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1. Introduction

As was pointed out by Laue (1926), the secondary radiations from the atoms
in a crystal traversed by a monochromatic beam of X-rays suffer changes of
frequency when the atoms oscillate about their positions of equilibrium.
These changes of frequency play a fundamental réle in determining the
observed X-ray phenomena. For, the superposition of radiations which differ
in frequency cannot give rise to observable interferences, while, on the other
hand, secondary radiations of identical frequency are necessarily coherent
and capable of interfering with each other even if the frequency differs from
the primary X-ray frequency. Accordingly, if we fix our attention on a
particular mode of vibration of the atoms in a crystal, the radiations of altered
frequency arising therefrom can give rise to interference maxima in just the
same way as the radiations from stationary atoms. It follows also, that
if several vibrations co-exist in a crystal, each set of secondary radiations of
different frequency thus arising would produce its own interference maxima
independently of the others. If, further, the individual vibrations are of
infinitesimal amplitude, a considerable simplification becomes possible.
For, then each vibration may be regarded as giving rise to its own secondary
radiations and acting independently of all the others, provided its frequency
is different from theirs. This statement, however, requires some qualifica-
tion when the excursions of the atoms about their positions of equilibrium
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resulting from the totality of all the vibrations present have a finite ampli-
tude. For, the total radiation amplitude of an atom is fixed and is equal to
the superposed radiation amplitudes of various frequencies. Hence, the
radiation amplitude due to any particular vibration frequency would naturally
be less than it would be in the absence of all the others. It is evident also
that as the atomic excursions increase, the strength of the secondary radiations
of the original or primary X-ray frequency and of the interference maxima to
which they give rise must progressively diminish, finally tending to zero.

The elastic or low-frequency modes of vibration have a continuous
spectrum of frequencies and hence, as explained above, the optical effects
of each vibration should be considered separately. Since the energy corres-
ponding to a particular frequency is small and is further distributed over all
the atoms in the crystal, the resulting atomic amplitudes are exceedingly
small. Hence, the secondary radiations due to these separate vibrations are
exceedingly weak, and since they are incoherent, their intensities and not their
amplitudes should be added. In the final result, therefore, we have an effect
which is inherently feeble and which can only become important when a
large volume of the crystal is under consideration.

The position is different when we consider the effect of modes of vibra-
tion of the crystal which appear as monochromatic frequencies in its infra-red
spectrum. Each such line in the spectrum represents N co-existent modes of
vibration, where N is the number of the lattice cells in the crystal. In the
ideal case when all the N modes are of identical frequency, it is evident that
the secondary radiations of altered frequency due to these co-existing modes
would all be coherent and must therefore be considered together and not
separately. 1t is evident, therefore, that the vibrations of the infra-red type
can give rise to effects of an altogether higher order of intensity than the
elastic vibrations considered above. This result has already been deduced
in an earlier paper from a consideration of the phase relations subsisting
between the lattice cells in a crystal in an infra-red vibration. Its possibility,
it may be remarked, is consequential on our rejection of the ideas of Debye
and Born regarding the nature of the high frequency vibrations in a crystal
lattice, and especially of the so-called postulate of the “ cyclic lattice > due
to Born which we have considered in detail and shown to be untenable.

It should be noted that the elastic and infra-red modes of vibration of a
crystal also differ in other respects. In the former case, the basic grouping of
the atoms in the lattice cells remains unaltered, while in the latter, it is to be
regarded as essentially a variable. Then again, the wave-fronts of an elastic
vibration may have any possible orientation within the crystal, while for the

infra-red vibrations; there is prima facie no reason for assuming that this
AO o
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should be the case. It has also to be remembered that the elastic vibrations.
are of lower frequency than the infra-red ones; this makes a considerable
difference in considering the influence of thermal agitation in the two cases.

As already explained in the preceding paper, the recognition of the changes
of frequency, the importance of which was first emphasised by Laue, leads us
naturally to bring the X-ray problem within the scope of the quantum theory
of radiation. It also makes the transition from the classical to the quantum
mechanical considerations very simple. The changes of frequency indicated
by the classical electrodynamics appear in the quantum theory as the result
of exchanges of energy between the quantum and the crystal lattice. Similarly,
the Laue conditions for a dynamic reflection are the same as those
required for the conservation of momentum in the encounter between the
quantum and the crystal. The principal difference between the classical and
quantum points of view is in regard to the question of the absolute intensity
of the secondary radiations and its dependence on temperature. Here, the
quantum mechanical considerations replace such incorrect applications of
the quantum theory to X-ray physics as are usually made by introducing the
Planck factor and the zero point energy, neither of which is really relevant
when considering the exchanges of energy betwen matter and radiation.

2. Secondary Radiations from an Oscillating Atom

_ Under the influence of waves of unit amplitude, an atom emits secondary
radiations which at a distance R from the origin of co-ordinates and in a
direction making an angle 2¢ with the primary ray have the amplitude

. .
fsin B ‘*me-’é‘z—“lCOSZ’rr(vt—R-{—zi)smsb), (1)

R

where D is the perpendicular distance of the atom from a reference plane

through the origin bisecting the angle between the primary and secondary

rays, f is the atomic structure factor, and B the angle between the electric :
vector in the incident pencil and the diffracted ray. It is evident that this o
expression would remain invariable if the atom moves parallel to the reference
plane but would alter periodically if it oscillates perpendicular to it.

Writing

D=d+ acos 2mv¥t 4 2) ()
the periodic part of (1) may be written as _
cos [27 v t—Z~ {cos (27 v¥t+ 2)] _ R ©)
where . . o ,
Z___27r(R+)2\va’51n l/x)’ §=4wa,\sm ¥ N

The expression (3) may be expanded in a series of Bessel functions. Neglecting
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the functions of higher order than the first, it may be written as
Jo (DcosRLavi—Z)+ T, ()sin2n(v £ v¥)t—Z+2z]. (5)
The three quantities Z, ¢ and z appearing in (5) are all phase angles. Z is the

phase of the secondary radiation from the atom when it is in the position of
equilibrium, { the change of this phase produced by displacing the atom

. through a distance « in a direction normal to the reference plane, and z is the

phase of the atomic vibration. Expression (5) indicates that the secondary
radiation from the oscillating atom consists of three components - whose

- amplitudes depend on the amplitude of the oscillation and which differ in

frequency and phase. The first component has the frequency v of the primary
X-rays and its phase is determined solely by the equilibrium position of the
atom. Its amplitude has however been diminished by the movement of the
atom in the ratio J;({): 1. The second and third components have the
same amplitude, namely J; ({), but they differ in frequency and phase. The
component (v4 v*) has a phase angle (Z— z), while the component (v — v*)
has a phase angle (Z+ z). The secondary radiations of altered frequency
thus increase in amplitude with increasing vigour of the atomic vibration,

~while their phases are determined jointly by the atomic positions and the

phase of the atomic vibrations. The equality of the amplitudes of the
components of increased and diminished frequency indicated by (5) is a
typical consequence of the classical electrodynamics which will later
be amended in the light of quantum mechanics.

3. Dynamic Stratifications of Density

. We may now proceed to deduce the optical effect of all the atoms vibrat-
ing with the same frequency but with a phase which may be assumed to vary
slowly from place to place within the crystal. For the purpose of a graphical
derivation of the conditions for interference, it is not necessary at the present
stage to distinguish between the elastic and infra-red modes of vibration. We
consider a particular set of lattice planes in the crystal marked ddd in the
figure. ' -
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It is evident that for any given setting of the crystal the phase of the
secondary radiations as received at a distance will vary from point to point
within the crystal. In respect of the secondary radiations of unmodified
frequency, this phase is given by Z. Hence, to obtain the maximum
resultant intensity, Z must be invariable along a crystal plane and jump by
27 or an integral multiple thereof, as we pass from plane to plane. In other
words, the planes ddd should make equal angles with the incident and
diffracted rays, and their spacing d should satisfy the relation

2 dsin §,= . (6)

This is the familiar optical formula for a monochromatic reflection from a
regularly stratified medium. 6, indicates the glancing angle for a ‘classical or
unmodified reflection.

Considering now the secondary radiations of altered frequency, we see
that their resultant is determined by the variation of (Z— z) in one case and
of (Z+ z) in the other. Let 4 4 4 in the figure represent the planes along
which the phases of the atomic vibrations, in other words the values of z, are
constant. In order to obtain the maximum intensity for the resultant of the
secondary radiations, the crystal should be so set that (Z— z) or (Z+2) as
the case may be, is constant along the lattice planes ; it is evident from the
figure that this would be the case if the setting of the crystal is such that the
incident and diffracted rays are equally inclined to the planes which run
diagonally cutting the ddd and 4 4 4 planes, e.g., d*d*d* as shown in
Fig. 1. For obtaining the maximum intensity, a further condition must-be
satisfied, namely '

2d* sin =], @)

where ¢ is, as before, half the angle between the incident and diffracted
rays. It is evident from the figure that there are two sets of diagonal planes
possible. But the same set will satisfy equation (7) for both the frequency
components (v v*) and (v— v*), provided that we assume thé phase
angle Z advances inone case and recedes in the other case as we move across
the figure. The diagonal planes d* d* d* thus represent the dynamic strati-
fications of electronic density resulting from the vibrations of the atoms con-
tained in the lattice planes of the crystal. As the phase waves 4 4 4 move
from left to right, the dynamic stratifications d*d*d* move upwards,
keeping a constant spacing, while if the phase waves 444 move from
. right to left, the spacings d*d*d* move downwards in the same way. The
changes of frequency from » to (v + »*) may thus be regarded as analogous
to the Doppler effect in the reflection from a moving mirror.
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4. Geometric Law of Dynamic Reflection

The spacing d* of the dynamic statifications is connected .with the
spacing d of the static ones and the phase-wave length 4 of the atomic vibra-
tions by the vectorial relation,

> > >

#=ats ®
This is readily deduced by writing down the. vectorial equation represented
by the three sides of one of the triangles appearing in Fig. 1 and dividing the
same by the area of the triangle. Denoting by & the angle between the planes
d-dd and the phase waves 4 4 4, and by e the angle between the planes
ddd and d*d*d*, we have from Fig. 1 and equation (8)

4% sin $=dsin (§ + =4 sin ©)
Substituting the first of these relations in (7), we obtain
- 2dsinysin (¢ + €= Asin . (10)

~ Equation (10) is the general geometric law of dynamic reflection deduced
by Raman and Nath (1940). It will be noticed from (9) that when the phase
wave-length 4 is infinite, ¢ =0 and 4* = 4, from which it follows that
4= 0,. In other words, the static and dynamic reflections then coincide in
direction. This is also obvious directly from Fig. 1. In general, however, d*
and d are different, and the conditions for the possibility of static and dynamic
reflections are not the same. While a static reflection can only occur at the
particular setting of the crystal indicated by (6), a dynamic reflection is evi-
dently possible over a wide range of settings of the crystal determined by the
permissible values of the phase wave-length 4. It is further to be remarked
that while the glancing angles of incidence and reflection are equal for the
static reflections given by (6), these angles when measured as usual with
reference to the static crystal planes would generally differ from each other
for the dynamic reflections. Further, the latter reflections would in general
appear in a plane different from that of the incidence of the X-rays on the
crystal spacings. To specify the actual plane of dynamic reflection, it is
necessary to know the angle x which determines the azimuth of the phase
waves. We may put X =0 in the case when the dynamic reflection appears
“in the plane of incidence, the phase waves then being evidently perpendicular
to that plane. When X== 0, the dynamic reflection swings out of the plane
of incidence to an extent determined by the values of 4, ¢ and X.

" In the particular case when x = 0, it is evident that

¢+ 0 =2, and that ¢— 6 =2, (11)
A2a
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where 0 and ¢ are respectively the glancing angles of incidence and dynamic
reflection measured as usual from the crystal planes. Equation (10) may
then be written as

2dsin 22 in (s = 9}*’): A sin 9. (12)

The value of ¢ then depends on the angle §. If we imagine & to march from
0 to =, equation (12) shows that the relation between ¢ and 6 will alter from

¢=20, when =0 or = (13)
to
d (sin 0+ sin ¢) = A, when &= g (14)

Thus, when the phase waves are parallel to the crystal planes, the dynamic

reflection always satisfies the ordinary geometric law of reflection from the
crystal planes, while if the phase waves are transverse to the crystal planes,
it appears in the direction given by (14) which may be written approximately
as

2dsin"“2L¢’=A - (13)

thereby indicating that the angle between the incident and reflected rays is
approximately constant and independent of the crystal setting. '

5. Dynamic Structure Factor -

To find the conjoint effect of the secondary radiations from all the atoms .
in the unit cell of the lattice, we have to sum them up considering each com-
ponent of frequency separately. This summation for the radiations having
the primary X-ray frequency gives (omitting constant factors),

21530 (Lp) cos 2 m v t— Zp). (16)

The summation for the secondary radiations of frequency (v + v¥) similarly

-gives .
21/ N (&) sin 27 (v v*) t—Z,) * z,] (17
9

the index p referring to the pth atom in the cell, and the dashes in (17) indicat-
ing that the setting of the crystal and the angle of diffraction are not neces-
sarily the same as those considered in (16). Remembering, however, the
conditions for a dynamic reflection discussed in the foregoing section, namely
that Z + z should be constant along any particular lattice plane, we may
simplify (17) and write it in the form '

27, L (L) sin 2w (ve v¥) t —Z,) (18)
? .
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Z, having now the same significance as in (16) for a static reflection by the
same set of lattice planes. A further simplification arises when the angle
between the primary and diffracted radiations does not differ greatly for (16)
and (18). We may then write, appmmmme Yo Jp' = [y IE further, the setting
of the crystal in the two cases is not so greatly different, we may also write
o {p as an approximation. Subject to the restrictions indicated, (175
now takes the form

%‘j} Jo(p)sin 2o (v 1 0¥) 1 Zy), (19)

The static structure factor of the unit cell as influenced by the particular
vibration may therefore be evaluated by diminishing the structure factor of
ecach atom in the ratio J, ({,) to unity. At the same time, the lattice cell
acquires a dynamic structure factor which is found in exactly the same
way except that the structure factor of each atom is now multiplied by
Jy ({p)-

Very significant differences now arise in considering respectively the
elastic and the infra-red vibrations. For the elastic vibrations, {, is the same
for all the atoms in the unit cell, The sulfix p may therefore be removed and
the Bessel functions taken outside the summation sign. For an elastic vibra-
tion, therefore, the static and dynamic reflections may be evaluated from the
expressions

Jo (O X fycos Qmvi=1Z7,) 20)
#

JQ-Zfysin 27 (vt Mt Zy). ol
L]

The static and dynamic structure factors in the case of an clastic vibration
thus differ only by a multiplying factor which is the same for all the atoms in
the unit cell. Thus, if a particular set of crystal planes gives zero intensity for
a particular order of reflection, the dynamic reflections for the same planes
and the same order of reflection must also vanish, The dynamic reflections
by different sets of crystal planes would follow the same order of intensity
as the static reflections by those planes, provided the amplitude of the elastic
vibrations transverse to the planes may be assumed to be the same. A
similar remark would also apply to the relative intensities of the successive
orders of reflection by a particular set of planes, except that the factor J, ({)
diminishes while the factor J, ({) increases as the angle of diffraction becomes
larger, vide equation (4),

The position is greatly altered when we consider the infra-red vibrations
of the lattice. Here, the displacements being different for the different atoms,
the factors J, ({,) and J; ({,) must remain within the summation signs. Some
of the atoms in the lattice cell must evidently move in directions opposite to
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the others if the centre of gravity of the cell is to remain undisplaced. ¥
J; (¢s) would be positive for some of the atoms and negative for the otlac¢
aninfra-red vibration, while on the other hand J, ({;) would always be po
and nearly equal to unity. It follows that the static and dynamic stru
factors for an infra-red vibration are determined by quite different consi
tions and cannot, in general, exhibit the close parallelism indicated B
theory for the elastic vibrations. Indeed, it may well happen that in 1}
cular cases, the static structure factor vanishes while the dynamic stru

 factor remains finite, or vice versa.
6. Quantum Scattering by Elastic Vibrations

The disturbance produced by an elastic vibration on X-ray propa =4
is of two kinds. Firstly, a compressional wave would evidently alte
average electronic density. It is thus itself a dynamic stratification ©
medium capable of reflecting the X-rays with a frequency (v + v¥), incx
or decreased as the case may be, depending on the direction of the ~
Such a reflection occurs when . .

24 sin = A,

large values of 4 corresponding to small values of ¥, and vice versa.
since 4 may have any one of a practically continuous series of values ¢
mined by the dimensions of the crystal, and since the orientation of the
is arbitrary, the reflection indicated by equation (22) would result in =@
of scattered X-rays (the Brillouin cone) having the direction of the pri
beam as its axis. The angular extension of the cone depends on the s
permissible values of 4. The intensity of such scattering would depexr
the energy of the vibration and the resulting variation of electron de
On the classical mechanics, the energy of an elastic vibration of th.
‘origin may be taken as KT, while if the wave is quantum-mechanically e
by the incident radiation, the energy would be Av*. The latter assurn
would be the appropriate one to make if Av* > KT, while if Av* <K 1
former assumption would be correct. This type of X-ray scattering s]
therefore be exhibited by crystals even at the lowest temperatures and i1
absence of thermal agitation, and especially by crystals of high elas:
e.g., diamond. We should expect the intensity of the X-ray scatteriz
such crystals to be greater than that indicated by the classical considerxrz
even at ordinary temperatures. |

‘The second kind of disturbance to X-ray propagation arises frox
~distortions which the elastic waves cause to the regular stratifications c
crystal structure. The formule of the three preceding sections enable
evaluate these effects quantitatively in a very simple manner. As expl

"
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in Section 3 and illustrated in Fig, 1, the superposition of an elastic vibration
on a specified set of crystal planes gives rise to dynamic stratifications of
density. As furtherexplained in Section 4, these stratifications reflect the inci-

“dent X-rays in the direction given by the general geometric law (10). The
intensity of such reflection is determined by the dynamic structure factor as
explained in Section 5.

Considering the direction in which the so-called dynamic reflection
appears, it is evident from equations (9) and (10) that this depends on the
wave-length 4, the angle & which the wave-fronts make with the crysta]
spacings, and also upon the azimuth X of the wave-fronts. A variation of ¥
would throw the dynamic reflection out of the plane of incidence, while if
X 0, the reflection would appear in that plane. A dynamic reflection is
only possible when the X-ray wave-length, the dynamic spacing d* and the
glancing angle ¢ of incidence of the X-rays thereon are suitably related.  But
since we have at our disposal two variables, namely 4 and 8, we may, as is
evident from Fig. 1. by suitably altering both of them get a dynamic reflection
in any desired direction.  In other words, the resultant effect of all the elastic
vibrations is a diffuse scattering of the X-rays ove¥ a wide range of solid angles
and not a geometric reflection in any specified direction. |

To find the X-ray scattering due to any particular set of crystal planes,
we have only to cvaluate the two expressions (20) and (21) given previously.
Their magnitudes are in the ratio Jo (§):J, ({). If { be sufficiently small,
3o (L) is practically unity while J, ({) would be equal to 3 {. I m be the mass
of an unit cell of the lattice, the energy of vibration of N such cells, each havin g
an amplitude a with a frequency v* would be 27* mNa®»*2 This may be
written in the form 27*:Mo®.a%/4®, where M is the mass of the whole
crystal, o is the velocity of the elastic waves and 4 is their wave-length,
Utilising cquations (4), (7) and (9), we may write this in the simple form

4 {3 Mo?-sin® ¢/sin? 9. (23)
This may now be put equal to KT (classical mechanics).  Accordingly, we have
L 2® o KT/Mo® sin®9/sin? e, (24)

Equation (24) gives the ratio of the sum of the squares of the dynamic struc-
ture factors to the square of the static structure factor. It is evidently of the
order 1/N and is thus an exceedingly small quantity, The X-ray scattering
in any specified direction due to the distortion of the crystal planes by the
clastic waves is therefore of vanishingly small intensity in comparison with the
intensity of regular reflection by the same crystal planes and should be
unobservable except when relatively large volumes of the crystal are under
consideration, .
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The numerical factor sin?$/sin2e appearing in equation (24) detexrx
the manner in which the intensity of the scattered radiation varies withh ¢
tion. It may be written also as 42/d*2, where 4 and d* have the same
ficance as in equation (8). Thus the intensity of the scattering wouwl
greatest in those directions for which the wave-length 4 of the elastic v
which effectively scatter the X-rays is greatest. This variation arises be«
the amplitude of the elastic waves is directly proportional to their wave-1e
and the scattering is therefore greatest in the directions in which the wa~
longest wave-length and lowest frequency are effective. The nature o©
variation can be readily made out from Fig. 2, which represents
geometric relation between 1/d, 1/d* and 1/4 given by equation (8), as als
relation between 1/d*, 1/A and sin ¢ expressed by equation (7).

Fig. 2

Distribution of Intensity of Diffuse X-Ray Scattering

Spheres are drawn (sections of which by the plane of the figure appe
circles) round the terminus of the vector 1)d and with radii 1/4 ; poimn
the spheres represent various values and orientations of the vector 1/4 d
from their common centre. The spheres are drawn closely together near
- centre and further away at a distance from it to suggest the rapid dimin
of the amplitude of the elastic waves with diminishing wave-length. A s-
of reflection is drawn with radius 1/A around O as centre. It cuts =
the * spheres of diffusion > having the radii 1/4 and the scattered radiz
would therefore appear over the entire area of the sphere of refle
thus cut by the spheres of diffusion. When the sphere of refle
actually passes through the terminus of the vector 1 /d, the maxi
of scattering intensity would fall on the Sphere itself’, but as it v
then coincide with the regular reflection, the maximum would be
observable. In other cases, the scattering would show a very t
and diffuse maximum of intensity corresponding to the minimum

of 1/4 on the sphere of reflection. This maximum however bec
rapidly weaker and more diffuse as the sphere of reflection passes fuy
away from the centre of the spheres of diffusion with altered settin
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the vector 1/d. Hence, nothing even remotely resembling a regular geometric
reflection which persists over a wide range of settings of the crystal would be
exhibited by the X-ray scattering due to the elastic waves.

The same situation can be represented graphically by plotting the func-
tion sin®*@/sin?e for various settings of the crystal. It is sufficient if this is
done for the scattered radiations lying in the plane of incidence. With the aid
of the formule (6), (7). (9) and (11), it is readily shown that

sin®$ sin® (04 «)
sinfe  sin* ¥, - 2 sin 8, sin (0 + €) cos e+ sin® (8 + ¢ (25)
It is seen on dxffcmntmtmg the denominator of the expression on the right-
hand side of (25) that it becomes a minimum and the whole expression is
therefore 1 maximum when
d sin (0 -+ &) — A cos ¢, (26)
Equation (26) is equivalent to saying that 1/4 is then a minimum, as can be
seen directly from Fig. 2. The values of sin® #/sin®e¢ have been plotted in Fig, 3,
as functions of the angle 2¢ for six settings of the crystal indicated by the
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different glancing angles of incidence 0 entered in the figures. The particular
case chosen is one in which 8, 21° 58’; in the first of the six settings, 6 has
the value 8,, and in the others increases by successive steps of one degree.
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It will be seen that the peak of intensity which appears in the first setting
coinciding with the classical reflection rapidly falls off and is replaced by
a relatively weak hump in the curve which spreads over many degrees of arc.
The actual value of the numerical factor sin?/sine also falls off rapidly and
becomes insignificant as the crystal is turned away from the correct setting
for a classical reflection.

We have in the foregoing analysis tacitly made certain simplifying
assumptions, viz., that there is only one kind of elastic waves to be considered,
that the velocity of "the waves is a constant and that the atomic
displacements due to the waves are in every case normal to the crystal
planes. In reality, there are three sets of ¢lastic waves possible, their
velocity is a function of the direction of travel of the waves, and the direc-
tions of the displacement are different for the three sets of waves. It
should be remembered, however, that the three sets of waves would not all
be equally effective in varying the structure amplitudes of the lattice planes.
A movement of the atoms parallel to the lattice planes would have no X-ray
effect and we may therefore exclude from consideration the types of waves
which give rise to such displacements. Further, only such waves as have
their wave-fronts roughly transverse to the lattice planes would produce a
scattering of X-rays in directions which are appreciably displaced from the
static reflections, and are therefore within the range of observation. It
follows that we are principally concerned with distortional waves travelling
in directions nearly parallel to the lattice planes under consideration and
giving atomic displacements nearly normal to them. Hence, the simplified
treatment we have adopted should be a fair approximation to the truth.
The variation of the velocity of the elastic waves with the direction of travel
may be readily taken account of in our formul®. In any event, such correc-
tions as may be necessary would not affect the broad result which emerges
from the theory, namely that the elastic waves produce only a diffuse
scattering of the X-rays with very low intensity and not a geometric reflec- .
tion of the X-rays in any particular direction.

It may be emphasized that the humps of intensity in the X-ray scattering
curves appearing in Fig. 3 correspond to the elastic waves of greatest wave-
length or lowest frequency operative in such scattering. Indeed, the smaller
the angle at which the hump or maximum appears, and the more pronounced
it therefore is, the lower would be the frequency of the elastic waves respons-
ible for it. Accordingly, it is sufficient, as we have done, to take the energy
of the individual vibrations as KT and to treat the problem classically.
At low temperatures, therefore, these maxima of scattering intensity should
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- weaken still further and become altogether negligible. This should be 5o even

for crystals of high elasticity, such as diamond, so long as we are considering
the X-ray effects due to the elastic vibrations of lowest frequency for which
h* < KT. :

7. Quantum Reflection by Infra-Red Vibrations

The geometric law of dynamic reflection (10) indicates that when the
X-rays are incident on the lattice planes at an appropriate angle, the static
and dynamic reflections appear simultaneously and in the same direction.
The length of the phase waves 4 of the lattice vibration is then infinite, in
other words, the atomic vibrations have everywhere the same phase. To
enable us to evaluate the dynamic structure factor, we require to know the
geometry of the particular mode of vibration as well as its actual amplitude.
The former may be derived from a knowledge of the crystal structure and
atomic forces, while the latter is determined by the energy of the vibration.
The entire crystal being regarded as a single dynamic unit, the energy asso-
ciated with a single non-degenerate mode of its vibration would be KT
on the basis of classical mechanics or Av* according to quantum mechanics.
In considering the infra-red or monochromatic vibrations, however, the
crystal must be considered as a system having a great number of identical
or nearly identical frequencies. To obtain an idea of the results to be expect-
ed in consequence of this fact, we may make the simplifying assumption that
all the N frequencies of the system ar¢ identical, N being the number of
lattice celis in the crystal. It follows that the amplitude of the N modes of
vibration should be superposed. Each cell in the lattice would then have
energy KT (classical mechanics) or Av* (quantum mechanics). The resulting
amplitudes of vibrations would be considerable and the dynamic structure
factor would no longer be negligibly small in comparison with the static
structure factor. Considering also the identity of the phase of the vibration
in the N cells, it follows that it would result in a dynamic X-ray reflection
having an intensity proportional to N2? and comparable with the intensity
of the usual static reflections. In the language of quantum mechanics, we
may express this by saying that the crystal takes up an energy of vibration
hv* from the X-ray photon Av which is reflected by the lattice planes with
diminished energy h (v— v*), but that the probability of such a process
occurring is increased N-fold by the fact that all the N cells co-operate,
their frequencies, amplitudes and phases of vibration being identical.

On the basis of these ideas, we may evaluate the structure factor for
a dynamic reflection when it appears in the same direction as a possible
static reflection. Denoting by m, the mass of the pth atom in the unit cell
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and by £, its displacement from the position of equilibrium, the energy
of a vibration of frequency v* may be written as
2 2my €p2 wiv*E = hv*. 27)
?

From this we have

h

2 %mz, fz,z= W (28)
If the geometry of the vibration is known, we may evaluate the £,’s from
(28). Resolving each &, in a direction normal to the chosen.crystal planes,
we obtain its component a, and thence also £, which appears in th¢ dyl?amlc
structure factor. The latter may thus be determined for any pgrt}cqlar
mode of vibration and for the particular set of crystal plapes. A similar
procedure would have to be followed if we wish to consider any other
possible mode of infra-red vibration or any other set of lattice planes.
Taking A= 6-55x 10-?7erg. sec. and with m, = 40 x 10-2* gm. and
v* —6x 1012 sec.-! as representative values, the quantity +/A/4nimisv™*
comes out as a length of the order 0-1 A.U. The ratio of J; ({,) and J, (& ,?)
appearing respectively in the expressions for the dynamic and static factor 1s
then of the order 1: 20 for an average crystal. In other words, under the rmost
favourable conditions, the quantum or modified reflections have intensities
which are of the same order of magnitude as the classical or unmodified
reflections though, as a rule, definitely weaker.

It is worthy of remark that if a crystal has several possible infra-red
modes of vibration, those of the lowest frequencies would in general, as
indicated by (28), produce the most important X-ray effects. The special
importance of the modes of lower frequency would however be less marked
on the quantum theory than on the classical mechanics; this becomes evident
on writing KT instead of Av* on the right-hand side of (27). We would
then have v*? instead of v* in the denominator of (28). The question
as to which of the possible infra-red modes is most effective is, however,
not so summarily to be disposed of. Actually, each set of crystal planes
would have to be considered separately in relation to the various possible
modes of vibration in the lattice. It may well happen that the dynamic
structure amplitude of a particular set of crystal planes is largely derived
from one of the possible modes of vibration, while another set of planes
1s chiefly influenced by some other mode. It may also well happen that the
dynamic structure factors determined by the aggregate effect of all the
possible modes of vibration are widely different for different sets of crystal
planes and bear no simple relation to the static structure factors of the same
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planes. Such special features would be characteristic of the individual erystal
structure and of the particular modes of its infra-red vibration,

The simplifying assumption made above that all the N modes of vibra-
tion of the lattice have an identical frequency is equivalent to stating that
the only possible phase wave-length is the largest possible, viz., 4 - oo,
This is evidently an extreme assumption, and it would be more reasonuble
to expect that while the great majority of the possible modes of vibration
correspond to a very great phase wave-length, the remainder correspond to
lesser values of 4, thus enabling the dynamic reflections to appear at other
settings of the crystal as indicated by equation (10), 1t would then follow
that the intensity of the dynamic reflections should diminish rapidly as the
crystal is moved away from the setting at which the static and dynamie reflec-
tions appear superposed. The fall in intensity would, in fact, represent the
distribution of the possible modes of vibration in respect of phuse wave-
length.

Fri, 4
Geometry of Quantum Reflection

The situation indicated above is indicated graphically in Fig. 4. The
reciprocal of the phase wave-length, namely 1/4, which we may denote
by & is represented as a vector drawn from the terminus of the vector
1/d which gives the spacing and setting of the crystal planes. The great
majority of the possible values of & congregate at the origin 3 - 0, There
are, however, some which spread out along the lines representing the per-
mitted directions of the phase-wave normal.  The quantum reflections would
then appear at the point or points on the sphere of reflection at which the
vectors & thus drawn meet the latter.  As already expluined, the dynamic
reflections need not necessarily lie in the plane of incidence, The restric.
tion of the vector 8 to full in specific directions differentintes our present
case (Fig. 4) from that of quantum scattering also represented geometrically
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in Fig. 2. Such a restriction arises naturally from the fact that we are now
concerned, not with a displacement of the lattice cell as a whole in some

arbitrary direction, but with a specific mode of vibration of the atomic

grouping within the cell. The symmetry of such atomic grouping, the nature
and magnitude of the inter-atomic forces and especially the geometrical
characteérs of the particular mode of vibration necessarily. determine the
possible orientations of the phase-vector 8. In the ideal case, therefore,
we may expect this to lie in one or another of certain precisely defined direc-
tions related to the symmetry of the crystal and the symmetry of the mode
of vibration. The quantum reflection would then appear, as indicated in
Fig. 4, in a sharply defined direction (or in sharply defined directions, if, for
instance, considerations of symmetry require that there should be several
possible directions of the vector &). It is evident that such a restriction of
the phase-vector & to specific directions would result in a very great increase
in the intensity of the observable effects; in fact, the sharper the reflection,
the more intense it would be and therefore the more easily observed. Thus,
even if only a small fraction of the total number N of possible modes of
vibration appear as stragglers from the point 8 =0, their restriction
to specific directions of & should enormously increase the visibility of
their effects. |

We cannot however always expect the dynamic reflections to exhibit
the same sharpness and precisely defined geometric character as the static
reflections by the crystal planes. When, for instance, the effects of different
possible modes of vibration are superposed, or when the binding forces in
the crystal are relatively weak and are further disturbed by thermal agita-
tion, a certain lack of precision in the direction of the phase-vectors would
be inevitable. In such a case, the quantum reflections would necessarily
be a little diffuse. Since, however, the majority of values of the vector
$ congregate at the point 3=0, all the possible directions of the vector
must necessarily crowd together as we approach the common origin. Hence,
the reflections should appear not only more intense but also more sharply
defined as the crystal setting approaches the position in which the static
and dynamic reflections coincide. The same considerations indicate that
at the lowest possible temperatures when the disturbing influence of thermal
‘agitation is removed, the diffuseness, if any, of the quantum reflections
arising from its presence should d1m1msh and disappear.

As indicated in earlier dlscussmns the d1str1but10n of the N possible
modes of vibration amongst various values of the phase-wave vector § is
closely connected with the perfection of the monochromatism of the vibration

I |
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frequency. The distribution should, in fact, run parallel to the distri-
bution of the N modes amongst the various possible frequencies of vibration,
The fine structure of the spectral lines in the infra-red region should thus
stand in the closest relation to the variation in intensity of the quantum
X-ray reflections with the crystal setting. 1t is known from studies on light
scattering that the spectral lines representing the lattice vibrations, especi-
ally those of the lowest frequencics, become sharper at low temperatures,
This effect is presumably due to the removal of the thermal agitation which
disturbs the precisely defined geometric character of the infra-red vibrations
and therefore also their monochromatism,  Observations at low temperature
should thus indicate a closer approach of the X-ray effects towards the ideal
behaviour, viz., the appearance of sharply defined and correspondingly more
intense dynamic reflections,  Whether temperature  directly affects the dis-
tribution of the N possible modes in the & diagram, in other words tends
to transfer a larger proportion of the modes to the origin & 0, thereby
diminishing the number of stragglers must, for the present remain, an open
question. It can only be answered when we are in a position quantitatively
to formulate the distribution law, The strength of the inter-atomic bindings
within the lattice cell, and the strength of the forces which link the lattice
cells to each other and make the whole erystal a coherent solid must neces-
sarily enter into such a distribution law. Only in the ideal case when the
lattice cells are firmly linked with each other and the influence of thermal
agitation is negligible would be the assumption that the atoms within the
lattice cells all vibrate together with identical frequency, amplitude, and phase
approach towards the complete truth, It follows that our caleulation of
the intensity of the quantum reflection from equations (27) and (28) should
be regarded as setting an upper limit to the intensity of such reflections which
would be approached only in the most favourable cases,

8. Temperature Factor for Quantum Reflections

The quanturm theory of rudiation iy an application of quantum mechanics
to i consideration of the interrelations between matter and radiation,  In
our present problem we are concerned with the effect of passage of a train
of waves through a regularly stratificd medium in the particular case when
the stratifications may, in part, be time-periodic. If the existence of such
time-periodic stratifications be assumed,  classical optics  indicates— quite
independently of all atomistic or quantum  theoretical considerations- that
both static and dynamic reflections would be observable under appropriate
conditions, the latter appearing with a change of frequency. We translate
this result into the language of the quantum theory by saying that the
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change of frequency arises from the exchange of energy between the p}lotO}l
and the medium, while the optical condition for a dynamic reflection 1s
equivalent to the conservation of momentum in their encounter (Tamm,
1930). Quantum theory indicates that there is a finite probability of a
vibration quantum being created or destroyed in the encounter if there
be a finite interaction energy between the radiation field and the vibrations
of thesolid. The fundamentally new feature arising in the quantum mechamnics
not indicated by the classical or semi-classical theories is that the vibrations,
even if non-existent in the absence of the radiation,”would be created by
it. This is the basis of our equation (27) in which the energy of the oscilla-
tion is put equal to Av* and which correctly represents the situation at the
lowest temperatures. In the presence of thermal agitation, we have to
merely add a contribution due to its effect. In other words, instead of
hv* we write the energy of the vibration in equation (27) as '

The second term within the brackets is the Planck factor. The justification
for its inclusion is that the probability of the creation of a vibration quantum
would be proportional to the number of such quanta present, and (29) is
therefore only valid when we are considering encounters in which the
number of vibration quanta is increased by the incidence of radiation. In
considering the cases in which the number is diminished, we must evidently
take the energy as
| ,

hv* - Sy | (30)
In our present problem, the effects of both types of encounters appear
.superposed, and we may therefore take the energy as the sum of (29) and
(30), viz.,-

eﬁl"lKT_}_ 1 .
h* - Spmr—y N )

The effect of thermal agitation would be thus to increase the intensity of
the quantum refléction or the quantum scattering as the case may be, by the
factor '

eﬁ?"lKT_}_ 1
HIRT > - (32

which we shall refer to as the temperature factor in what follows.
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Temperature Factor of Quantum Retlevtion

in the particular cases when iv* 3 KT, iz, when the frequenvy of
vibration is very high or the temperature is very low, the temperature factor
reduces to unity and (31) becomes simply Av*. On the other hand, when
hv* € KT, viz., when the frequency of vibration i very low or the tempe.
rature is very high, the expression (31) reduces to J KT, The numeriend
factor 2 indicates that we are now dealing with the sum of the two eflects
having the frequencies (v 1 v*), whereas previously we are only concerned
with (v — v*),  Thus, at sufficiently high temperatures, the intenmsities of
dynamic reflection and scattering become  proportional to the shaolute
temperature. At what stage this occurs depends on the value of v* To
illustrate this feature, the value of the temperature fuctor has been drawn
as a function of the absolute temperature in Fig, § for s number of ditferemt
values of v*. These are indicated in cuch case in spectroscopic  wmt
against the curves, It will be seen thut ull the curves tend asymptotically 1o
the value unity at low temperatures.  Por low values of v*, the curve begins
to rise steeply at a fairly low temperiature, while for high values of ¢, 1
remains nearly horizontal over a large range of temperature,

The foregoing is, of course, n simplificd trentment, but i v suflicient
to indicate the main features of the case. The treatment wvumes that the
intensity of dynamic reflection is proportional o the energy of the vibiation
giving rise to it. Such proportionality does got necessanly hold pocd when
the thermal agitation is too violent. It should also be remurked thit we e
considering the different possible modes of infra-red vibrations s independent
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of each other, in other words, we are neglecting their mutual influence. Even
when such neglect of the interactions is justified, we must necessarily consider
their effects as superposed on each other. When there are several infra-red
modes of widely different frequencies, it is possible that the temperature
factor may be effectively different for the different sets of lattice planes in
the crystal. In other words, those lattice planes whose structure amplitude
is noticeably affected by the infra-red vibrations of lowest frequency would
show a large temperature factor, while those which are sensibly influenced
only by the modes of higher frequency would show a relatively small tempe-
rature variation. That such a situation would arise in crystals which are
highly anisotropic in structure is extremely probable. That it may occur
even in isotropic crystals becomes evident when we recall that the atomic
density and the structure amplitude vary enormously for the different planes
" of a crystal. Some of the planes in a crystal have special properties, e.g.,
cleavage, determined by the grouping of the atoms and the nature of the
atomic bindings. These factors also determine the modes of atomic vibra-
tion possible. Hence, it should not be a matter for surprise to find that the
temperature factor for dynamic reflection varies greatly for different planes
also in isotropic crystals.

9. Temperature Factor for Classical Reflections -

We have already noticed in Section 5 that the presence of a vibration
which endows the lattice units with a dynamic structure factor simultaneously
results in a reduction of the static factor. The reduction arises from the term
Jo (L) which multiplies the atomic structure factor, this being the same for
all the p atoms in the unit cell in the case of an elastic vibration, but different
for the p different atoms in the case of an infra-red vibration. The energy
of an individual vibration being only Av* multiplied by the relevant factors,
see (29) and (30), the diminution of the static structure factor producéd by
it is negligible. The infra-red vibrations, however, have an N-fold degene-
racy. The vibration of the atoms resulting from the superposition of the
N modes would therefore be sensible and therefore also the diminution of
the static structure factor produced by it. When the static reflection
appears, the dynamic reflection is also superposed on it and is therefore
effectively an addition to its intensity. Nevertheless, if the intensities of the
two types of reflection are assumed to be proportional to the squares of
their respective structure factors, the diminution of intensity is not compens-
ated by such superposition. In other words, the possibility of a quantum
X-ray reflection by the crystal planes necessarily diminishes the intensity of
the classical X-ray reflections by the same planes.
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In practice, there may be several modes of mfra-red vibration possible,
Their effect and also the aggregare effect of the low-Treguency elustic vibra-
tions of the lattice on the static structure fuctor of the wtoms  requires
consideration, We therefore proceed to examine the case i which several
different modes of vibrations are superposed. We write Tor the displacement
of the pth atom

D, dy i ,%“ tpp COS (2 N4 Zpy) (4h

The secondary radiations from the atom have then o their penodic part
cos [2avt - Zy - L Lpwcos (2mvyr b 2p,l) {34y
L]

The expansion of this in a series of Bessel functions is most casily carried

‘out by writing (34) in an exponential form. It then appenrs as o product

of a series of terms containing v, v, i, ete, in the exponentials, On
writing out the products after expansion in i series of Bessel Tunctions, we
get terms which are periodic in v, (v 0 1L (v 0 ) eten, und abo periodie
terms involving overtones and combinations of ¥}, v}, e, Neglecting
these latter, the multiplier of the atomic structure factor for the frequency
v comes out as

1T 3y () (1%)

while the multiplicr for the atomic structure factor for the freguency
(v, is

1 Jg ‘%ﬁpmw - Ju(&ﬁm3~ (ﬁ@}
nofm
For values of { which are not too lurge, we may we the approsimation
|74
() e ¥ and J, (L) 1L (17

Thus, the multiplier for the static structure factor of the atom i

=& 4
¢ {1%)
the summation in the exponent being over all the » ditferent freguenvies of
vibration.  The multiplier for the dynamic stracture Gactor of the atom
for the frequency (v v3) iy

2 o

b Lpn e 00 (19)

ﬁ}e summation in the exponent being now made over all the Frequencies of
wb‘rmicm except v, e appears from (38) that all the modes of vibration
assist in diminishing the static stomic structure fuctor, while (39) indicates
that the dynamic structure factor for a particular frequency of vibration i

3
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diminished in the same way by all the other modes of vibration. The ratio
of (39) to (38) is
~3om ,

S e . (40)
and depends only on the displacements of the atom due to the vibration
of frequency v;. In this particular sense, each different vibration may be
regarded as acting independently of all others, in other words as giving a
quantum reflection of which the intensity in-relation to the class1ca1 reflec-
tion is determined exclusively by its own amplitude.

In the summation indicated by the exponent in (38), we have to include

all the frequencies of vibration of the lattice. We recall that

;MZ‘LZ?_@X&", (41)

where a,, is the displacement of the pth atom resolved normal to the crystal
plane due to the vibration of frequency v;, the actual displacement ¢,, being
given by the geonietry of the vibration and its energy. Considering the
elastic vibrations first, we have already noticed that those of the lowest
frequencies give the largest atomic displacements. On the other hand, the
modes of the higher frequencies are far more numerous. Thus, the entire
range of possible frequencies of elastic vibration would contribute towards
determining the product (38) which alters the atomic structure factor. The
' treatment . of the problem by Debye, Waller and Laue however greatly
exaggerates the part which the elastic vibrations of the lattice play in this
respect. Firstly, there is no justification for assigning all the 3 Np degrees
of freedom to the elastic vibrations. The maximum number which can
properly be so assigned is 3 N, the remaining (3p —3) N degrees of freedom
representing the infra-red or monochromatic vibrations of the lattice. Then
again, the actual frequency limit for the elastic spectrum is automatically
reduced by the diminution in the number of degrees of freedom allotted
“to it. Thirdly, the semi-classical way in which the quantum theory of speci-
fic heats and the zero point energy are usually brought into the X-ray
problem is, of course, invalid. Finally, in the vast majority of actual
crystals, the Einstein or monochromatic vibrations, besides being more
numerous, have often quite low frequencies and therefore make a notable
contribution to the thermal energy. Their influence on the intensity of the
classical reflections indicated by (38) should therefore be of great importance,
in fact much more so than that of the elastic vibrations of the lattice.

It follows from what has been stated above that there should be a
considerable degree of correlation between the intensity of the quantum
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_reﬂéction by.a particular set of crystal planes and the temperature variation

of the intensity of the classical reflection by the same set of planes. An

“intense quantum reflection can only arise if the structure amplitudes are

strongly influenced by the possible modes of infra-red vibration with a
corresponding diminution of the static structure factor. We should then
ordinarily expect a notable temperature effect of the intensity of classical
reflection, pari passu with an increase of the intensity of quantum reflection
with rising temperature. Since however, the static and dynamic structure
factors for the unit cell are determined by different considerations, the
correlation indicated above is not necessarily to be observed in all cases.

70. Summary

The ideas indicated in the preceding paper are here worked out quanti-
tatively. The secondary radiation from an oscillating atom in a crystal
traversed by X-rays is analysed into its frequency components. It is shown
that the interferences to which each component of altered frequency gives
rise are determined jointly by the positions of the atoms and the phases of
their vibration. It follows that besides the static reflections of unmodified
frequency by the crystal planes, we would also have dynamic reflections of
altered frequency. The geometric law of such dynamic reflection is derived.
The static and dynamic structure factors are deduced and it is pointed out
that the elastic and infra-red vibrations of the lattice stand on a different
footing in respect of these factors. Considering first the elastic vibrations,
formule are obtained and graphs are drawn which show that such
vibrations give rise to a diffuse scattering of the X-rays with low intensity
proportional to the number of lattice cells. The N-fold degeneracy of the
monochromatic infra-red vibrations, on the other hand, results in their
giving true geometric reflections with altered frequency and with intensity
proportional to the square of the number of lattice cells. The intensity
of such reflection is evaluated on the basis of the quantum theory of radia-
tion. The variation of the intensity, direction and sharpness of the quantum
reflections with crystal setting is discussed. A formula is then obtained
for the temperature variation of the intensity of the quantum reflections.
The temperature factor for the intensity of the classical reflection is also
written down and the extents to which the elastic and infra-red vibrations
respectively contribute to it are discussed.
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