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DNA helix destabilization by proline and betaine: possible role in the
salinity tolerance process
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Abstract Evidence is provided for the ability of proline, a
salinity induced osmoprotectant, to destabilize the double helix
and lower the T, of DNA in a concentration dependent manner.
At the reported salinity-adaptive bio-accumulation of 1 M and
above, proline could considerably decrease the T,, and partially
counteract the effect of sodium chloride and spermidine on DNA
stability. On the contrary, several other amino acids tested did
not show any such destabilizing effect on DNA helix. Enhanced
susceptibility to S1 nuclease and insensitivity to DNase I in
presence of increasing proline concentrations have further
suggested a clear destabilization of the double helix. Such an
effect is somewhat reminiscent of the interaction between
betaine, another salinity induced osmolyte, and DNA resulting
in decreased T, values. These interactions may be significant in
view of the abundance of such osmolytes in cells under salinity
stress-adapted conditions, with many a bacterial mutant
accumulating them exhibiting improved tolerance to salinity.
© 1997 Federation of European Biochemical Societies.
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1. Introduction

Proline and betaine are the two known major osmoprotec-
tants which accumulate in plants, bacteria, algae and marine
invertebrates in response to an array of abiotic stresses, most
prominent being the salinity stress [1-4]. More often, this
accumulation is the result of an adaptive de novo synthesis
in cells contributing a major share among osmolytes [5-8].
Such accumulations were found to reach up to 1 M internal
concentration in certain halophytes and bacteria, accounting
for as much as 10-20% of the dry weight [9-12]. These two
osmolytes were also reported as efficient stabilizers of pro-
teins, lipid membranes, organelles and cells under severe stress
conditions without being inhibitory to cellular functions [13-
19]. Further, genetically engineered hyper-accumulation of
proline was reported to confer salinity tolerance in tobacco
seedlings under laboratory conditions [20]. Many plant and
bacterial mutants accumulating proline and betaine have also
been found to exhibit an increased tolerance to salinity stress
[11,12,21-24].

We have investigated the interaction of these osmolytes
with DNA, since their access, even transiently, to DNA in
vivo under the stress adapted conditions can not be ruled
out due to their abundance. In fact, betaine was proved re-
cently to considerably destabilize DNA [25]. We report here
that proline destabilizes DNA and partially counteracts the
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effect of sodium chloride and spermidine on the stability of
the double helix within the adaptive bio-accumulated concen-
trations. The present study indicates a possible role of these
osmolytes in salinity tolerance process by negating the unde-
sirable effect of NaCl on DNA stability.

2. Materials and methods

L-Proline, hydroxy proline, glycine, alanine, valine, leucine, serine;
betaine, D-glucose, sarcosine, calf thymus DNA, Tris, EDTA, spermi-
dine, NaCl, agarose and A phage DNA were purchased from Sigma
(St. Louis, MO, USA). E. coli single strand DNA binding protein (ssb
protein) and pUC 18 plasmid were procured from Bangalore Genei
(Bangalore, India). DNase I was procured from Boehringer-Mann-
heim (Mannheim, Germany) and the SI nuclease from Pharmacia
(Uppsala, Sweden). All other chemicals were of analytical grade pur-
chased locally.

2.1. DNA melting studies

DNA melting studies were conducted in a buffer (1 ml) containing
10 mM Tris-HCI (pH 7.5) and 2 mM EDTA and the indicated con-
centrations of NaCl and additives. Calf thymus DNA (1.0 Asg) in the
above buffer, with or without the additives, was taken in a 1 cm path
teflon-stoppered quartz cell and incubated at the initial assay temper-
ature for 5 min. The increase in absorbance at 260 nm was monitored
in a Hitachi spectrophotometer attached to a temperature pro-
grammer KPC-6 and temperature controller SPR-7. Both the sample
and reference cells were heated together at a rate of 1°C/min, and the
net absorbance was recorded after every 1°C increase. The T, of
DNA was determined graphically from the transition mid-point of
the absorbance versus temperature profile.

2.2. DNase I sensitivity assay

The sensitivity of DNA to DNase I digestion was studied spectro-
photometrically (Hitachi) by measuring the increase in absorbance at
260 nm at 37°C in presence of different concentrations of proline.
DNase I (1 pug) was added to double stranded calf thymus DNA
(1.0 As60) in a buffer (1 ml) containing 10 mM Tris-HCI (pH 7.8),
50 mM NacCl, 5 mM MgCl,, | mM DTT. The enzyme was diluted to
required concentration in 10 mM Tris-HCI (pH 7.8) and 50% (v/v)
glycerol. DNase I sensitivity of DNA was also analysed by agarose gel
electrophoresis. Calf thymus DNA, A phage DNA, or pUC 18 DNA
(1 g each) in the DNase I assay buffer (30 pl) was incubated at 37°C
for 10 min with 25 ng of DNase I in the presence of different con-
centrations of proline and the digestion products were separated on a
0.8% agarose gel.

2.3. SI nuclease sensitivity assay

The S1 nuclease reaction mixture (30 pl) contained calf thymus
DNA (0.5 pg), buffer (5 mM sodium acetate (pH 4.7), 15 mM sodium
chloride, 0.1 mM ZnCly) and proline. DNA samples in presence of
increasing concentrations of proline were heated at 65°C for five min-
utes and quickly chilled on ice. Reaction was started by adding Sl
nuclease (1 unit) and incubated at 37°C for 15 min. The digestion was
stopped by adding EDTA and SDS to a final concentration of 50 mM
and 1%, respectively, and the products were separated on a 0.8%
agarose gel.

2.4. Single strand binding protein gel shift assay
The A phage DNA (0.5 pg) in 30 pl buffer containing 10 mM Tris-
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Fig. 1. Effect of increasing concentrations of proline on the 7, of calf thymus DNA: (a) Control DNA (without proline), (b) 0.06 M, (c) 0.25
M, (d) 0.5 M, (e) 1.0 M, (f) 2.0 M, (g) 3.0 M, (h) 4.0 M, (i) 4.5 M, (§) 5.0, (k) 5.5 M.

HCI (pH 8.1), 1 mM EDTA and 20 mM NaCl, was heated at 65°C in
the presence or absence of 3.0 M proline for 5 min and quickly chilled
on ice. Increasing concentrations of ssb protein was added and after
incubation at room temperature for 5 min, the samples were electro-
phoresed on a 0.7% agarose gel.

2.5. Displacement of DNA bound ethidium bromide by proline
Ethidium bromide (0.4 pg) in the buffer (10 mM Tris-HCI (pH 7.5)
and 50 mM NaCl) was excited at 480 nm and the emission was
recorded between 500-660 nm in a Hitachi spectrofluorimeter. Later,
calf thymus DNA (0.5 ug) was added to it to record the enhancement
in fluorescence emission intensity. Similarly, the emission spectra were
recorded with the addition of increasing concentrations of proline to
the above mixture after incubating at room temperature for 15 min.

3. Results

Destabilization of DNA double helix by proline was ana-
lysed by various methods. Proline was found to significantly
lower the melting temperature of calf thymus DNA in a con-
centration dependent manner. Though such an effect found at

Table 1
Effect of proline and other amino acids on the 73, of calf thymus
DNA in the presence and absence of additives

Concentration T, of DNA +£1.0°C
DNA 71.0
+1.0 M proline 65.0
+2.0 M proline 60.0
+2.0 M glycine 76.0
+2.0 M serine 79.0
+1.0 M alanine 72.0
+0.25 M valine 71.0
+0.1 M leucine 71.0
+2.0 M hydroxy proline 63.0
+0.5 M glycyl glycine 82.0
+2.0 M sarcosine 72.0
+1.0 M glucose 71.0
+1.0 M betaine 67.0
+1.0 M proline+1.0 M betaine 63.0
+10 mM spermidine 93.0
+0.5 M NaCl 96.0
+10 mM spermidine+1.0 M proline 85.0
+0.5 M NaCl+1.0 M proline 90.0
+0.5 M NaCl+2.0 M proline 86.0
+0.5 M NaCl+2.0 M glycine 94.0

60 mM was marginal, an appreciable decrease in 7, was
observed consistently (Fig. 1) at concentrations ranging
from 250 mM to 1 M, which are widely reported to be bio-
logically relevant [9—12]. In order to know whether the effects
shown by proline are specific, several other amino acids were
tested as controls. The results reveal (Table 1) that none of the
amino acids tested could induce a similar effect even at high
concentrations. While glycine, glycyl glycine, and serine were
found to significantly stabilize the double helix and increase
the T, alanine, valine, leucine and sarcosine could not greatly
alter the 7,,,. However, hydroxy proline at its maximum aque-
ous solubility point (2.0 M), could reduce the T;, by 8°C.
Proline, unlike its hydroxylated analogue, with a high aqueous
solubility (6.0 M) due to the reported anomalous solution
properties [18], was found to destabilize DNA even beyond
such a concentration (Fig. 1). However, the differential aque-
ous solubility of tested solutes prevented an ideal comparison
between them in their interaction with DNA.

Proline and betaine (1 M each) were found to have an
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Fig. 2. DNase I sensitivity of calf thymus DNA in the presence of
increasing concentrations of proline.
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Fig. 3. DNase I sensitivity of A phage, pUC 18 and calf thymus
DNA in the presence of different concentrations of proline.

additive effect in the reduction of 7, (Table 1). Moreover,
proline (1 M) was found to individually reduce the effect of
NacCl (0.5 M) and spermidine (10 mM) on DNA stability as
indicated by the decrease in T3, by 6°C and 8°C, respectively.
On the contrary, the co-addition of glycine (2 M) with sodium
chloride (0.5 M) did not influence the effect of the latter on
DNA indicating the ineffectiveness of glycine in counteracting
the salt effect (Table 1).

The helix destabilization was further confirmed with the
DNase I and S1 nuclease sensitivity assays. In the spectropho-
tometric analysis of DNase I digestion, increased proline con-
centrations were found to progressively protect the calf thy-
mus DNA against the digestion, with a near complete
protection observed at higher than 3.0 M (Fig. 2). This was
further demonstrated by gel electrophoresis profile of DNase I
digested samples of A phage, plasmid and calf thymus DNA
(Fig. 3). Rice and barley DNA did show a similar pattern of
resistance to DNase I activity in the presence of proline (data
not shown). This effect is either due to a decreased binding of
DNase I to DNA or destabilization of the double helix. The
former is less likely because proline does not affect the binding
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properties of proteins which interact with DNA (see below).
In contrast, proline at increasing concentrations was found to
make the double stranded calf thymus DNA more susceptible
to S1 nuclease digestion (Fig. 4). In the gel retardation assay,
binding of increasing amounts of ssb protein to A DNA in
presence of 3.0 M proline was found to retard the mobility of
the DNA-protein complexes which was clearly absent in the
control A DNA with the addition of 12 ug of ssb protein (Fig.
5). These results indicate the non-interference of proline in
interactions between such proteins and DNA. Finally, the
ability of proline in replacing the ethidium bromide bound
to double stranded calf thymus DNA was tested and the flu-
orescence emission data (Fig. 6) revealed a marginal displace-
ment which is expected of compounds that destabilize the
double helix.

4. Discussion

Proline was found to bring down the 77, in a concentration
dependent manner (Fig. 1), somewhat similar to betaine which
was reported to lower the 7;, and partly reduce the impact of
KCI on DNA stability [25]. While 1 M proline could reduce
the Ty, of calf thymus DNA by 6°C (Table 1), betaine at a
similar concentration could reduce the 7y, of poly (dG-dC) by
5°C and the bacterial DNA by 4°C [25]. The results are sig-
nificant in view of the reported hyper bio-accumulation of
these osmolytes under salinity stress. Such an effect was not
found with other tested amino acids, of which, glycine, glycyl
glycine and serine were in fact found to considerably stabilize
the DNA. Interestingly, with the addition of methyl group(s)
on the glycine structure, alanine, valine and leucine have cor-
respondingly lost both the aqueous solubility and the stabiliz-
ing effect on the DNA. Similarly, N,N,N-trimethylglycine (be-
taine) was found to be helix destabilizing when compared to
glycine and sarcosine (Table 1) [25]. In one such related at-
tempt to test the influence of methyl groups on the potency of
osmoprotection, it was demonstrated that, contrary to glycine
and sarcosine, compounds of betaine series, with trimethyl
groups on the nitrogen were found to ameliorate the effect
of high salinity (0.8 M) on the growth of E. coli [12]. Simi-
larly, the observed inability of glycine in counteracting the
effect of NaCl on DNA (Table 1) could probably be ac-
counted as one of the reasons for its failure to protect E.
coli from high salinity (0.8 M NaCl) stress [12]. Though pre-
liminary, these results apparently establish a correlation be-
tween the reported capability of these osmolytes to protect the
organism from salinity stress with their ability to negate the
salt effect on DNA stability.

+

1 M Proline
4+ 1.25M Proline
+ 2.0 M Proline
+ 275 M Pproline
¢ 3.0 M Pproline
+ 3.3 M Proline
+ 40 M Proline
calf thymus DNA

Fig. 4. S1 nuclease sensitivity of calf thymus DNA in the presence of different concentrations of proline.
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However, the destabilizing effect shown by hydroxy proline
is biologically insignificant as it is not known to accumulate in
cells under the stress-adapted conditions. Proline, on the con-
trary, is a widely reported osmoprotectant, known to stabilize
proteins somewhat analogous to chaperones [13] and act as a
protein compatible hydrotrope [26]. Further, the antagonistic
effect of proline to that of NaCl on DNA stability in vitro
possibly suggests a similar interaction in vivo where proline
could counteract the effect of high concentration of salt and
cations accumulating under stress conditions. Presumably,
DNA surrounded by a high concentration of salts is biolog-
ically less active than that is surrounded by both salts and
their counteracting osmolytes such as proline and betaine.
Moreover, proline and betaine were shown to have an addi-
tive effect on DNA stability (Table 1), and when present to-
gether could account for effective concentrations in vivo.
Apart from the suggested effect on DNA, these osmolytes
are known to be highly bio-compatible with a proven role
in the stabilization of proteins, organelles and cells [13-19]
which can not be ascertained with other amino acids. Inter-
estingly, upon increase in salinity of the growth medium, Lac-
tobacillus plantarum cells were found to instantaneously accu-
mulate betaine and proline in preference to alanine as an
adaptive measure [27]. Similarly, of the 150 compounds tested,
only proline and betaine series were found to effectively pro-
tect E. coli from the severe salinity stress suggesting the ver-
satility of these osmolytes in comparison to other solutes [12].

DNA destabilization by proline in our study was further
confirmed by the observed resistance of DNA to DNase I in
the presence of high concentrations of proline. In fact, it is
known that the activity of this enzyme on a stable double
helix is 5000 times higher than that on a destabilized helix
[28]. Further, this could not be due to structural changes in
the enzyme induced by proline as there are evidences that
proline, even at high concentrations, does not substantially
affect the structure and function of proteins [13-18]. On the
other hand, proline was found to confer structural stability to
DNase I at higher temperatures (data not shown). Increased
resistance to DNase I digestion and susceptibility to SI nucle-

| 2 3
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Fig. 5. Gel mobility shift assay of A phage DNA in the absence and
presence of 3.0 M proline with increasing concentrations of ssb pro-
tein. Lane 1, A phage DNA alone. Lane 2, A phage DNA+12 ug of
ssbp. Lanes 3-6, A phage DNA in the presence of 3.0 M proline
with increasing concentrations of ssbp as follows: 3, 3 ug of ssbp;
4, 6 ug of ssbp; 5, 9 ug of ssbp; 6, 12 ug of ssbp.
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Fig. 6. Fluorescence emission spectra of ethidium bromide in free
and DNA-bound form: effect of proline in displacing the DNA-
bound ethidium bromide.

ase in the presence of increasing proline concentrations sug-
gest that the destabilized DNA structures could exist at phys-
iological temperatures under stress adapted conditions.

Several studies indicate that both the in vitro binding affin-
ities and rate of binding of certain transcriptional regulatory
proteins to their target sites on DNA are extremely sensitive
to the electrolyte concentrations of the buffers used [29]. Since
DNA at physiological pH exists as a highly charged anion, it
is expected to be surrounded by cations which have a natural
binding affinity. Moreover, the salts which accumulate during
salinity stress may also unduly stabilize the double helix which
could adversely inhibit the DNA function in replication and
transcription [3]. Presumably, proline and betaine play an
important role in partially alleviating such an effect. In fact,
E. coli cells grown at very high salinity conditions (1 M NaCl)
were found to actively concentrate glycine betaine as much as
105 times that of the medium [12]. It was further envisaged
that during severe stress conditions in bacteria, cellular con-
stituents may completely be bathed in osmoprotectants that
reach concentrations above 1 M and interact with biomacro-
molecules [12]. Similarly, the presence of high internal concen-
trations of betaine under the stress-adapted conditions was
found to reverse the effects of salinity mediated osmotic stress
on DNA replication and cell division in E. coli which supports
the role of osmoprotectants in alleviating the stress effects on
DNA function [30]. Thus, the selective accumulation of these
two osmolytes in a wide range of organisms under the salt
stress appears to be a conserved adaptive measure rather than
a mere coincidence. While such an adaptive value of betaine/
proline-DNA interactions can be envisaged in prokaryotes
where a direct access for osmoprotectants to DNA exists,
the same can not yet be ascertained with respect to eukaryotes
with a distinct nuclear membrane barrier. However, such in-
teractions could logically be possible during certain stages of
cell division where the nuclear membrane barrier transiently
disappears. Though a direct interaction in vivo of proline or
betaine with DNA is yet to be established, these osmolytes are
the likely biological choices to counteract the effect of accu-
mulated salts on DNA.
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