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AS consistently demonstrated by confirmations of the Lyon hypothesis (LYON 
1961, 1972), only one of the two X chromosomes is expressed genetically in 

females of eutherian mammals. Which of the two X chromosomes is to remain 
active is determined, apparently at random, during early embryogeny, and there- 
after maintained in subsequent somatic cell lineages. In the germ line, however, 
both X's  appear to be active (EPSTEIN 1969). 

The marsupial system appears to be simpler because inactivation does not occur 
at random (COOPER et aZ. 1971; SHARMAN 1971). In the species so far studied, the 
paternal X is inactivated in the female and the maternal X remains active. Thus, 
for the marsupial system it is possible to envisage that the different past history 
of the chromosomes brought in by the sperm is somehow responsible for the 
observed inactivation. One complexity has, however, appeared in the still quite 
limited number of marsupials which have been investigated. According to VANDE- 
BERG, COOPER and SHARMAN (1 973), there is some indication that the paternal X 
may also be active to a very limited extent in some marsupial tissues, but the basis 
for this limited activity is at present unknown. In addition, information on the 
activity of the paternal X in the germ line of the marsupial female is not yet 
available. 

CONTROL SYSTEM 

We have recently proposed a control system which has as one of its features 
the possibility for deriving the eutherian, random-X system from the marsupial, 
paternal-X system by a simple evolutionary step (BROWN and CHANDRA 1973). 
The proposed control system conforms precisely with all known eutherian cases 
of variation in number of sex chromosomes or genomes with the exception of two 
types of aberration in man. As will be explained later in this report, it seems likely 
that these aberrations provide significant evidence on the time in the life cycle 
when the chromosomes are pre-conditioned or "imprinted" for subsequent differ- 
ential behavior. The term imprinting was originally used by CROUSE (1960) to 
indicate the process by which a chromosome is induced or "programmed" to 
behave differently from a genetically equivalent homolog during subsequent 
development, often many cell generations after the paternal and maternal homo- 
logs are combined in the same zygote. 

In both the marsupials and the eutheria, a two-part control mechanism is en- 
visaged in the proposed system. In marsupials, the two parts are pictured as lying 
close together or as being two components of a single controlling element. One of 
Genetics 78: 343-349 September, 1974. 
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the two components, the “sensitive site,” is somehow altered in the paternal-X 
chromosome prior to the completion of fertilization, either earlier, in the body of 
the male, or in the sperm en route to fertilization. The homologous sensitive site 
on the maternally derived chromosome is not so imprinted. At some stage in early 
embryogeny, this unimprinted sensitive site of maternal origin produces a single 
informational entity which attaches to or influences the adjacent receptor site and 
enables this X to remain active during subsequent development. The sensitive site 
of the paternal X does not transmit any information to the adjacent receptor site 
because of prior imprinting. 

We have proposed that the evolutionary transition from the marsupial system 
to the eutherian system was accomplished by a transposition of the sensitive site, 
alone, to an autosome. This as yet unidentified autosome would, if maternal in 
origin, release, as in the marsupial case, a single informational entity and this 
entity would activate the receptor site of one of the two X chromosomes. This X 
would remain active. The other X, not receiving the entity, would remain or 
become inactive at some later stage of development. The well-known mosaicism 
for X-linked genes observed in eutherian females would reflect the time in devel- 
ment when transfer of this informational entity occurred in any given cell line. 
This would mean that activation or inactivation is a two-step process and that 
there may be a considerable time lag between the two steps. 

The proposed mechanism makes it more obvious than ever before that the 
question of mammalian X-chromosome inactivation really involves two different 
problems. The first of these is the mechanism by which the X chromosome o r  X 
chromosomes which are to remain active are chosen. Second, once chosen, how 
is the whole chromosome involved rather than just one or a few genes? We have 
referred to the latter phenomenon as the pervasive effect. There is very little 
evidence as to how this pervasive effect is brought about. More information about 
the mechanism behind the pervasive effect appears to be necessary in order to 
understand better many of the data on X-autosome translocations. 

MOSAIC HETEROZYGOSITY 

The eutherian system of random X inactivation is believed to have a selective 
advantage over the marsupial system because of its “mosaic heterozygosity” 
(BROWN and CHANDRA 1973). With only the maternal X active, marsupial fe- 
males would be expected to be liable to sex-linked genetic defects in a manner 
similar to the eutherian male: a gene for color blindness or hemophilia in a 
marsupial female would be expressed if received from the mother even though 
a normal allele had been received from the father; the paternal allele would be 
on the inactive X and therefore not expressed. On the other hand, the mosaic 
heterozygosity enjoyed by the eutherian female would provide a type of flexi- 
bility analagous to fungal heterokaryons. It should be noted that the advantages 
of mosaic heterozygosity would accrue to the eutherian female irrespective of the 
mechanism by which random inactivation is achieved. 
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IMPRINTING 

Besides mammals there are two groups of organisms in which one or more 
paternal chromosomes function or behave differently from homologous maternal 
chromosomes. These groups are Sciara and its relatives among the Diptera ( METZ 
1938; CROUSE 1960), and mealybugs and related families among the coccid 
insects (Coccoidea:Homoptera) (BROWN and NUR 1964). A comparative study 
of the cytogenetics of these three groups should prove rewarding, but in this report 
we will confine ourselves to an analysis of some data from coccids which provide 
important evidence on the time in the life cycle when imprinting might occur. 

Mealybugs: Several recent reviews of coccid cytogenetics are available 
(BROWN and NUR 1964; BROWN 1969; BROWN and WEIGMANN 1969) and they 
may be consulted for detailed accounts of these unusual genetic systems. Only 
those data especially relevant to chromosome imprinting are mentioned here. 
The chromosomes of the female mealybug are orthodox in behavior except for 
some characteristics they share with most other coccids. During early develop- 
ment of the male embryo, the paternal set of chromosomes becomes heterochro- 
matic and remains so in most but not necessarily all somatic tissues (BROWN and 
NUR 1964; NUR 1967). Experimental evidence demonstrates a strict parallel 
between heterochromatization and genetic inactivity; in general, as shown by 
conventional genetic markers (BROWN and WEIGMANN 1969) and other evidence, 
the heterochromatic set is inactive in the male, but its genetic activity is restored 
in those few tissues in which the paternal chromosomes have undergone reversion 
to the euchromatic state (NUR 1967). The paternal set is always heterochromatic 
in the germ line. Meiosis is highly modified; the first division is equational for 
both eu- and heterochromatic chromosomes; at the second division, the two types 
of chromosomes are segregated into different nuclei. Therefore, of the four result- 
ant products of meiosis, two are heterochromatic and two euchromatic. Only 
the euchromatic products form sperm, and only the maternal genes are trans- 
mitted ( BBOWN and WEIGMANN 1969). 

Wher- mealybug sperm is irradiated, the diffuse centromere enables the vari- 
ously rearranged chromosomes to perpetuate themselves without loss ( CHANDRA 
1963a). No matter how small or how large, the rearranged paternal chromosomes 
undergo heterochromatization during embryogeny, divide normally during 
mitosis, and are typically segregated at meiosis. Irradiation of both sperms and 
eggs or of young embryos sometimes results in combinations of eu- and hetero- 
chromatic segments (NUR 1970). The two types of chromatin maintain a fairly 
clear-cut distinction from each other in the mitotic chromosome; the aberrant 
meiotic manoeuvres of such a chromosome are those expected if both its segments 
are playing their allotted roles. Imprinting in the mealybug is thus the result of 
a generalized influence throughout the chromosome complement. This effect is 
not reversed nor more than slightly modified by translocation to an euchromatic 
chromosome. 

In certain species of soft scale insects, a group of coccids related to the mealy- 
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bugs, both males and females are produced parthenogenetically by fusion of two 
haploid nuclei derived from a single division of the unfertilized egg (NUR 1971, 
1972). There are basically two types of parthenogenetic development relevant to 
this discussion. In one kind, fusion of polar body I1 with the egg nucleus results 
in only females in the four known examples. A quite different mechanism occurs 
in three other species: the egg nucleus divides once and the resultant daughter 
nuclei unite to form 3 zygote substitute. Depending on the species, some or all 
the embryos formed in this way develop as males with typical heterochromati- 
zation of one complete haploid set. Both haploid sets in these males are presum- 
ably genetically identical derivatives of the single haploid set of the egg nucleus, 
but one set becomes heterochromatic during early development, the other does 
not. It is therefore clear that the factors responsible for inactivation of one set of 
chromosomes can be entirely maternal in origin. Furthermore, because it seems 
unlikely that an entirely new mechanism for inactivation would have evolved as 
a function of parthenogenesis, it seems reasonable to assume that in sexually re- 
producing species also the paternal set is imprinted within an egg destined to 
produce a male embryo. 

The region within the egg which is responsible for imprinting appears to be 
restricted. The egg nucleus is presumed to lie outside this region because the 
maternal complement is not heterochromatized in sexually produced male em- 
bryos. Similarly the polar bodies also would lie outside the imprinting region; the 
evidence from parthenogenesis involving polar body I1 has just been cited and 
the evidence from two other sources leads to a similar conclusion. In mealybugs 
and their relatives, polar bodies do not degenerate, but participate in the forma- 
tion of polyploid tissues which persist in the adult. Whether in males or females, 
embryos or adults, none of the chromosomes in these polyploid nuclei normally 
becomes heterochromatic. Furthermore, after prior heavy irradiation of mealy- 
bug sperm. development of the zygote is defective, and instead one polar body or 
both together may undertake normal embryogenesis (CHANDRA 1963a). The 
resultant embryos and eventual fertile adults may be diploid, triploid, or mosaic 
but they are always female, with only euchromatic chromosomes (CHANDRA 
1962, 1963b). 

The sex ratio of the mealybug has long been known to be highly variable and 
modifiable by influences affecting the mother. In the light of NUR’s work (1971, 
1972) with soft scales, it is tempting to believe that the sex of mealybug embryos 
is determined by the functioning or nonfunctioning of imprinting mechanisms 
within the egg, presumably in that part of the egg through which the sperm 
passes on its way to the egg pronucleus. 

Mammals: The only evidence now available on the possible stage in the life 
cycle of mammals when imprinting might occur comes from a class of tumors of 
the human ovary (LINDER 1969) and from a human diploid/digynic-triploid 
mosaic girl (ELLIS et al. 1963). The evidence is meagre, but the fact that both 
these exceptional situations appear to have originated as the result of postmeiotic 
episodes appears significant to us. 

1) Ovarian teratomas are bizarre tumorous growths, mostly benign, which 
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originate from the ovary. They are often highly differentiated, sometimes with 
teeth, hair and other tissue systems. In such teratomas, no genetic markers are 
present that are not present in the host female, but some of the maternal markers 
are missing (LINDER 1969; LINDER and POWER 1970). The chromosome comple- 
ments of the teratomas are normal, 46XX, and one sex chromatin body is present 
in the nuclei. The most likely interpretation of these data is that the teratomas 
are postmeiotic products of strictly maternal origin (LINDER 1969). If so, this is 
contrary to the expectations based on our hypothesis, since the presence of two 
sets of maternal autosomes should result in two active X chromosomes and not 
one, as observed. 

2) A particularly relevant case is that of a human diploid/triploid (46,XX/ 
69,XXX) mosaic female (ELLIS et al. 1963). The extra haploid set in triploid 
cells was apparently of maternal origin but it was not possible to determine 
whether it was genetically the same as the maternal set in the diploid tissue. 
Union of one of the early cleavage products of the zygote (diploid) with polar 
body I1 (haploid) is the simplest way of accounting for the origin of this mosaic 
individual. One sex chromatin body was found in the diploid cells, two in the 
triploid (MITTWOCH, ATKINS and ELLIS 1963), and not one as would be expected 
from the proposed eutherian model. 

We feel that the coccid data summarized earlier provide important clues to- 
wards understanding these exceptional cases. In the ovarian teratomas, a detailed 
consideration of the results led to the assumption that in the host female, the 
second meiotic division had been suppressed or the equivalent obtained through 
the “re-entry of the second polar body” (LINDER and POWER 1970). The idea of 
re-entry of polar body 11: is attractive because such a union might provide a 
stimulus for further. albeit abnormal, development. In other words, a decided 
possibility exists, that if the “zygote” is formed by two maternal sets arriving by 
two di#erent routes, one may have undergone imprinting, but if both sets are 
derived by the same route, such as suppression of second meiotic division by 
colchicine (BOMSEL-HELMREICH 1971 ) . then neither would normally undergo 
imprinting. According to this interpretation, the presence of two sex chromatin 
bodies in the triploid cells of the diploid/triploid mosaic girl is the result of im- 
printing of polar body I1 prior to its fusion with one of the cleavage nuclei. 

The above interpretation of the mammalian data conforms generally with the 
evidence from the coccids that the immediate past history of the pronuclei com- 
bining to form the zygote or zygote substitute is of paramount importance. A 
specific difference with regard to polar bodies needs further comment: these 
appear to be subject to imprinting in the mammals but not in coccids. The appar- 
ent absence of imprinting of polar bodies in mealybugs and other coccids may be 
related to the fact that in these insects the polar bodies do not degenerate but are 
involved in the formation of large polyploid tissues which persist in the adult. 

To recapitulate, the evidence from parthenogenetic coccids and human ovarian 
teratomas leaves no doubt that the factors responsible for inactivation can be 
strictly maternal in origin. These results and the data from the diploid/triploid 
mosaic girl further indicate that imprinting occurs in the egg, and that there may 
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be differences between coccids and mammals in the pattern of localization of 
imprinting factors. 

In the control system suggested for eutherians, a single sensitive site is pre- 
sumed to occur in one of the autosomes. Because of the ambiguities mentioned 
above regarding the origin of maternal chromosome sets in some instances, it 
seems likely that attempts to identify the responsible autosome will provide a 
more appropriate test of the hypothesis than would correlations between the num- 
ber of active X chromosomes and the parental origins of extra chromosomal sets 
in polyploid embryos. Monosomic embryos, lacking the maternal homolog of the 
specific autosome, would be expected to have no active X chromosomes and suc- 
cumb shortly after the normal time for X inactivation. Trisomic embryos having 
two maternally derived homologs of this autosome would be expected to have two 
active X chromosomes; genetic imbalance would be less extreme than in the 
monosomic cases and embryos might survive long enough to permit accurate 
assessment of the number of active and inactive X chromosomes. 

On the other hand, it may be possible to investigate experimentally the ques- 
tion of imprinting in the mammalian polar body provided that re-entry of polar 
body I1 could be induced and the resultant zygote substitute enabled to develop 
further, perhaps by the techniques used to develop chimeras. 

These investigations were supported by grants from the Indian National Science Academy 
and the World Health Organization to H.S.C. and by a grant to S.W.B. from the National Science 
Foundation (NSF GB-8196:2). We thank DR. STANLEY M. GARTLER for drawing our attention to 
the ovarian teratoma data. 
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