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Abstract

A dynamic programming principle is derived for a discrete time Markov control process taking
values in a .nite dimensional space, with ergodic cost and partial observations. This uses the
embedding of the process into another for which an accessible atom exists and hence a coupling
argument can be used. In turn, this is used for deriving a martingale dynamic programming
principle for ergodic control of partially observed di3usion processes, by ‘lifting’ appropriate
estimates from a discrete time problem associated with it to the continuous time problem.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Recently, the author derived the dynamic programming principle for ergodic (or
‘average cost’) control of .nite Markov chains with partial observations (Borkar,
2000a). This article extends this result .rst to a more general state space, viz., a
.nite dimensional Euclidean space, and then to continuous time di3usions for which
the statement will be in the framework of the ‘martingale approach’ of Davis and
Varaiya (1973), Rishel (1970), and Striebel (1984). In the .rst case, the approach
is based on Athreya–Ney–Nummelin construction of pseudo-atoms (Athreya and Ney,
1978; Nummelin, 1978) as described in Meyn and Tweedie (1993, pp. 100–104), which
allows us to adapt the coupling argument of Borkar (2000a). In the latter case, the
derivation is via an embedded discrete control problem. See Bhatt and Borkar (1996),
Borkar (1999), and Borkar (2000b) for earlier work on this problem.
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In the next section, we set up the formalism for the discrete problem. Section 3
follows Borkar (2000a) to derive the dynamic programming principle using a cou-
pling argument, facilitated at this level of generality by the Athreya–Ney–Nummelin
construction of pseudo-atoms. Section 4 introduces the continuous time problem. Sec-
tion 5 introduces an embedded discrete time problem that goes with it and uses
it to derive the martingale dynamic programming principle for the continuous
problem.

2. The discrete problem

Let S;W;U denote Polish spaces representing, resp., the state, observation and control
spaces, with the additional restrictions that S be a .nite dimensional Euclidean space
and U compact. We shall denote by P(· · ·) the Polish space of probability measures on
‘· · ·’ with the Prohorov topology (Borkar, 1995, Chapter 2). Let {Xn} be an S-valued
controlled Markov chain with associated U -valued control process {Zn} and W -valued
observation process {Yn}. The controlled transition kernel is given by the map

(x; u)∈ S × U → p(x; u; dz; dy)∈P(S ×W );

assumed to be continuous. Let � denote the Lebesgue measure on S. We assume
the existence of �∈P(W ) and ’∈Cb(S × U × S × W ) such that p(x; u; dz; dy) =
’(x; u; z; y)�(dz)�(dy), with ’(·)¿ 0. Thus,

P(Xn+1 ∈A; Yn+1 ∈A′=Xm; Zm; Ym; m6 n) =
∫
A′

∫
A
’(Xn; Zn; z; y)�(dz)�(dy) (1)

for Borel A ⊂ S; A′ ⊂ W . Call {Zn} strict sense admissible if it is adapted
to �(Ym; m6 n); n¿ 0. The ergodic control problem under partial observations in its
original form is to minimize over all such {Zn} the ‘ergodic cost’

lim sup
n→∞

1
n

n−1∑
m=0

E[k(Xm; Zm)] (2)

for a prescribed k ∈Cb(S × U ). De.ne Gk ∈Cb(P(S); U ) by Gk(�; u) =
∫
k(x; u)�(dx);

�∈P(S); u∈U . Then, (2) equals

lim sup
n→∞

1
n

n−1∑
m=0

E[ Gk(�m; Zm)]; (3)

where �n is the regular conditional law of Xn given �(Ym; Zm; m6 n); n¿ 0. Standard
Bayes arguments show that {�n} is given recursively by the nonlinear .lter

�n+1(dz) =

∫
�n(dx)’(x; Zn; z; Yn+1)�(dz)∫ ∫
�n(dx)�(dz′)’(x; Zn; z′; Yn+1)

; n¿ 0: (4)

This allows one to consider the equivalent complete observations ergodic control prob-
lem, the so-called ‘separated’ control problem of controlling the P(S)-valued controlled
Markov process {�n} evolving according to (4), over strict sense admissible {Zn}, so
as to minimize the ergodic cost (3).
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For later technical convenience, we assume that Y0 is deterministic, so that �0= the
law of X0. This causes no loss of generality, as we can always condition on Y0 a priori.
Following Borkar (1993), we may exhibit {Xn} as a noise-driven dynamical system

Xn+1 = F(Xn; Zn; �n+1); n¿ 0; (5)

where F : S × U × [0; 1] → S is measurable and {�n} are i.i.d. uniformly distributed
on [0; 1]. (This may require an augmentation of the underlying probability space
(Borkar, 1993).)
We shall now reproduce in law these processes on a more convenient probability

space, the so-called ‘canonical’ space. Thus, let �=[0; 1]∞×U∞×W∞×S and let F
denote the corresponding product Borel �-.eld. Let (u; v; w; x) denote a typical element
of � with u = [u0; u1; : : : ]∈ [0; 1]∞, v = [v0; v1; : : : ]∈U∞, w = [w0; w1; : : : ]∈W∞ and
x∈ S. Let un=[u0; u1; : : : ; un] and de.ne vn; wn analogously for n¿ 0. By the de.nition
of strict sense admissible controls,

Zn =  n(Y0; : : : ; Yn); n¿ 0

for some  n :Wn+1 → U . De.ne

G n(wn) = [ 0(w0);  1(w1); : : : ;  n(wn)]; n¿ 0: (6)

Let ‘n denote the Lebesgue measure on [0; 1]n and �n the product measure �×�×· · ·×�
(n times) for n¿ 1. De.ne a probability measure P0 on (�;F) by: If B1 ⊂ [0; 1]n+1,
B2 ⊂ Un+1, B3 ⊂ Wn+1, B4 ⊂ S are Borel sets, then

P0

(
4∏

i=1

Bi

)
= ‘n+1(B1)�n+1(B3 ∩ {wn: G n(wn)∈B2})�0(B4):

De.ne {�n; Zn; Yn}; X0 canonically on (�;F; P0) by

�n((u; v; w; x)) = un;

Zn((u; v; w; x)) = vn;

Yn((u; v; w; x)) = wn;

X0((u; v; w; x)) = x

for n¿ 0. Then under P0,

• {�n} are i.i.d. uniform on [0; 1],
• {Yn} are i.i.d. with law �,
• X0 has law �0,
• ({�n}; {Yn}; X0) are an independent family, and,
• {Zn} is speci.ed by (6).

De.ne {Xn} recursively by (5). By construction, it is a controlled Markov chain
satisfying

P(Xn+1 ∈A=Xm; Zm; m6 n) =
∫
A

G’(Xn; Zn; z)�(dz);
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where G’(x; u; z)=
∫
’(x; u; z; y)�(dy). For n¿ 0, let Fn=�(Xm; Zm; Ym; �m; m6 n) and

let P0n be the restriction of P0 to (�;Fn) for n¿ 0. De.ne a new probability measure
P on (�;F) as follows. If Pn denotes its restriction to (�;Fn), then Pn�P0n with

&n ,
dPn

dP0n
=

n−1∏
m=0

’(Xm; Zm; Xm+1; Ym+1)
G’(Xm; Zm; Xm+1)

; n¿ 0: (7)

It is easily veri.ed that (&n;Fn) is a nonnegative martingale with mean 1 and there-
fore the above de.nes in a consistent and unique manner a probability measure P on
(�;
∨

n Fn). Since F =
∨

n Fn by construction, we are through. Furthermore, under
P, {Xn; Yn; Zn; �n} have the same joint law as the corresponding processes we started
with.
This construction permits us to de.ne wide sense admissible controls as in Fleming

and Pardoux (1982). Intuitively, this relaxation allows for controls that incorporate ex-
traneous randomness which does not, however, use any information that it should
not. Formally, {Zn} is said to be a wide sense admissible control if for each n,
(Zm; Ym; m6 n) is independent of {�m}, X0; {Ym; m¿n} under P0. This includes in
particular strict sense admissible controls. See Fleming and Pardoux (1982) for a full
justi.cation of this relaxation, which carries over in toto to the present framework.
Our ‘relaxed’ partially observed control problem then is to minimize (3) over all wide
sense admissible {Zn}. Under P0, the laws of X0; {�n}; {Yn} are .xed and {Xn} gets
speci.ed by (5) once {Zn} is. Thus, the above framework is speci.ed in law by spec-
ifying the regular conditional law of {Zn} given {Yn}, or equivalently, the joint law of
({Zn}; {Yn}) where the marginal for {Yn} remains .xed. Thus we may refer to either
of these as the wide sense admissible control. Denote by ' the set of all wide sense
admissible controls, with a typical element denoted by {Zn} by abuse of notation.
We shall also make the following stability assumption: There exist functions h;V∈

C(S) satisfying h¿ 1; lim‖x‖→∞h(x)= lim‖x‖→∞V(x)=∞, such that under any wide
sense admissible {Zn},

E[V(Xn+1)=Fn]−V(Xn)6− h(Xn) + CIB(Xn); (8)

where C ¿ 0 and B={x∈ S : ‖x‖6R} for some R¿ 0. Then B is compact nonempty,
with �(B)¿ 0. Let +B = min{n¿ 0 :Xn ∈B} (=∞ if the r.h.s. is empty). Then it is
well known that

E[+B=X0 = x] = O(V(x)): (9)

(See, e.g., Meyn and Tweedie, 1993, Chapter 14, p. 338.) In particular, it is .nite every-
where. With an eye on later developments, we de.ne P0(S)={�∈P(S):

∫
V d�¡∞}.

Note that this will be a proper subset of P(S). Furthermore, by (8), E[V(Xn+1)] =
E[
∫
V d�n+1]6E[V(Xn)]+ a constant =E[

∫
V d�n] + a constant, whence it follows

that �0 ∈P0(S) ⇒ �n ∈P0(S) ∀ n, a.s. Thus we may suppose that �0 ∈P0(S) and
view {�n} as a process in P0(S).
We shall further assume:
(†) Under all wide sense admissible controls,

lim sup
n→∞

E[V(Xn)]
n

= 0:
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3. The vanishing discount limit

In preparation for the vanishing discount argument to be used later, we introduce
the family of discounted cost problems indexed by the discount factor -¿ 0, wherein
one seeks to minimize over all wide sense admissible {Zn} the discounted cost

J-({Zn}; �) = E

[ ∞∑
m=0

-mk(Xm; Zm)=�0 = �

]

= E

[ ∞∑
m=0

-m Gk(�m; Zm)=�0 = �

]
:

The associated value function

V-(�) = inf
'

J-({Zn}; �);

then satis.es the dynamic programming equation (HernMandez-Lerma and Lasserre, 1999)

V-(�) = min
u

[
Gk(�; u) + -

∫
0(�; u; d�′)V-(�′)

]
; �∈P0(S); (10)

where (�; u)∈P0(S)×U → 0(�; u; d�′)∈P(P0(S)) is the controlled transition kernel
of the P0(S)-valued controlled Markov chain {�n}. From our hypotheses on p(·), it
is easily veri.ed that 0(·; ·; d�′) is a continuous map. Furthermore, if v(�) attains the
minimum on the r.h.s. for some measurable v :P(S) → U , then Zn = v(�n); n¿ 0,
de.nes an optimal control and conversely, if {Zn} is optimal, then Zn attains the
minimum on the r.h.s., a.s. with respect to the law of �n. The existence of a v(·) as
above is guaranteed by a standard measurable selection theorem (Wagner, 1977). See
HernMandez-Lerma and Lasserre (1996) for a detailed account of these developments.
We shall need to compare V-(·) for two di3erent values of its argument. With this

in mind, we construct on a common probability space two S-valued Markov chains
as above with a common control process {Zn}∈', but di3erent initial laws, say �̃
and �̂. This is done by a small modi.cation of the construction of the previous section.
Note that the speci.cation of {Zn}∈' for initial law �̃ entails the speci.cation of its
joint law with {Yn} under P0, assumed to satisfy the independence or conditional
independence conditions stipulated in the de.nition of wide sense admissible controls.
Denote this joint law by 1(dy∞; du∞)∈P(W∞ × U∞). De.ne

G� = ([0; 1]∞ × S)× ([0; 1]∞ × S)× U∞ ×W∞ ×W∞

with GF= the corresponding product �-.eld and GP0 the probability measure on ( G�; GF)
de.ned by

GP0((dũ ∞ × dx̃)× (dû ∞ × dx̂)× dz∞ × dỹ ∞ × dŷ ∞)

= ‘∞(dũ ∞)�̃(dx̃)‘∞(dû ∞)�̂(dx̂)1(dỹ ∞; dz∞)�∞(dŷ ∞):

On ( G�; GF; GP0), de.ne processes {�̃n}, {�̂n}, {Zn}, {Ỹ n}, {Ŷ n}, and random variables
X̃ 0, X̂ 0 canonically as follows: For ! = (ũ ∞; x̃; û ∞; x̂; z∞; ỹ ∞; ŷ ∞), let �̃n(!) = ũ n,
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�̂n(!)= û n, X̃ 0(!)= x̃, X̂ 0(!)= x̂, Zn(!)= zn, Ỹ n(!)= ỹ n, Ŷ n(!)= ŷ n, n¿ 0. De.ne
{X̃ n}, {X̂ n} recursively by

X̃ n+1 = F(X̃ n; Zn; �̃n+1);

X̂ n+1 = F(X̂ n; Zn; �̂n+1)

for n¿ 0. Let 3n = �(X̂ m; X̃ m; Ŷ m; Ỹ m; �̂m; �̃m; Zm; m6 n). Then GF=
∨

n 3n. De.ne
a new probability measure GP on ( G�; GF) as follows: If GPn; GP0n are the restrictions
of GP; GP0, resp., to ( G�;3n), then GPn� GP0n with

G&n ,
d GPn

d GP0n
=

n−1∏
m=0

’(X̃ m; Zm; X̃ m+1; Ỹ m+1)

G’(X̃ m; Zm; X̃ m+1)

’(X̂ m; Zm; X̂ m+1; Ŷ m+1)

G’(X̂ m; Zm; X̂ m+1)
;

n¿ 0. Then the controlled Markov chains {X̃ n}, {X̂ n} de.ned on ( G�; GF; GP) form the
desired pair in so far as their initial laws are, resp., �̃; �̂, and they are governed by a
“common” {Zn} which is wide sense admissible for both. A rigorous justi.cation is
given in Lemma 3.1 of Borkar (2000a). For later use, we also introduce the notation

GY n = (Ỹ n; Ŷ n); GX n = (X̃ n; X̂ n); n¿ 0:

What the foregoing achieves is to identify each wide sense control for �̃ with one
for �̂. This identi.cation may be many-one. We next combine this with the Athreya–
Ney–Nummelin construction. For this, note that { GX n} is an H , S2-valued controlled
Markov chain with U -valued control {Zn} and W 2-valued observation process { GY n}.
Let the controlled transition kernel be denoted by Gp(x; u; dx′ × dy′)∈P(S2 ×W 2) for
x∈H; u∈U .
De.ne G=B2 and de.ne 6∈P(H) by 6(A)=(�×�)(A∩G)=�(B)2 for Borel A ⊂ H .

Let 7= 1
2(inf x∈B;u∈U;y∈B G’(x; u; y)�(B))2 ¿ 0. Then, for any Borel A ⊂ H ,

Gp(x; u; A×W 2)¿ 7IG{x}6(A); (11)

which is the ‘minorization condition’ of Meyn and Tweedie (1993, p. 102) in our
context. This allows us to adapt the Athreya–Ney–Nummelin construction from Meyn
and Tweedie (1993, pp. 102–105), as described next.
Let H∗=H×{0; 1}, endowed with its Borel �-.eld. For any measure � on H , de.ne

a measure �∗ on H∗ as follows: For Borel A ⊂ H , let A0 = A × {0}, A1 = A × {1}.
(A similar notation will be followed, in what follows, with other sets in place of A.)
Then

�∗(A0) = (1− 7)�(A ∩ G) + �(A ∩ Gc);

�∗(A1) = 7�(A ∩ G):

Note that �∗(A0 ∪ A1) = �(A) and for A ⊂ Gc, �∗(A0) = �(A). For a measure � on
H ×W 2, on the other hand, we de.ne the measure �∗ on H∗ ×W 2 by

�∗(A0 × D) = (1− 7)�((A ∩ G)× D) + �((A ∩ Gc)× D);

�∗(A1 × D) = 7�((A ∩ G)× D):

for A; A0; A1 as above, D ⊂ W 2 Borel.
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Also, for a measurable map f :H × U → R, de.ne f∗ :H∗ × U → R by: for
(x1; x2; i)∈H × {0; 1}, u∈U ,

f∗((x1; x2; i); u) = f((x1; x2); u):

Likewise, for f :Hn × Um → R with n; m¿ 1, de.ne f∗ : (H∗)n × Um → R, by
f∗((x11 ; x

2
1 ; i1); : : : ; (x

1
n; x

2
n; in); u1; : : : ; um)

=f((x11 ; x
2
1); : : : ; (x

1
n; x

2
n); u1; : : : ; un):

On a convenient (e.g., ‘canonical’) probability space (�∗;F∗; P∗), de.ne an H∗-valued
controlled Markov chain {X ∗

n ; i
∗
n} (where X ∗

n =(X̃ ∗
n ; X̂

∗
n)) with U -valued control process

{Z∗
n } and W 2-valued observation process {Y ∗

n }, so that:

• the controlled transition kernel of {X ∗
n ; i

∗
n ; Y

∗
n } is given by: for x = (x0; i0)∈H∗,

q(x; u; dx′ × dy) = Gp∗(x0; u; dx′ × dy); x∈H0 − G0

= 1
(1−7) ( Gp

∗(x0; u; dx′ × dy)− 76∗(dx′)�2(dy)); x∈G0

= 6∗(dx′)�2(dy); x∈H1;

• with

P∗((X ∗
0 ; i

∗
0 )∈A0; Y ∗

0 ∈A′; Z∗
0 ∈A′′) = (1− 7)P( GX 0 ∈A ∩ G; GY 0 ∈A′; Z0 ∈A′′)

+P( GX 0 ∈A ∩ Gc; GY 0 ∈A′; Z0 ∈A′′);

P∗((X ∗
0 ; i

∗
0 )∈A1; Y ∗

0 ∈A′; Z∗
0 ∈A′′) = 7P( GX 0 ∈A ∩ G; GY 0 ∈A′; Z0 ∈A′′);

for A ⊂ H; A′ ⊂ W 2; A′′ ⊂ U Borel,
• and

P∗(Z∗
n ∈A=(X ∗

m ; i
∗
m; Y

∗
m) = (xm; im; ym); m6 n; Z∗

k = zk ; k ¡n)

= P(Zn ∈A=( GXm; GYm) = (xm; ym); m6 n; Zk = zk ; k ¡n);

for n¿ 1.

Let 3∗
n = �(X ∗

m ; i
∗
m; Y

∗
m; Z

∗
m; m6 n); n¿ 0.

Lemma 3.1. G1 is an accessible atom of {X ∗
n ; i

∗
n} in the sense of Meyn and Tweedie

(1993, p. 100).

This follows as in Meyn and Tweedie (1993, pp. 104–105).

Lemma 3.2. For any Borel Ai ⊂ H;Di ⊂ W 2; Qi ⊂ U; 06 i6 n, n¿ 0,

P∗
(
((X ∗

0 ; i
∗
0 ; Y

∗
0 ; Z

∗
0 ); : : : ; (X

∗
n ; i

∗
n ; Y

∗
n ; Z

∗
n ))∈

n∏
i=0

(Ai
0 ∪ Ai

1)× Di × Qi

)

=P

(
(( GX 0; GY 0; Z0); : : : ; ( GX n; GY n; Zn))∈

n∏
i=0

Ai × Di × Qi

)
: (12)
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Proof. The proof is by induction on n. The case n=0 is included in our construction
explicitly. Suppose the claim holds for some n¿ 0. From our de.nition of q(·), it
follows exactly as in Theorem 5.1.3, Meyn and Tweedie (1993, p. 104), that

P∗((X ∗
n+1; Y

∗
n+1)∈ (An+1

0 ∪ An+1
1 )× Dn+1=3∗

n ) = P(( GX n; GY n)∈An+1 × Dn+1=3n)

for Borel An+1 ⊂ H;Dn+1 ⊂ W 2. Multiply the l.h.s. (resp., r.h.s.) of (12) by the l.h.s.
(resp., r.h.s.) of the above. Taking expectations and using the induction hypothesis,

P∗ (((X ∗
0 ; i

∗
0 ; Y

∗
0 ); : : : ; (X

∗
n+1; i

∗
n+1; Y

∗
n+1))

∈
n+1∏
i=0

(Ai
0 ∪ Ai

1)× Di; (Z∗
0 ; : : : ; Z

∗
n )∈

n∏
i=0

Qi

)

=P

(
(( GX 0; GY 0); : : : ; ( GX n+1; GY n+1))∈

n+1∏
i=0

Ai × Di; (Z0; : : : ; Zn)∈
n∏

i=0

Qi

)
:

The induction step is then completed using our speci.cation above of the regular
conditional law of Z∗

n+1 given ((X ∗
m ; i

∗
m; Y

∗
m); m6 n; Z∗

m; m¡n) for n¿ 1.

Let +=min{n¿ 0 : (X ∗
n ; i

∗
n )∈G1}.

Lemma 3.3. For any (x; i) = ((x1; x2); i)∈H∗,

E[+=(X ∗
0 ; i

∗
0 ) = (x; i)] = O(V(x1) +V(x2)):

Proof. De.ne GV(x1; x2; i) , V(x1) + V(x2) and Gh(x1; x2; i) , h(x1) + h(x2)
for x1; x2 ∈ S; i∈{0; 1}. From (8), it then follows that

E[ GV(X ∗
n+1; i

∗
n+1)=3

∗
n ]− GV(X ∗

n ; i
∗
n )6− Gh∗(X ∗

n ; i
∗
n ) + C∗;

for a suitable constant C∗. It follows that a stochastic Liapunov condition similar to
(8) holds for the chain (X ∗

n ; i
∗
n ) with GV; Gh + a suitable constant, replacing V; h, resp.

The claim then is the counterpart of (9) and follows by standard arguments as in
Theorem 14.2.3 of Meyn and Tweedie (1993, p. 338).

From now on we largely mimick the arguments of Borkar (2000a).

Lemma 3.4. For a suitable constant GK ¡∞,

|V-(�̃)− V-(�̂)|6 GK
(∫

V d�̃+
∫

V d�̂
)

:

Proof. Without loss of generality, let V-(�̃)¿V-(�̂), the other case being handled
by a symmetric argument. Let {Ẑn} be an optimal wide sense admissible process
for initial law �̂. (The existence of this is established in Borkar, 1989, Section V.3.)
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Then

|V-(�̃)− V-(�̂)|= V-(�̃)− V-(�̂)6 J-({Ẑn}; �̃)− J-({Ẑn}; �̂);
where in order to interpret the r.h.s., we use the above construction of processes with
a common control process but di3erent initial laws. Let k̂(x1; x2; z)= k(x1; z)− k(x2; z).
Then

|V-(�̃)− V-(�̂)|6 sup
'

|J-({Zn}; �̃)− J-({Zn}; �̂)|

6 sup
'

∣∣∣∣∣
∞∑
m=0

-mE[k(X̃ m; Zm)− k(X̂ m; Zm)]

∣∣∣∣∣
6 sup

'

∣∣∣∣∣
∞∑
m=0

-mE[k̂∗(X ∗
m ; Z

∗
m)]

∣∣∣∣∣
= sup

'

∣∣∣∣∣
∞∑
m=0

-mE[k̂∗(X ∗
m ; Z

∗
m)I{+¿m}];

where the last step follows from the fact that X̃ ∗
++m; X̂

∗
++m for m¿ 1 have the same law

conditioned on 3∗
+ and thus E[k̂∗(X ∗

m ; Z
∗
m)I{+¡m}] = 0. Hence, for any

K¿ |k(·; ·)|,
|V-(�̃)− V-(�̂)|6 2KE[+]

6 K̂E[V(X̂ 0) +V(X̃ 0)];

by the preceding lemma, for a suitable constant K̂ . The claim follows.

Fix �∗ ∈P0(S) and de.ne GV-(�) = V-(�)− V-(�∗). From (10), we have

GV-(�) = min
u

[
Gk(�; u) + -

∫
0(�; u; d�′) GV-(�′)− (1− -)V-(�∗)

]
:

It is easy to see that (1 − -)V-(�∗) is bounded. Thus, we can .nd -(n) → 1 such
that (1− -(n))V-(n)(�∗) → = for some =∈R. Let V̂ (�)= lim supn→∞ GV-(n)(�), Ṽ (�)=
lim inf n→∞ GV-(n)(�).

Lemma 3.5. V̂ satis2es

V̂ (�)6min
u

[
Gk(�; u)− =+

∫
0(�; u; d�′)V̂ (�′)

]
: (13)

Proof. Letting n → ∞ in the above equation along -= -(n), we have

V̂ (�) = inf
n

sup
m¿n

min
u

[
Gk(�; u)− =+

∫
0(�; u; d�′) GV-(m)(�′)

]

6 inf
n
min

u
sup
m¿n

[
Gk(�; u)− =+

∫
0(�; u; d�′) GV-(m)(�′)

]
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= min
u

inf
n

sup
m¿n

[
Gk(�; u)− =+

∫
0(�; u; d�′) GV-(m)(�′)

]

6min
u

[
Gk(�; u)− =+

∫
0(�; u; d�′)V̂ (�′)

]
:

The claim follows.

Similarly we have:

Lemma 3.6. Ṽ satis2es

Ṽ (�)¿min
u

[
Gk(�; u)− =+

∫
0(�; u; d�′)Ṽ (�′)

]
: (14)

Proof. As above, we have

Ṽ (�) = lim inf
n→∞ min

u

[
Gk(�; u)− =+

∫
0(�; u; d�′) GV-(n)(�′)

]

= lim inf
n→∞

[
Gk(�; un)− =+

∫
0(�; un; d�′) GV-(n)(�′)

]
;

where un is the minimizer on the r.h.s. of the .rst equation. Fix �. By dropping to
a subsequence if necessary, we may suppose that GV-(n)(�) → Ṽ (�) and un → u∗ in
U . By the preceding lemma | GV-(�)|6K1(1 +

∫
V d�), �∈P0(S). Thus, by Lemma

8.3.7 of HernMandez-Lerma and Lasserre (1999, pp. 48–49), the last expression above
is bounded from below by

Gk(�; u∗)− =+
∫

0(�; u∗; d�′)Ṽ (�′)

¿min
u

[
Gk(�; u)− =+

∫
0(�; u; d�′)Ṽ (�′)

]
:

The claim follows.

We also have:

Lemma 3.7. = is the optimal cost for the separated ergodic control problem, for
all �0.

Proof. From (13), we have, under any wide sense admissible control {Zn},
E[V̂ (�n)]6E[ Gk(�n; Zn)]− =+ E[V̂ (�n+1)]; n¿ 0:

Therefore,

=6
1
n

n−1∑
m=0

E[ Gk(�n; Zn)] +
E[V̂ (�n)]− V̂ (�0)

n
:



V.S. Borkar / Stochastic Processes and their Applications 103 (2003) 293–310 303

Then by (†),

=6 lim inf
n→∞

1
n

n−1∑
m=0

E[ Gk(�m; Zm)]: (15)

Next, let Zn=v(�n); n¿ 0, where v :P0(S) → U is such that v(�) attains the minimum
on the r.h.s. of (14). (This is always possible by a standard measurable selection
theorem (Wagner, 1977).) Argue as above to obtain, under this choice of control,

=¿ lim sup
n→∞

1
n

n−1∑
m=0

E[ Gk(�m; Zm)]: (16)

Together with (15), this implies the result, along with the fact that the lim sup in (16)
is, in fact, a limit and Zn = v(�n); n¿ 0, is an optimal control process.

We summarize the above observations as the following ‘dynamic programming
principle’:

Theorem 3.1. There exist V̂ ; Ṽ :P0(S) → R such that (13) and (14) hold and
Zn= v(�n); n¿ 0; for v(·) as above, is optimal. Conversely, if (�n; Zn= v(�n)); n¿ 0;
for some measurable v(·) is a stationary optimal solution with the law of �n = �,
then a.s. with respect to �, equality holds in (13) and v(�) attains the minimum on
the r.h.s. of (13). Furthermore, (16) holds with equality and with ‘lim’ in place of
‘lim sup’.

Proof. The .rst claim is already contained in the foregoing. The second and third
claims follow by standard arguments as in, e.g., the proof of Theorem 4.2 of
Borkar (2000a). .

4. The continuous time problem

In this section, we start afresh with notation. Thus, let X (·)=[X1(·); : : : ; Xd(·)]T be an
Rd-valued controlled di3usion controlled by a U -valued (U a compact metric space)
control process Z(·), with an associated Rr-valued observation process Y (·), de.ned
on a probability space (�;F; P) and described by the stochastic di3erential equations

X (t) = X0 +
∫ t

0
m(X (s); Z(s)) ds+

∫ t

0
�(X (s)) dB1(s); (17)

Y (t) =
∫ t

0
h(X (s)) ds+ B2(t); (18)

where:

• m(·; ·) :Rd × U → Rd is bounded continuous and Lipschitz in its .rst argument
uniformly w.r.t. the second,

• �(·) :Rd → Rd×d is bounded Lipschitz with the least eigenvalue of �(·)�(·)T uni-
formly bounded away from zero,
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• X0 has a prescribed law �0 ∈P(Rd),
• B1(·); B2(·) are independent, resp., d- and r-dimensional standard Brownian motions
such that (B1(·); B2(·); X0) are independent,

• Z(·) is a U -valued control process adapted to the .ltration �(Y (s); s6 t); t¿ 0,
• h :Rd → Rr is bounded continuous and twice continuously di3erentiable with

bounded .rst and second partial derivatives.

We call such a Z(·) a strict sense admissible control. Let Ft= the right-continuous
completion of �(X (s); Y (s); Z(s); B1(s); B2(s); s6 t) for t¿ 0. W.l.o.g., let F=

∨
t Ft .

Let P0 be a probability measure on (�;F) de.ned as follows: If Pt (resp., P0t) denotes
the restriction of P (resp., P0) to Ft for t¿ 0, then Pt�P0t with

&(t),
dPt

dP0t
= e

∫ t
0 〈h(X (s));dY (s)〉−(1=2)

∫ t
0 ‖h(X (s))‖2 ds:

By Novikov’s criterion (Ikeda and Watanabe, 1981, p. 142), this is a nonnegative
martingale with mean one and therefore a legal family of Radon–Nikodym deriva-
tives. By Girsanov’s theorem (Ikeda and Watanabe, 1981, p. 178), it follows that
under P0, Y (·) is a Brownian motion independent of (B1(·); X0). Following Fleming
and Pardoux (1982), we call Z(·) wide sense admissible if under P0, for any t¿ 0,
Y (t + ·) − Y (t) is independent of {B1(·); X0; Y (s); Z(s); s6 t}. This is a larger class
of control processes and subsumes the class of strict sense admissible controls intro-
duced above. As in Fleming and Pardoux (1982) and much of the subsequent literature
on control of partially observed di3usions, we shall work with wide sense admissible
controls, referring the reader to Fleming and Pardoux (1982) for justi.cation. Our
aim then will be to minimize over all wide sense admissible controls the ergodic
cost

lim sup
t→∞

1
t

∫ t

0
E[k(X (s); Z(s))] ds (19)

for a prescribed k ∈Cb(Rd × U ).
We make two further quali.cations to the above formulation. The .rst is that we

shall be using the relaxed control framework. That is, we suppose that U =P(Ũ ) for
a compact Polish space Ũ and mi(·; ·); k(·; ·) are of the form

mi(x; u) =
∫

m̃i(x; y)u(dy);

k(x; u) =
∫

k̃(x; y)u(dy);

for x∈Rd; u∈U , where mi; k :Rd × U → R are bounded continuous, with the mi’s
Lipschitz in the .rst argument uniformly w.r.t. the second. The second quali.cation is
that we shall be using the weak formulation of this problem, i.e., we do not work with
a .xed probability space, but consider the optimization problem over all probability
spaces supporting the processes that .t the above description. For a de.nition and
elaboration of this idea, see Borkar (1989, Chapter I).
As in Fleming and Pardoux (1982), we consider the equivalent ‘separated control

problem’ of controlling the P(Rd)-valued controlled Markov process {�t} of regular
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conditional laws of X (t) given the right-continuous completions of �(Y (s); Z(s); s6 t);
for t¿ 0. Letting �(f) denote

∫
f d� for bounded measurable f :Rd → R and

�∈P(Rd), the evolution of {�t} is given by the Fujisaki–Kallianpur–Kunita
equations (Borkar, 1989)

�t(f) = �0(f) +
∫ t

0
�s(LZ(s)(f)) ds

+
∫ t

0
〈�s(hf)− �s(f)�s(h); dŶ (s)〉; (20)

where

• f∈C2
b (Rd) (= the space of bounded twice continuously di3erentiable maps Rd → R

with bounded .rst and second partial derivatives),
• the operator L is de.ned by

Lu(f)(x) =
∑

i

mi(x; u)
@f
@xi

(x) +
1
2

∑
i; j; k

�ik(x)�jk(x)
@2f

@xi@xj
(x);

• the ‘innovations process’ Ŷ (t) = Y (t) − ∫ t
0 �s(h) ds is an r-dimensional standard

Brownian motion under P, independent of (X0; B1(·)).

See Borkar (1989, Chapter V), for well-posedness issues concerning (20). Our di3er-
entiability conditions on h(·) play an important role here. Cost (19) is equivalently
written as

lim sup
t→∞

1
t

∫ t

0
E[�s(k(·; Z(s)))] ds: (21)

The stochastic Liapunov condition we assume in the continuous time case can be
stated as follows: There exist g∈C(Rd);V∈C2(Rd) such that g¿ 0, lim‖x‖→∞ g(x)=
lim‖x‖→∞V(x) =∞ and

LuV(x)6− g(x) + CIB(x); (22)

for C; B as before. De.ne P0(Rd) = {�∈P(Rd) : �(V)¡∞}. Arguing as in the
discrete case, we have for t ¿ s,

E
[∫

V d�t

]
= E[V(Xt)]

6 E[V(Xs)] + a constant

= E
[∫

Vd�s

]
+ a constant;
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which shows that �0 ∈P0(Rd) ⇒ �t ∈P0(Rd) a.s. for all t¿ 0. We also assume that,
under any wide sense admissible control,

lim
t→∞

E[V(X (t))]
t

= 0: (23)

As before, we shall adopt the ‘vanishing discount’ argument. Thus we introduce the
discounted cost under a wide sense admissible {Z(·)} and initial law �0 to be

J-({Z(·)}; �0) = E
[∫ ∞

0
e−-tk(X (t); Z(t)) dt

]

= E
[∫ ∞

0
e−-t�t(k(·; Z(t))) dt

]
;

where -¿ 0 is the discount factor and the law of X (0) is �0. De.ne the associated
value function

V-(�) = inf J-({Z(·)}; �);
where the in.mum is over all wide sense admissible controls.

Theorem 4.1. For any t ¿ 0,

V-(�) = inf
[∫ t

0
e−-s�s(k(·; Z(s))) ds+ e−-tV-(�t)=�0 = �

]
; (24)

where the in2mum is over all wide sense admissible controls on [0; t].

Corollary 4.1. V-(�t) −
∫ t
0 e−-s�s(k(·; Z(s))) ds; t¿ 0, is a submartingale under any

wide sense admissible {Z(·)} and is a martingale if and only if (�t; Z(t)) is an optimal
pair.

These are immediate from Borkar (1989, Theorem 2.3, p. 120). Once again, we
need to compare V-(·) for two di3erent values of its arguments, whence we need to
construct on a common probability space two processes with a common control process,
but with di3erent initial laws (say, �̂ and �̃). This proceeds exactly along the lines of
the discrete case and has been introduced already in Borkar (1999). We shall brieTy
sketch the details.
Let U denote the space of measurable maps �(·) : [0;∞) → U , with the coars-

est topology that renders continuous the maps �(·)∈U → ∫ T
0 x(t)

∫
f d�(t) dt for all

T ¿ 0, x(·)∈L2[0; T ] and f∈Cb(U ). This is known to be compact Polish. Let '̃ ⊂
P(C([0;∞);Rr) ×U) be de.ned as the set of laws of (Y (t); Z(t)); t ∈ [0;∞), where
Y (·) is a standard Brownian motion in Rr and for each t ∈ [0;∞),
Y (t + ·) − Y (t) is independent of {Y (s); Z(s); s6 t}. Since the marginal of Y (·) is
.xed and U compact, '̃ is tight, hence relatively compact by Prohorov’s theorem.
Since independence is preserved under weak convergence of probability measures, it
follows that it is also closed, hence compact. Note that a wide sense admissible con-
trol on [0;∞) may be identi.ed with an element of '̃ and vice versa. Let 1∈ '̃.
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De.ne

�=C([0;∞);Rd)× C([0;∞);Rd)× C([0;∞);Rr)×U

×C([0;∞);Rr)× Rd × Rd;

with the product Borel �-.eld G. Let Gd (resp., Gr) denote the law of d-dimensional
(resp., r-dimensional) standard Brownian motion. On (�;G), de.ne a probability
measure P0 by

P(db̂× db̃× dŷ × dz × dỹ × dx̂ × dx̃)

= Gd(db̂)Gd(db̃)1(dŷ dz)Gr(dỹ)�̂(dx̂)�̃(dx̃):

De.ne on (�;G; P0) the �-valued random variable (B̂(·); B̂(·); Ŷ (·); Z(·); Ỹ (·); X̂ 0; X̃ 0)
canonically. De.ne X̂ (·) (resp., X̃ (·)) by (17) with X̂ 0; B̂(·) (resp., X̃ 0; B̃(·)) in place
of X0; B1(·). Change the probability measure on (�;G) to P as follows: If P0t (resp.,
Pt) are restrictions of P0 (resp., P) to

�((b1(s); b2(s); y1(s); z(s); y2(s); x0; Gx0); s6 t)

for (b1(·); b2(·); y1(·); z(·); y2(·); x0; Gx0)∈�, t¿ 0, then Pt�P0t with

dPt

dP0t
= exp

(∫ t

0
(〈h(X̂ (s)); dŶ (s)〉+ 〈h(X̃ (s)); dỸ (s)〉)

− 1
2

∫ t

0
(‖h(X̂ (s))‖2 + ‖h(X̃ (s))‖2) ds

)
; t¿ 0:

Then on (�;G;P), X̂ (·); X̃ (·) are processes governed by a common wide sense admis-
sible control Z(·). (In Borkar (1999), one had B̂(·)= B̃(·). This is not necessary in the
present approach.)
With this construction in place, we have, exactly as in the discrete case and in

Borkar (1999),

|V-(�̃)− V-(�̂)|6 sup|J-({Z(·)}; �̃)− J-({Z(·)}; �̂)|; (25)

where the in.mum is over all wide sense admissible controls {Z(·)}.
To show that this remains bounded as - → 0, we need to adapt the arguments of

the discrete case, which we do via an embedded discrete time problem described next.

5. The embedded problem

Our embedded discrete time process will simply be X (n); n¿ 0. To exhibit this
as a controlled Markov process in S = Rd that .ts the description of Sections 2 and
3, we start with some preliminaries. Let '̂ ⊂ P(C([0; 1];Rr) ×U) be de.ned as the
set of laws of (Y (t); Z(t)); t ∈ [0; 1], where Y (·) is a standard Brownian motion in
Rr and for each t ∈ [0; 1], Y (t + ·) − Y (t) is independent of {Y (s); Z(s); s6 t}. As
before, a wide sense admissible control on [0; 1] may be identi.ed with an element
of '̂ and vice versa. '̂ will then serve as the compact metric control space for our
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process {X (n)}, the compactness being established as above. (See also Borkar, 1989,
Section V.3.) The controlled transition kernel (x; u)∈Rd × '̂ → p̂(x; u; dy)∈P(Rd) is
given by: p̂(x; u; dy) is the law of X (1) when X (0)= x and the wide sense admissible
control u is used on [0; 1]. De.ne, for x∈Rd; u∈ '̂,

k̂-(x; u) = E

[∫ 1

0
e−-sk(X (s); Z̃(s)) ds=X (0) = x

]
;

ĝ(x) = inf
'̂

E

[∫ 1

0
g(X (s)) ds=X (0) = x

]
;

-̂= e−-;

where Z̃(·) is the actual realization of u. Then taking the control sequence un ,
(Z(n+ t); t ∈ [0; 1]) and running cost function k ′(·; ·) , k̂-(·; ·), for the discrete time
problem of Sections 2 and 3, we have

J-({Z(·)}; �0) = J-̂({un}; �0); (26)

where the r.h.s. is in the sense of Sections 2 and 3.

Lemma 5.1. The maps p̂(·; ·; dy) and k̂ ·(·; ·) are continuous. Furthermore, p̂(x; u; dy)
has a strictly positive, continuous density w.r.t. the Lebesgue measure, which is
bounded from above and below by expressions of the form c1 exp(−c2‖y − x‖2) for
suitable constants c1; c2 ¿ 0.

Proof. The .rst claim follows from the fact that the law of X (·) varies continuously
with (x; u). For .xed x, the continuous dependence on u is proved in Borkar (1989,
Section V.3, pp. 122–132). (This is, in fact, the standard proof for existence of optimal
wide sense admissible controls for the .nite horizon problem.) The joint continuity in
(x; u) requires only a minor modi.cation of that argument. The second claim would
follow for the special case of Z(t) = v(X (t); t); t¿ 0; (v(·; ·) :Rd × [0;∞) → U mea-
surable) from standard p.d.e. theory for nondegenerate linear parabolic equations (see,
e.g., Ladyzenskaja et al., 1968), the Gaussian bounds from above and below being
from Aronson (1967). The general case is reduced to this by the results of Borkar
(1986) and Gy’ongi (1986) which show that the one-dimensional marginals of X (·) as
above can be mimicked by those of another process X ′(·) also governed by (17), but
with Z(·) replaced by v(X ′(·); ·) for a suitable measurable map v.

Note that the latter part of this claim allows us to verify the minorization condition
(11) in this case.

Lemma 5.2. lim‖x‖→∞ ĝ(x) =∞:

Proof. From the developments of Borkar (1989, Section V.3), we know that the
inf in the de.nition of ĝ(x) is in fact a minimum. Thus, let ‖xn‖ → ∞ and let
X n(·); Zn(·) be such that X n(0) = xn, Zn(·) is wide sense admissible, and ĝ(xn) =
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E[
∫ 1
0 g(X n(s)) ds]. Standard moment criteria (e.g., Billingsley, 1968, p. 95) show

that the laws of X n(·) − xn; n¿ 1, remain tight and therefore relatively compact in
P(C([0; 1];Rd)). Let X n(k)(·)−xn(k) converge in law. By Skorohod’s theorem (Borkar,
1995, p. 22), there exist processes GX k(·) that agree with X n(k)(·) − xn(k) in law for
k¿ 1, and converge in C([0; 1];Rd) a.s. Then GX k(·) + xn(k) → ∞ a.s., leading to

E

[∫ 1

0
g( GX k(s) + xn(k)) ds

]
= ĝ(xn(k)) → ∞:

The claim follows.

By (22) and the Ito formula,

E[V(X (n+ 1))=Fn]−V(X (n))6− ĝ(X (n)) + C; n¿ 1:

Thus, V serves as a Liapunov function for X (n); n¿ 1, just as it did in Sections 2
and 3.
In view of the above observations and (26), we may argue as in Section 3 to

conclude that GV-(·) , V-(·) − V-(�∗) remains bounded as - → 0. Let -(n) ↓ 0 be a
sequence such that -(n)V-(n)(�∗) → = for some =∈R. (This is possible because -V-(�∗)
remains bounded as - → 0, as can be easily veri.ed.) Let V̂ (·) = lim supn→∞ GV-(n)(·),
Ṽ (·)=lim inf n→∞ GV-(n)(·). Then, subtracting V-(�∗) from both sides of (24) and taking
lim sup, resp. lim inf on both sides, we have the following counterparts of (13) and
(14):

V̂ (�)6 inf
[∫ t

0
(�s(k(·; Z(s)))− =) ds+ V̂ (�t)=�0 = �

]
; (27)

Ṽ (�)¿ inf
[∫ t

0
(�s(k(·; Z(s)))− =) ds+ Ṽ (�t)=�0 = �

]
; (28)

the in.mum in each case being over wide sense admissible controls. Arguing exactly
as in the discrete case, we then have:

Theorem 5.1. There exist V̂ (·); Ṽ (·) :P0(Rd) → R and =∈R such that (27) and (28)
hold for all t ¿ 0 and = is the optimal cost. Furthermore, if the pair (�t; Z(t)) is
such that Ṽ (�t) +

∫ t
0 (�s(k(·; Z(s))) − =) ds; t¿ 0, is an {Ft}-supermartingale, then

it is optimal. Conversely, if (�t; Z(t)) is a stationary optimal pair, then the process
V̂ (�t) +

∫ t
0 (�s(k(·; Z(s)))− =) ds; t¿ 0; is an {Ft}-martingale.

This follows exactly as in the discrete case. It may be noted that existence of a
stationary pair as above is established in Bhatt and Borkar (1996).
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