xn(') the

corresponding diffusions whose initial laws will soon be specified. Define

{in}, {(n} as in (3.8)-(3.10) correspondingly. Let qn be the unique

invariant probability measure for the chain {Xn(vn)}. Set the law of Xn(O)

equal to qn for each n=1,2,... Argue as in the proof of Theorem 3.1, [191,

to conclude that Xn(') -3X-(') in law along a subsequence, denoted (n} again

by abuse of notation. By Lemma 4.5, Xw(') satisfies (1.1) for some Markov

control v.. Invoke Skorohod's theorem as before to assume that the above

convergence is a.s. on a common probability space. Define {=t}, {}) as in

(3.8) - (3.10) for X"('). By arguments similar to those used to prove n _3
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v a.s. in the proof of Lemma 3.3, we can inductively prove that

ni -ia.s, n co a.s. for all i. (3.11)

Thus

xn(c ) ->X)(=i) a.s.
1 i

n
Ii+L Ii+l

f f(Xn(s))ds -J f(X(s))ds a.s. for all i (3.12)
n

Zi x

where f e Cb(Rn). By Lemmas 3.2, 3.3,

n2
sup Et(2 ) I < co (3.13)
n

and hence [2n, n2l) are uniformly integrable. Thus

Et.,n --Et] (3.14)
2 2

E[O f(Xn(s))ds] -+El f (X(s))ds], feCb(Rn)

by (3.11), (3.12). By Corollary 3.1,
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n
*2

E[Lf f(Xn(s))ds

n EftZ]
2

E[o f(X=(s))ds]

(3.15)
Etl2]

Since zu = 0 a.s. n=1,2,..., .l=0 a.s. since for each n=1,2,..., [Xn(si),

i=1,2,...} are identically distributed, it follows that [X"(ri), i=1,2,...}

are identically distributed. Thus the initial law of X=(') equals the

unique invariant probability measure for the chair {X (i), i=1,2,...}.

Hence by Corollary 3.1, the right hand side of (3.15) equals ffdnv . Thus

nv -Gov in P(Rn). The claim follows. QED

Corollary 3.2. There exists a Markov control v such that

Jc(x,v(s))q v(dx) = a.

Proof. Pick ({vn above so that

Jc(x,vn(x))1v (dx) a.
n

Define Pn a P(RnxV), n=1,2,..., by
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ff(x,y)pn(dxdy) = ff (x,y)vn(x ,dy)1v (dx), faCb(RnXV).
n

Since V is compact, the above theorem implies that Cpn } is tight in P(RnxV)

and hence converges along a subsequence (denoted n again) to some p= s

P(RnxV). Argue as in the proof of Lemma 2.4 to conclude that p, is of the

form

p=(dx,dy) = iv(dx)v(x,dy)

for some Markov control v. Then

j c(x,v(x))iv(dx) = a

follows from Fatou's lemma and the definitions of a. Q.E.D.
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IV. EXISTENCE OF AN OPTIMAL MARKOV CONTROL UNDER ASSUMPTION A.

In this section, we shall show that the Markov control in the statement

of Corollary 3.2 is a.s. optimal. Before we get down to the main result

(Theorem 4.1), we shall collect together a few minor consequences of the

foregoing that will be used later.

Lemma 4.1. {E[r2 ]jX(-)eM 1($B1)] is bounded from above and bounded away from

zero from below.

Proof. The upper bound follows from Lemmas 3.2-3.4 in an obvious manner.

An argument similar to that leading to (3.14) can be employed to show the

rest. Q.E.D.

Lemma 4.2. The set of probability measures n defined by

f fdl = E[f f(X(t))dt]/E[f2], r e Cb (R
n ),

for X(') e M1(6B1) is tight in P(Rn ).

Proof. This can be proved the same way as Theorem 3.1 by showing that each

sequence has a subsequence that converges in P(Rn). Q.E.D.

Let {fn} be a collection of smooth maps Rn -- [0,1] such that fn(x) = 0

for I(xll < n and =1 for Ijxjj > n+l.

Lemma 4.3. For any >20, there exists N_>1 such that for all >N. and F
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X(') 8 Mi(6B1),

2

E[J fn(X(s))ds] < a.

Proof. Let Y(') = X(j1+'). Let Om denote the first exist time from

(x I|llx||m}\Bl where m is any integer sufficiently large so that IIxII<m for

xsB2. (We do not specify for which process, leaving that to depend on the

context for economy of notation). Consider the control problem for

X(') 8 M2(6B2) with the cost

E[ fn(X(s))ds]

for some n,m. By the results of [4], Section IV.3, pp. 150-155, an optimal

Markov control exists for this problem. Thus

Om Pm
ECJ fn(Y(s))ds] < _ sup E£f fn(X(s))ds].

X()sM1(&B2) 0

For large n, fn = 0 on B2 and hence the above is the same as

¥m ¥m
E[l fn(X(s))ds] < sup Elf fn(X(s))ds]

X()eM 1(SB1) 0

where ym (resp. ¥m) = inff(t>41X(t) (resp. X(t)) 8 (xIIxII < m}\B1 }. Since
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Ymt"2 a.s., we have

E[£ f (X(s))ds] ( sup E[ f (X(s))ds] (4.1)

for n sufficiently large, by virtue of Lemmas 4.1, 4.2. Q.E.D.

for n sufficiently large, by virtue of Lemmas 4.1, 4.2., Q.E.D.

Lemma 4.4. The set {E[T 2]jX(') e M2(8B1)} is bounded from above and bounded

away from zero from below.

Proof. The first claim is proved by the same arguments that imply the first

half of Lemma 4.1. The second claim follows by arguments similar to those

used to prove a similar claim for M1(8B1) in Lemma 4.1 with the following

change: One considers a sequence [Xn(')} in M2(SB1) instead of Mi(8B1),

with initial laws arbitrary in P(SB1). Q.E.D.

We can now prove the main result of this section:

Theorem 4.1. There exists an a.s. optimal Markov control.

Proof. Let X(') be as in (1.1). By Lemmas 3.2-3.4, ji<j a.s. for all i.

Thus for (fn} as in Lemma 4.3,
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m IC i+l

i f fn(X (s ) )d s

Ti+1 ~~~i=1

By Lemmas 3.4 and 4.3, for any 8>0, there exists N >1 such that for all

nŽN, i>l,

Eff fn(X(s))ds/F ] < a.s. (4.3)
si si

By Lemmas 3.2-3.4,

2
sup E(c i+1 - i) < o.

Hence one can use the strong law of large numbers for square-integrable

martingales ([23], pp.53) to conclude that

n i+ i+]
lim i fn(X(s))ds- EJ fn(X(s))ds/F ]i] 0 a.s. (4.4)

i=1n

Hene ne anus th sron lw f lrg nmbes or qureintgrbl
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n

r n i ' (i+l-i) - E(I+ -Ic )IF ] = 0 a.s. (4.5)
n - n Xi=1

From Lemmas 3.4, 4.4 and (4.2)-(4.5) above, we conclude that

lim sup It J (X(s))ds < C a.s.

for n large enough, with some constant C independent of n. Recalling the

definition of {fn}, it is easily deduced from this that in the set-up of

Lemma 2.2, 86() = i for all limit points v of {Vt} outside a set of zero

probability. The claim now follows as in the proof of Theorem 2.1 in view

of Corollary 3.2. Q.E.D.

Remarks. Let n=1. Pick Markov controls v1, v2 such that m(x,vl(x)) =

max m(x,v), m(x,v2(x)) = min m(x,v). Our conditions on m and the selection

theorem of Lemma 1, [31, guarantee the existence of vl, v2 as above. Let

X(') be as in (1.1) for some admissible control u(') and X1 ('), X2 (') be the

diffusions controlled by v1, v2 resp. with the same initial condition as

X('). (Recall that a strong solution to Markov-controlled (1.1) exists

[29]. Thus we can construct X('), X1(' ), X2(') on the same probability

space.) By the well-known comparison theorem for one dimensional Ito

processes ((17], pp. 352-355), it follows that outside a set N' of zero

probability,
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X2 (t) < X(t) < x1 (t) for all t > 0. (4.4)

Suppose we assume that v1, v2 are stable. Then (4.4) implies in a

straightforward manner that

(i) all Markov controls are stable,

(ii) 6(y) in Lemma 2.2 can always be taken to be 1 outside NUN' (N

as in Lemma 2.2),

(iii) H = [{vlv Markov} is compact.

Thus in the one dimensional case, we have the conclusion of Theorem 4.1

under a seemingly more general set-up than that of Assumption A.
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