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Abstract. This paper presents a description of a speech recognition system
for Hindi. The system follows a hierarchic approach to speech recognition
and integrates multiple knowledge sources within statistical pattern recogni-
tion paradigms at various stages of signal decoding. Rather than make hard
decisions at the level of each processing unit, relative confidence scores of in-
dividual units are propagated to higher levels. Phoneme recognition is achieved
in two stages: broad acoustic classification of a frame is followed by fine acous-
tic classification. A semi-Markov model processes the frame level outputs of
a broad acoustic maximum likelihood classifier to yield a sequence of seg-
ments with broad acoustic labels. The phonemic identities of selected classes
of segments are decoded by class-dependent neural nets which are trained with
class-specific feature vectors as input. Lexical access is achieved by string
matching using a dynamic programming technique. A novel language proces-
sor disambiguates between multiple choices given by the acoustic recognizer
to recognize the spoken sentence.

Keywords. Speech recognition; hierarchical approach; Hindi; knowledge
integration; natural language processing.

1. Introduction

Despite major advances in computer technology, interaction between the computer and the
user is still largely confined to keyboard input and screen or printed output. Communication
in the speech mode is a very important aspect of multi-modal human—machine interaction
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because speech is a fast and convenient means of communication among human beings,
Research in speech synthesis, recognition and coding has been pursued in several countries
over the last several decades. Most of this work, for obvious reasons has been for the English
language.

The use of computers in the voice mode is particularly important and relevant to a
multi-lingual country such as India. First, the facility for information input and output in
the speech mode would bring the computer within the reach of a large population of semi-
literate users who today are likely to be intimidated by the need to operate a keyboard.
Second, a microphone and speaker-oriented terminal is likely to be much cheaper and
robust than a keyboard and screen-oriented system. However, Indian languages pose a
challenge because of their phonetic richness which requires a detailed study of language-
specific features in relation to speech recognition and understanding. This was the primary
motivation of the Knowledge-Based Computer Systems project carried out at the Tata
Institute of Fundamental Research. An important component of this activity has been the
development of the Voice Oriented Interactive Computing Environment (VOICE), in other
words, a voice-activated terminal. ,

-The objective of the project was to develop an input/output interface to a computer with
a facility for voice and visual feedback. Considering that there was no such voice-oriented
system in Indian languages, a system working in a well-defined and strictly delimited task
environment was aimed at as a first step. The system was planned to accept Hindi sentences
clearly spoken by a speaker (with pauses between words, drawn from a vocabulary of about
200 words related to railway reservation enquiries) and to synthesize intelligible speech
in Hindi. An overview of the major accomplishments of the project can be found in Rao
(1993). The synthesis subsystem of the the speech I/O system is described by Furtado &
Sen (1996). The recognition subsystem is described here.

Two general philosophies of speech recognition that are commonly used are the sta-
tistical and the knowledge-based approach. The statistical approach primarily addresses
the problem of variability in the speech signal with the aim of discovering the underlying
structure using the data alone and without making specific a priori assumptions about the
speech signal (Levinson 1985). At the other end of the spectrum, the knowledge-based
approach is based on the premise that a proper understanding of the acoustic-phonetic
aspects of speech production and perception is essential for speech recognition (Cole et al
1980). In reality, there exists a continuum between these two extremes, leading to an inte-
grated approach (Makhoul & Schwartz 1985). We have focussed on an integrated approach
to speech recognition for Hindi.

The rest of the paper is organized as follows. Section 2 deals with special features of
the sounds of Indian languages and bring out the need for a comprehensive study of these
features. In § 3, the inherent notion of hierarchy of phonemes based on sound features is
described. An overview of a database of segmented and labelled Hindi sentences devel-
oped for the aforementioned purpose is givenin §4.In § 5, we give a brief discussion on
signal processing for extraction of features to represent dynamic as well as static aspects
of speech signal. An algorithm for selecting a subset of discriminative features based on
an extension of Fisher’s criterion to a multi-class situation is also described in the same
section. Section 6 deals with the hierarchical approach to classification. It describes classi-
fication of speech frames into one of broad acoustic classes by a multi-variate Gaussian, the
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generation of segments with broad acoustic labels by a semi-Markov model and fine-level
(phonemic) labelling of selected segments. In § 7, the modelling of a lexicon in terms of
acoustic and durational attributes is described. The domain knowledge is used in the design
of a distance metric for comparing lexical templates. An outline of language models uti-
lizing syntactic and/or semantic/pragmatic knowledge of the task domain is given in § 8.
The performance of the overall system is presented in § 9. Some proposed improvements

and extensions to the system are outlined in § 10. A summary of the work is presented
in§11.

2. Special features of Indian languages

The acoustic-phonetic profile of Hindi (and other Indian languages) differs considerably
from European languages. In the context of incorporating language specific features into
speech recognition system, it may be worthwhile to delve into these characteristics and
point out how they lead to the specific recognition strategy adopted here. In the following,
speech sounds in Hindi are compared and contrasted with those of English (due to our
familiarity with English).

The Hindi alphabet (in Devanagari script with the corresponding IPA symbols) is shown
intable 1. Ithas three sections: the first section lists the vowels, the second section deals with
phonemes whose production involves complete closure of oral tract (plosives, affricates
and nasals); the third section lists the semivowels and fricatives.

Table 1. Hindi alphabet and its corresponding IPA symbols.

A || T || F | F{w|u [0
ajal |t |uit|ulul|e|lae| o |au
|9 |T| H | F
k1K lgld |y
T\ g || & |5
tf |t | & | d&" | n
Tl || 7w |o
t |t [d|d"|n
SR ERERE:

t | th | d|d|n
T lw (T w7
plpt|b| b |m
R s
Jlrillw{fis!|s|h
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The second section covers more than half the phonemes in Indian languages; it is this sec-
tion containing stop consonants which differs most from the ensemble of similar phonemes
in English. The phonemes in this section are arranged in a 5 x 5 matrix according to the
manner and place of articulation. There are 5 rows corresponding to 5 places of articulation:
velar, palatal, retroflex, dental and labial. The plosives are arranged in the first 4 columns
according to whether they are voiced and/or aspirated or not. The fifth column contains the
nasals. The phonemes in the first column are unvoiced stop consonants. In a given row, a
phoneme in the third column is the voiced counterpart of the phoneme in the first column.
The phonemes in the second and fourth columns are aspirated counterparts of the sounds
in the first and third columns respectively. Aspiration is a phonemic attribute in Hindi.
Thus Hindi has 20 phonemes in the plosive category (including the affricates) whereas
English has only 8. This abundance of plosives in Hindi is, first, due to the existence of
an extra place of articulation (retroflex) and, second, due to its having a set of aspirated
plosives (voiced as well as unvoiced). As Hindi and most other Indian languages have
phonetic scripts, the alphabet is also organized on the basis of the production mechanisms
of phonemes.

Here it may be worth mentioning some of the other special features in Indian languages.
The attribute of retroflexion is not restricted to stop consonants alone. Unvoiced retroflexed
fricative /g / (which appears in the third section in table 1) is a phoneme in most Indian lan-
guages. Many others have retroflexed lateral semivowel /1/, although it is not a phoneme
in Hindi. Malayalam, a Dravidian language, has retroflexed trill as well. Marathi has an
alveolar affricate /c/.

In comparison to stop consonants, Indian languages have a much smaller inventory of
fricatives. The labio-dental and alveo-dental fricatives of English are absent. Interestingly,
they are often approximated by closest sound of the native tongue while pronouncing
English words. Whereas /v/ is substituted by /«w/, /68/ (/ th/ as in word “thin”) and /3/
(/d/ as in word “the”) are substituted by dental plosives /¢"/ and /d/ respectively. The
Marathi language improves upon this approximation by using aspirated /w"/ in place of
/v/.

From the above discussion, it emerges that aspiration has a strong presence as a phone-
mic attribute in Indian languages. Hence a speech recognition system for an Indian lan-
guage should take into account the change in the acoustic quality of unaspirated stops (as
compared to those of English) due to the extra phonemic dimension of aspiration.

In English, aspiration is used mainly to cue the absence of voicing in word-initial
plosives. In fact, aspiration following a burst is a very important factor in distinguishing an
unvoiced stop from a voiced one. This advantage is absent in Hindi due to the phonemic
character of aspiration. Here, initiation of vocal cord vibrations prior to release is one
major cue to identify a voiced stop (Davis 1994). '

3. The notion of hierarchy in phoneme classification

An inherentnotion of hierarchy exists in describing the phdnetic units of a spoken language
and, in general, these units are grouped into broader categories (such as vowels, fricatives,
plosives etc.) based on their manner of articulation. Also, the organization of dominant
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stop consonants according to their place and manner of articulation in the Hindi alphabet
suggests a hierarchical approach to recognition of phonemes. Phonemes generated by a
given manner of articulation generally have similar broad acoustic characteristics. A major
advantage of a hierarchical classification strategy over a single stage classifier is that a
complex decision surface can be replaced by a combination of relatively simpler decisions.
This involves fewer parameters at each stage of classification; these can be estimated better
even with limited training data, resulting in better classification accuracy (Poddar & Rao
1993). In addition, features appropriate for the subtask in hand can be used at each stage
of classification. This strategy also allows for progressive improvement of the system
capabilities by replacing processing modules by better ones, as and when they are available.
If the process of decoding a spoken message is viewed as a search process, a hierarchical
organization results in pruning the search space at each stage of decoding as well.

The existence of natural organization of different levels of speech perception: e.g.
acoustic-phonetic, phonemic, syllabic, lexical etc. is another motivation for looking at
the classification problem in a hierarchical framework. The message-decoding process
can progress in stages by focusing attention to different levels of abstraction of the signal
at successive stages. Ideally, the processing modules in the different strata should inter-
act with each other, each strengthening or weakening the hypotheses generated by other
modules in the spirit of a blackboard model (Brachman 1978). We have implemented
bottom-up decoding as a simpler but important first step towards this. Nevertheless, we do
incorporate some of the features of the more general structure: e.g. by propagating relative
confidence scores of individual processing units to higher levels, rather than make hard
decisions locally at each level. In the present system, the process of phoneme reco gnition is
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Figure 1. Block diagram of the hierarchical speech reco gnition system.
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Figure 2. Broad acoustic space of speech sounds.

achieved in two stages: classification of short duration speech segments into Broad Acous-
tic Classes (BACs) followed by a second stage Fine Acoustic Classification (FAC) into
individual phonemes. Figure 1 is a functional diagram of our speech recognition system
based on this approach.

Broad acoustic classes are chosen to satisfy the following desirable properties.

(1) Each group should have one or more identifiable acoustic features associated with it.

(2) The categorization of phonemes should help in pruning the search space during recog-
nition phase.

The clustering of the ensemble of phonemes into the BACS is schematically shown
in figure 2. This classification scheme has an articulatory basis. The mode of excitation
of the resonant cavity is used to divide the set of phonemes into four subsets. Sounds
generated by pure aperiodic excitation are classified into transients and continuants. The
transient is the release/burst of an unvoiced plosive and is characterized by a narrow peak
in the energy contour as well as relatively flat spectrum. The continuant fricatives are
subdivided, depending on the strident energy, into two classes: strong and weak unvoiced.
Similarly, sounds produced by mixed (i.e., periodic and aperiodic) mode of excitation are
grouped into three classes. The interword silence and closure of unvoiced plosives together
constitute a separate class. Sounds produced by pure periodic excitation are divided into 3
subclasses depending on the mode of radiation of sound energy. The voicebar, the sound
energy radiated from the walls of pharyngeal and oral cavities during the closure of a
voiced plosive, forms a class by itself, The production of nasals involves the closure of
the oral cavity and lowering of the velum. Sounds radiated only through the mouth are
grouped into flap and sonorant classes based on the shape of waveform envelope. The
intervocalic /r/ and /d/ in Indian languages often manifest themselves as flaps. This is
characterized by a narrow valley in the temporal trajectory of amplitude. The vowels are
further subdivided into three classes based on the location of the first two formants in the
spectrum. : . C ’
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Table 2. Glossary of the broad acoustic

lexicon.

FRON High front vowels
BACK Low back vowels

MID Other vowels

NASA Nasals

FLAP- Retroflexed flap

UBUR Unvoeiced burst

VBUR Voiced burst

USFR Unvoiced strident fricatives
VSFR - Voiced strident fricatives
UWFR Unvoiced weak fricatives
VWFR Voiced weak fricatives
VBAR Voiced closure

SIL Unvoiced closure

The 13 BACs are listed in table 2. Here, the voiced and unvoiced fricatives are further
subdivided into strong and weak ones. This is to take into account the important phonemic
role played by the presence or absence of aspiration in Indian languages.

4. Speech database

The choice of phonemes as units of representation demands an inventory of segmented and
labelled speech data for training and testing the speech recognition system. Since databases
for non-Indian languages cannot be used for Hindi (owing to the language specific effects
discussed in previous section), a speech database in Hindi was designed and developed.
The vocabulary consists of about 200 words most commonly used in a railway reservation
enquiry task. Typical queries in this context were solicited from volunteers. Based on these
responses, sentence templates were formed in terms of word categories such as city names,
classes of tickets, verb names etc.

4.1 Speech recording

The sentences, spoken by a male speaker with pauses between words, were recorded in a
sound-treated room in the presence of ambientnoise. A Sennheisser directional microphone
(Model MD 412 LM) was kept at a distance of about 10 cm from the lips of the speaker.
The speech signal was low pass filtered at 7.0 kHz using a Wavetek filter and digitized at
16 kHz rate with 16-bit quantization using a DSC200 A-D/D-A converter.

Energy, zero crossing rate and peak-to-peak amplitude of speech data frames of 9 ms
duration were calculated at 3 ms intervals. Energies in the frequency ranges 60-250 Hz,
0-4 kHz and 4-8 kHz were used to capture voicing, vocal tract resonance, and frication
respectively. Frequencies and amplitudes of the peaks in the linear prediction spectrum
were computed. These parameters were plotted on VAXstation screen to facilitate the
segmentation and labelling procedure. '
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Waveform and Spectrogram of /p/ and /phf
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Figure 3. Waveforms with spectrograms of unaspirated and aspirated stops “987” /p/.and
“&eT” /p"/ in example words.

4.2 Units of representation

Although this database was developed to cater to the needs of the current recognition
system, the design goals were of a general nature. The main aim was that the labelling
scheme should meet the demands of not only phoneme-based continuous speech recog-
nition systems in different task domains but also those of systems following different
design philosophies. A properly desi gned database would also facilitate studies of acoustic-
phonetic correlates of the language. ' :

Phonemes are defined with respect to their linguistic function in a language. A given
phoneme need not be an acoustically homogeneous unit. In the context of machine recog-
nition of speech, acoustic homogeneity of the units of representation is important because
it is the spectral similarity of different realizations of a unit which enables a recognition
system to infer its identity. This was taken into account while choosing the units of seg-
mentation; most of them are phonemes and some of them are sub-phonetic units. Speech
spectrograms were used as a guide in this process. For example, a well-articulated stop
consonant may be segmented and labelled as four units: closure, burst, frication and as-
piration. In fact, the duration and intensity of aspiration differenciates between aspirated
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and unaspirated plosives. This phenomenon is illustrated in figure 3. Here, the waveform
and spectrogram of the phoneme [/p/ /a/] (as in the word “qe&1”) is shown along with
that of [/ p"//a/] (as in the word “eer ). i

In order to capture such differences in acoustic characteristics, a system of suffixes
and prefixes was employed. Since Roman script was used to label the segments, several
symbols were used which can be affixed either before or after the labels representing
phonemes. For example, the aspiration of /p/ in “wer” is marked as /**p/ whereas the
corresponding segment in “qe1” is marked as /*p/. In both the cases, there is a frication
following the release of the unvoiced stop consonant / p/. In the case of aspirated consonant,
/p"/, the region marked “C” in figure 3, carries frication as well as aspiration. Intervocalic
/r/ and retroflex plosive (in non-geminated context) often manifest as taps or flaps. Such
instances are recorded by using suffix “F” (i.e., labels /r F/ and /d F' /). The nasalization of
vowels, sometimes, makes lexical difference. For example, if the vowel /ae/ in the word
“hai” is nasalized, it denotes that the subject is plural. Instances of nasalized vowels are
recorded by using suffix N to the symbols of vowels. Further details including the inventory
of labels, the graphical tools used for segmentation and consistency checks are discussed
by Samudravijaya et al (1991). 200 sentences were manually labelled. These sentences
were used for training the recognition system. The next 50 sentences in the database were
used to test the system. An effort is underway to implement a semi-automatic labelling
system (Samudravijaya et al 1994).

5. Signal processing

The analog speech signal, used for training and testing the recognition system, is passed
through an anti-aliasing filter with a cut-off frequency of 7.0 kHz and digitized with 15-bit
resolution at 16 kHz sampling rate.

5.1 Endpointing

The current design of the system allows for recognition of isolated words. The speech
waveform is processed to detect the endpoints of the words constituting the spoken utter-
ance. This avoids the time-consuming computation of the full feature vector during the
silence period. Endpoint detection is similar to the one employed by Rabiner & Sambur
(1975) and is based on sets of upper and lower thresholds corresponding to Zero Cross-
ing Rate (ZCR), maximum Peak-To-Peak amplitude (P2P) and log energy of the analysis
frames of 9 ms duration. These threshold values are updated for every word based on their
values during the word.

5.2 Feature extraction and selection

The recognition system uses a 30-dimensional feature vector comprising dynamic as well
as static features. It primarily consists of cepstral coefficients, their temporal derivatives
and features such as zero crossing rate. This section describes the processing of the speech
signal to arrive at the feature vector.
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The preemphasised (pre-emphasis factor = 0.98) and Hamming windowed signal was
analysed in terms of analysis frames of 9 ms duration with a frame shift of 3 ms. The analysis
frame size and frame shift interval are chosen to be small so that short duration acoustic
events such as bursts are represented sufficiently well. The set of cepstral coefficients
was derived from prediction coefficients (order = 16) using the recursion relation between
them (Markel & Gray 1976). The cepstral coefficients are weighted by a triangular window
to obtain quefrency weighted coefficients.

In this system, the spectral dynamics is represented by the first temporal derivatives of
the cepstral coefficients. The rate of change of spectral properties can vary depending on
the speaking rate, the phonemic context etc. In order to accommodate a range of spectral
changes which can occur in natural speech, it was decided to provide for two sets of
cepstral derivatives. Let C'(k, n) denote the kth quefrency weighted cepstral coefficient
corresponding to the nth frame. The zeroth cepstral coefficient is the log energy of the
analysis frame and is normalized in the range (0,1) over the utterance. The Near Context
feature NC(k, n) and Far Context feature FC (k, n) are defined as

NC(k,n)=2%C(k,n) — C(k,n +2) — C(k,n ~ 2),
FCk,n)=C(k,n+6) — C(k,n — 6).

While the far context feature captures spectral change over a 39 ms window, the near
context feature enhances the detectability of short-term acoustic events such as bursts.
The 17 cepstral coefficients together with features capturing their temporal variations
constitute the 51 components of the 55-dimensional feature set. Four additional features
which do not depend on cepstral analysis but are known to be useful in speech recognition
are also included in the feature set. They are the zero crossing rate, the first reflection
coefficient, the normalized residual energy obtained by linear prediction analysis and a
special feature called flap enhancer. The motivation in using the feature flap enhancer, is
(as mentioned in the section on database) the manifestation of intervocalic /r/ and retroflex

plosives as flaps. They are characterized by a sharp dip in the amplitude curve. The flap
enhancer is defined as

FE(n)= Ajefi(n) + Aright(n) — 2 * P2P(n),
Ajest(n) = MAX(P2P(n — 4), P2P(n — 6)),
Aright(n) = MAX(P2P(n + 4), P2P(n + 6)).

Here P2P(n) denotes the maximum peak-to-peak amplitude of the nth frame.

The 55-dimensional super feature set is arrived at by considering the need for repre-
senting the spectrum and its temporal variations at the frame level. The set also includes
features which are expected to be useful from acoustic-phonetic knowledge considera-
tions. However, it is likely that only a subset of these features may actually be useful for
classification. A recognizer using a large feature set can be computationally more complex.
In addition, it requires a large amount of training data (Kanal & Chandrasekaran 1971).
In order to alleviate these problems, an attempt was made to reduce the dimensionality of
the feature space.

The Fisher criterion (Duda & Hart 1973) is a well-known method of rating the goodness
of an individual feature for pattern recognition based on F-ratio. It is the ratio of the
inter-class variance and intra-class variance. Pairwise Fisher's ratio is defined
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ljk = (Kik — I/ij) /(Uk +o k)

where w4 and pj; denote the cluster means for the kth vector component of classes i and

J respectively, and orizk and ojzk the corresponding cluster variances. We used the following
generalized definition of F-ratio to a M-class classification problem

1 | o
Fr = M(M—l)ZZFUk’ I #j.

The protocol for feature selection is to find the average class-pair F-ratio for each vector
dimension (or feature) and order the F-ratios. The first N features are then selected to get

the best recognition accuracy on the broad phonetic categories.
The F-ratios, Fy, were computed for all the components of the 55 dimensional super

feature set from the training data. The rank ordering of the 55 features in terms of their
F-ratios is listed in table 3.
The F-ratio of the least discriminating feature is about an order of magnitude less than
“ that of the best feature. The incorporation of features with low F-ratios in the feature set
may not enhance its discriminatory capability. On the other hand, they may adversely
affect the classification performance if training data is not adequate. Thus, a smaller set
of features would be preferable. This set can, in principle, be identified by actual clas-
sification experiments. However, the process of determining the optimal feature set by
exhaustive experimentation is prohibitively expensive. A simpler solution is to assume
that the best N-dimensional feature vector consists of the N features with the largest
F-ratios. The optimal value of N was decided by a simple experiment as described
below.
A Gaussian classifier was trained with 150,000 samples belonging to the 13 classes and
frame level recognition accuracy was computed for each class. In each set of experiments,

Table 3. Rank ordering of the 55 features in the super feature set in terms of their F-ratios.

Rank Feature F-ratio Rank Feature F-ratio .Rank Feature F-ratio
1 ZCR 1.596 2 C 1.552 3 RC1 1.474
4 Co 1.300 5 FE 0.809 6 ER 0.809
7 Cy 0.772 8 Cq 0.732 9 NCy 0.727

10 Cs 0.714 11 Co 0.640 12 Cs 0.633

13 FCy 0.618 14 Cu 0.530 15 Cio 0.491

16 Cs 0.485 17 Cis 0.461 18 NC, 0.433

19 Cy 0.431 20 Cy 0.428 21 Cig 0.389

22 Ci2 0.375 23 Ci4 0.357 24 NCg 0.351

25 FCq 0.319 26 FCyy 0.289 27 FC, 0.285

29 Ci3 0.285 28 B 0.262 .30 . Cs 0.253

31 FC, 0.247 32 FCy 0.225 33 FCyy 0.218

34 FCq 0.215 35 FCis 0.209 36 FCy 0.208

37 NC; - 0202 38 NCy 0.187 39 FCis 0.184

40 NGy 0.184 41 NCy 0.180 42 NCy3 0.170

43 FCyg 0.149 44 NCy 0.142 45 FC3 0.129

46 FCy 0.117 47 NCg 0.116 48 NCs 0.112

49 FCpp 0.104 50 NCig 0.100 51 NCis 0.100

52 NCis ©0.095 53 NCys 0.087 54 NCig 0.084

55 NCyp3 0.061
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Figure 4. Recognition accuracy of the broad acoustic classifiers as a function of feature
vector dimension. '

the N best (in terms of highest F-ratio) features were used with N varying from 10 to
55 in steps of 5. The results of these experiments are presented in figure 4. Here, the
correct classification rates corresponding to each of the 13 BACs are plotted as a function
of the dimensionality of the feature vector. For all classes, the classification accuracy at
the frame level generally increases till N = 30, remains steady for a while, and then
marginally decreases as N increases. Overall classification rate, independent of the class
label, is also plotted in the same figure as a solid dark line. Even here, the vector comprising
30 best features appears to offer the best performance with the fewest dimensions. Hence,
it was decided to use 30 best features for pattern classification. This vector consists of
17 cepstral coefficients, the first few short- and long-term cepstral differences, and all the
non-cepstrum based special features. ‘

The choice of the best feature set seems to be in conformity with acoustic-phonetic
considerations. Most of the specialized features appear in the pruned subset as expected.
The Flap Enhancer feature introduced here, to represent the Broad Acoustic Class Flap,
has an F-ratio larger than most of the cepstral coefficients. This supports the philosophy
of using acoustic-phonetic knowledge to design a comprehensive set of features and the
use of a statistical approach to select a proper subset which is as effective or even better
than the superset. It is seen that only the first few coefficients of the short- and long-term
cepstral differences are members of the pruned feature set. Thus, while speech-specific
knowledge motivated our consideration of these dynamic features, the objective measure
(F-ratio) guided us in selecting relevant components. '
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6. Hierarchical model of classification

The classifier architécture described in this section is a partitioning of a monolithic classifier
into smaller classifiers. The modularization is guided by the knowledge of class hierarchy.
The probability of a given feature vector x belonging to a fine acoustic class Cy, is computed
as

P(Cilx) = P(Ci|Gm, X)P(Gpx),

where Cy, belongs to the broad acoustic class Gy,.
6.1 Broad acoustic classification and segmentation

Segmentation of speech in terms of broad acoustic classes can be viewed as a joint optimal
search for segments and their labels. A fully connected semi-Markov model (Ferguson
1986) has been used to model the segmentation problem. Here, full connectivity is required
as typically any broad acoustic class can precede or follow any other class. The semi-
Markov property in the model is employed to exploit duration cues which are especially
useful in pruning spurious segments that may arise when acoustic cues are weak. The
optimality itself is based on the Maximum Likelihood criterion.

The likelihood of a given feature vector belonging to abroad acoustic class was computed
from the multi-variate Gaussian distributions used to model the classes. The initial value of
the model parameters were estimated from labelled training data. The intrinsic durations
of broad acoustic classes and inter-segment transition data were likewise initialized using
labelled data. The parameters were then re-estimated to maximize the likelihood on the
training data. The re-estimation was carried out iteratively wherein during each iteration
optimal segmentation was first carried out using the existing model, and then computing
the new model based on the segments obtained in the current iteration.

As mentioned earlier, whereas the introduction of explicit durations using semi-Markov
models can potentially improve segmentation, the computational load increases consider-
ably. If the number of states in the model is N, and the length of the utterance in frames
is T, and the maximum duration of a broad acoustic class is Ty, the segmentation com-
plexity is O (N?T Ty,). This is typically about two orders of magnitude more than that of
conventional hidden Markov models O(N2T). To alleviate the problem of the increased
computational complexity in semi-Markov models a constrained search approach was pro-
posed. This reduces the search time without unduly sacrificing segmentation performance.
The basic idea here is to make use of an acoustic landmark-based candidate boundaries
to anchor the search, and at the same time ensure optimality using segmental dynamic
programming. More details on the algorithm can be found elsewhere (Samudravijaya et al
1994; Krishnan 1994).

In the work being described here, acoustic landmarks based on the multi-level dendro-
gram proposed by Glass (1988) was employed. This is based on hierarchical clustering
of seed segments. However, there is a difference. Whereas Glass generated dendrograms
based on the auditory spectrum, we have generated dendrograms based on frame-level a
posteriori acoustic class probabilities. These probabilities are generated by normalizing
the class conditional likelihoods. The primary reason is reduction in computation; the
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Figure 5. Dendrogram aided segmentation of a word by a semi-Markov model.

dimension of the feature vector is reduced from 40 (in case of the auditory spectrum)
to 13 (the number of broad acoustic classes). Another reason is that the feature set used
in the present work employs a cepstrum-based representation which tends to be relatively
more noisy, thereby rendering the generation of good dendro grams more difficult. Figure 5
illustrates the segmentation achieved by the semi-Markov model using dendrogram based
acoustic landmarks for the Hindi word “ITCaoT 2,

Optimal segmentation of the spoken utterance is performed using the maximum like-
lihood criterion, as mentioned previously. The constrained search was seen to reduce the
computational load by a factor of 50 in comparison with the full search. The method
yielded labelling accuracy of 72% using the 13 broad acoustic classes and full search.
Substitutions account for the majority (67%) of the errors. This is followed by deletions
(24%) and insertion (9%) errors. The substitution errors were seen to occur primarily
due to the following confusions: (i) mid and front, and mid and back vowels: (ii) voiced,
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unvoiced weak fricatives and voiced, unvoiced plosives; (iii) nasals and voiced closure.
Many of these confusions are understandable and expected and have been dealt with at the
fine classification stage. Insertion errors were primarily seen to occur on flaps. The phone
boundary misalignment with reference to the manual boundaries were found to be small
and largely systematic. The acoustic landmark constrained algorithm performed slightly
poorer than the full search algorithm. Here, deletion accounted for the majority of the er-
rors (5.9%), treating the full search segmentation as the reference. The primary source of
deletion was seen to be weak unaspirated plosives. This is followed by insertions (1.5%),
where the flaps were the major source of error.

6.2 Fine acoustic classification

The output of the broad acoustic classification module is a template in the form of a se-
quence of segments along with their broad acoustic labels, durations, and scores. Following
the hierarchical approach, the broad acoustic labels of a segment are then refined to fine
acoustic labels using class-specific features. If fine acoustic classification is to be done for
all the 13 classes, the amount of training data available will, on an average, be an order of
magnitude less than that for broad acoustic classification. Morecver, the actual amount of
training data available for certain BACs is much less because of the uneven distribution
of BAC:s in the labelled database. Hence, in the context of the present task, we decided
to restrict this stage of processing to some classes based on certain criteria. First, enough
data should be available to estimate the parameters of the classifier. Second, resolution of
these segments should result in unique templates for all the words in the vocabulary of the
task. '

The requirement for training data increases with the number of parameters of the clas-
sifier. For example, it is essential to capture spectral dynamics of stop consonants well in
order to obtain satisfactory recognition performance. Due to paucity of sufficient labelled
data, the refinement of broad acoustic labels was limited to steady state segments such as
vowels and nasals. Also, the vowels occur more frequently than obstruents such as plosives
in any speech database. So, in the current implementation of the system, all segments with
either a vowel or nasal broad acoustic label are further processed by the subsequent module
to hypothesize their fine acoustic labels.

6.2a Vowel classification: The BAC classifier uses a feature vector comprising compo-
nents suitable for capturing dynamic as well as static characteristics of phonemes. Vowels,
being continuants, can be represented by the instantaneous shape of the spectrum and
hence features characterizing temporal variations are not essential for their classification.
We employed a neural network-based vowel classifier which uses 8 quefrency weighted
cepstral coefficients — a proper subset of the 30-dimensional super feature set used for
broad acoustic classification — to arrive at the phonemic identity of the vowels.

Each vowel belongs to one of three BACs, each of which have three members — Front:
/i/,/e/,/ea/;Middle: /ae/, /A/,/a/;and Back: /u/, /o/, /ao/. For each of these BACs,
a 3-layer perceptron with 8 input, 6 hidden and 3 output nodes was employed to determine
the identity of the vowel. Each network was trained with 155 samples and was tested with
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a dataset of equal size. The vowel classification networks achieved an overall recognition
accuracy of 95.2% on the training set and 80.8% on the test set. The considerable difference
between classification accuracies on the training and test sets indicates the inadequacy of
the training set size. In such a scenario, a single-stage classifier of 9 vowels can be expected
to perform worse than the hierarchical classification strategy adopted in the system. In order
to verify this hypothesis, the training data comprising all nine vowels was used to train
a 8-16-9 single-stage classifier. The number of units in the hidden layer was so chosen
that the complexity of hierarchical and direct classifiers are comparable. The recognition
accuracies of the latter for training and test sets were 71.2% and 56.3% respectively. The
better performance of the 2-stage classifier demonstrates the advantage of hierarchical
classification strategy in case of limited data. Also, the hierarchical network needs less
time for learning than the equivalent single-stage classifier.

6.2b  Nasal-voicebar classification:  Apart from the BACs associated with vowels, nasals
and the voicebar, are two classes whose members are voiced continuants occurring relatively
frequently in natural speech. Therefore, it is worthwhile to perform fine classification of
these broad groups. A common articulatory characteristic of members of both these groups
is that the oral branch is kept closed at one end; hence acoustic energy from the glottis is not
transmitted through the oral cavity. In the case of nasals, it passes through the nasal branch
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Figure 6. Output of fine acoustic classifiers and the revised labels.
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and gets radiated through the nostrils. Consequently, the signature of the corresponding
oral cavity configuration is normally evident in the spectrum of a nasal, while it is rarely
observable in the voicebar spectrum. However, the energies of word-initial nasals are often
so low that the high and medium frequency components are very weak compared to those
corresponding to the glottal excitation; this blurs the distinction between such nasals and a
voicebar in such situations. Consequently, a significant number of word-initial nasals are
classified as voicebars by the broad acoustic classifier. In order to rectify this anomaly, we
used a single fine acoustic classifier to discriminate between the three nasals and the voice-
bar. A 17-6-4 neural network was trained by 1140 patterns with the first 17 components of
the super feature vector (¢g-weighted cepstral coefficients) as the input to the network. The
trained network performed with an accuracy of 90% and 88% on training and test corpus
respectively.

6.2c Wordtemplate: The phonemic labels provided by the vowel and nasal fine acoustic
classifiers replace the broad acoustic labels of the corresponding segments in the word
template. The output of the intra-category classifiers and the revised template of the word
arreeror are shown in figure 6.

7. Lexical access

In the preceeding sections, we described the process of converting a continuous time-
domain signal of an utterance into a sequence of word templates. The processing of these
word templates in the symbolic domain to recognize the spoken sentence is described in
this and the following sections. The two stages of this symbolic processing are (1) the
generation of a sorted list of word candidates corresponding to each test word template
(i.e., the lexical access), and (2) the determination of an optimum sequence of words — the
recognized sentence — based on a model of grammar of the language, i.e., the syntactic
processing.

The goal of lexical processing is to identify within the lexicon the word which best
matches the test word. In a general case, the lexical module may yield a sorted list of
word candidates together with measures of their similarity with the test word, so that
this list may be processed by a syntactic module. The design of lexical module primarily
consists of two tasks: (a) deciding a scheme for representing words in terms of their
attributes, and (b) defining a measure of similarity between representations of two words
in such a manner that the system’s performance is optimal for the specified recognition
task. Once a representation scheme and a similarity measure are chosen, a dictionary of
reference templates of the words can be developed. For each word, one or more reference
templates can be generated out of templates corresponding to multiple repetitions of the
word. During the recognition phase, the template of a test word is compared with all the
reference templates and the word whose reference template is closest to the test template
is chosen as the spoken word.

Matching word templates is essentially a string comparison process, since each tem-
plate is a sequence of acoustic-phonetic segments along with their attributes. Dynamic
programming techniques can be used to find a globally optimal path for matching two
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sequences by making local decisions at each point in the matching grid. The cumulative
sum of the local costs along the optimal path provides a measure of dissimilarity of the
matching.

The number of segments generated by a classifier-segmenter module corresponding to a
test word need not be equal to that in a reference template of the correct word. Poorly artic-
ulated short segments may not be detected; extra segments may be introduced by artifacts
such as lip smacks or tongue clicks. Also, due to the inherent confusibility of phonemes, a
segment may be assigned an incorrect label which corresponds to an acoustically similar
phoneme. The consequent insertion, deletion or substitution of segments has to be handled
by the matching process to obtain the optimal word label. An extra (missing) segment
will invariably lead to a mismatch of a nearby segment in the reference (test) template.
While the resultant increase in local distance is difficult to handle, the higher local cost
arising from a substitution error can be contained by making use of a priori knowledge
of acoustic similarities of units in the matching process. It is desirable that the matching

process should also take into account intrinsic durational distribution of different units of
speech.

1.1 Inter-segment distance

There are several ways of defining inter-segment distance which embodies a priori know-
ledge about durational distributions and the inherent confusability of acoustic-phonetic
segments in the feature space, in addition to the attributes of the segments comprising the
word template. Let s = (I, t) denote a segment where [ is the broad acoustic label and ¢ is
its duration. A general definition of the inter-segment distance is

d(si,s;) = H(g(li, Ij), f(t:, 1)).

Here g() and f(-) are the contributions due to the differences in the acoustic labels and
the durations respectively and H (-) is a function which combines these two contributions
to arrive at an integrated distance measure between the two segments. One simple measure
would be to define g(-) as the Kronecker delta function, i.e., g(/;, l;)=1,ifl; =1;,and O
otherwise. ‘

Another way of specifying this contribution would be to take into account the imper-
fections in the acoustic-phonetic classification. Some of the non-diagonal elements of the
confusion matrix may be non-zero due to overlap of the feature distributions corresponding
to confusable phonetic units. CM[Z;, [;], the (i, j)th element of the confusion matrix (CM),
is a measure of the probability of a member of the ith class being classified as of the jth
class. Thus, an alternate definition of the function g(-) is givenby g(l;, [ i) =1-CM[l;, [;1,
where CM is the confusion matrix derived from the performance of the acoustic-phonetic
classifier with the training data.

The durational distance can be the normalized difference between the two durations, i.e.
F@i. ) =t — 4/ +1)).

We know that the duration of an acoustic-phonetic segment depends on several factors
such as the phonetic context, speaking rate etc. The extent of the spread of segment duration
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around the mean value varies considerably for different segments. An alternate definition
of f(-) which accounts for this would be

fit) = |t — 11/lo ) + o )],

where o (;) and o (/;) denote the standard deviations of the durations of segments belon ging
to the ith and jth acoustic classes respectively.
The two functions can be combined in two different ways:

H(g), () =80+ f(),
H(g(), f(N)=g() x A+ f().

In the first form, the contributions from both sources are treated equally, whereas in the
second expression, the contribution from the difference in acoustic labels is given more
weight than that of the durations.

7.2 Generation of reference lexicon

During the training phase, multiple examples of each word from a corpus of 200 sentences
are used to generate the reference templates. The set median of all the templates of several
exemplars of a given word is used as the reference template for that word. The median
template is defined as the template whose total distance from all other members of the set
is minimum. During the testing phase, all the templates of words from the sentences of
~ the training set were matched with the reference lexicon of 207 templates. For each word,
four best-matched templates were chosen. The performance of the lexical access module
is tabulated for each type of distance metric in table 4.

From the experimental results listed in table 3, we observe that:

(i) integration of domain knowledge in the lexical access stage improves recognition
performance significantly; :

(i) performance increases consisténtly when misclassification of phonetic classes is taken
into account through the classifier confusion matrix, irrespective of the durational
contribution or the way the two contributions are combined,

Table 4. Accuracy of lexical matching for different distance metrics.

Distance measure v Recognition accuracy
Phonetic Duration Combination ‘Within best
contribution g(-) contribution f(-) function H (-) st choiqe 4 choices
51,-,1,- ‘ It —t;|/(ti + 1) g+ fO) 68.6 87.3
8,15 7 — 41/t + 1) gC) x (1+ f()) 70.5 88.6
51i,1j ' [t — 41/ (cli + ol)) HOE IO ) 714 89.0
Sliqu |t; — tﬂ/(a’li +olj) g x 14+ () 72.8 89.7
1 - CMI[i;, ] [t — 81/t + ;) g+ 1 73.3 . 89.7
1 — CMIL;, [j] It — 41/t + 1)) g() x (1+ £()) 75.0 92.2
1 - CM[L;, ] It —t;|/ (ol + ol)) g+ 1) 73.0 91.1

1 - CM[l;, ;] lti =t/ (ol + ol}) gy x4+ () 782 92.8
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(iii) the matching process produces more accurate results when the phonetic identity of
the segments is given greater emphasis than their durational differences.

The best recognition accuracy of the lexical access module for an independent test set
of 50 sentences (463 words) was 73.7% for the topmost choice and 90.9% within the best
4 choices.

7.3 Word lattice

The best distance measure amongst all these was used in subsequent experiments. The
distance Dy, of the mth (1 < m < M) word in the spoken utterance with the nth
(I = n < N) closest reference template in the lexicon is converted to the corresponding
normalized score pp, through the following equation.

N
Pmn = €xp(1 = Dmn) [ Y exp(l — Dyy)

n=1

This definition ensures that 0 < p,,, < 1 and Z,{:/:] Pmn = 1. Also, the greater the Dy,
the lesser the value of p,,,, as desired. The template of each word in the test sentence was
compared with all the reference templates and the four best matches were chosen as the
most likely candidates for that word in the test utterance. The lattice of N lexical candidates

for each spoken word along with the normalized score p,,, is processed by a language
model.

8. Language modelling

Two language processors have been successfully used. The first one is the conventional
statistical grammar. The second, known as Blank Slate Language Processor (BSLP) which
was developed as part of the project, uses semantic as well as syntactic knowledge.

As discussed in the section on speech database, the corpus design for the recognition
system was based on naturally produced sentences using questionnaires. Consequently, we
would expect to draw meaningful conclusions on language modelling using this corpus.

8.1 Statistical grammar

A simple method of modelling the syntax of a language is to use the statistical properties
of word sequences in the corpus of sentences. The bigram grammar specifies the intrinsic
probability of occurrence of ordered word pairs within the vocabulary. The bigram model
is represented by an N x N matrix |#,;| where e = p(wi|wy) is the probability of
the word w, being followed by w. These word transition probabilities are estimated
from frequency counts analysis performed on the training sentence set. However, due to
the modest size of the corpus, these probabilities cannot be reliably estimated, as not all
syntactically allowed word sequences may occur in the training set. Hence, the words are
categorized into concept classes (e.g. city name, trains, days etc.) and a transition from an
exemplar of one class into a member of another is counted as an instantiation of transitions
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from each member of one class to every member of another. This enabled the assignment
of uniform probability to each member of a category to be followed by any member of
another category.

Given the site probabilities p,,, (from the acoustic level analysis) and transition proba-
bilities #,4 (from the bigram language model), the probability of a path is I, tux, Where
the product is carried out over all lattice sites spanned by the path. The maximally pro-
bable path in the lattice denotes the most likely sentence satisfying both the acoustic
and syntactic level constraints (Bahl 1984). Exhaustive enumeration of all possible paths
in the lattice grows exponentially with M as there are N¥ possible paths. A dynamic
programming based algorithm (linear in M) is applied to find the best path through the
lattice (Bellman 1957; Viterbi 1967). The word level recognition accuracy with the bigram
module is 85.3%, which is significantly better than that for the top word choice (78.2%)
but poorer than that for the best four choices (92.8%).

8.2 Blank slate language processor

Rather than use any a priori information regarding the language, the Blank Slate Language
Processor (BSLP) starts virtually with a blank slate, and acquires most of its knowledge
regarding the language structure during a training phase. During this phase, it identifies
“function word’ and ‘content words’ in the corpus. It then groups content words into ‘equiv-
alence classes’, each containing words belonging to a syntactic category and a semantic
sub-category. Words in a class would be mutually interchangeable in a phrase context; each
class is identified by an artificially chosen member called Class Exemplar (CE). Phrases in
the corpus are identified in terms of CE’s, on the basis of the above classification, and are
in turn grouped into ‘phrase types’, such that each type consists of phrases which perform
similar semantic functions in the sentence. To facilitate identification of the phrases, each
word in the original corpus is replaced by the corresponding CE, reducing the number
of distinct word tokens. The resulting corpus is called the reduced corpus. The phrase
types are organised in a Phrase Table (PT). Each column of PT contains a distinct phrase
type. Any sentence can be generated by concatenating a phrase each from (some of) the
columns of this PT. A phrase-output Markovian State Transition Network (STN) is evolved
to model the sentences of the language. During the test phase, the STN is used, (a) to parse
correct sentences, and (b) to correct words which have been wrongly recognized in the
sentences by the Acoustic Level Recognizer. A brief account of the language processor is
given below. For details, readers may refer to Rao & Bondale (1992).

The BSLP accepts the word candidates and the associated probabilities from the acoustic
level recognizer. Using these, it generates a ‘most likely sentence hypothesis’, consistent
with the constraints imposed by syntax and semantics. This is built up, phrase by phrase, by
matching the phrases from the PT columns with the alternatives provided by the acoustic
processor, word by word. There is an exact matchif alternatives provided in the word lattice
include the correct words. Even otherwise, the correct words can be surmised, by using a
lenient matching procedure which allows for a mismatch of up to two words (depending
on the length of the phrase) between a phrase in the PT and the words in the word lattice.
If none of the phrases in a PT column match the word lattice, a null output is assumed for
the corresponding transition and match is attempted using phrases in the next column.
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This would be straightforward, if at every stage of the matching process, only one
phrase from a PT column matches the words in the word lattice. However, two or more
phrases might fit in some cases, particularly if the phrases are short and a lenient matching
procedure is being used. Whenever this happens, two or more alternative Partial Sentence
Hypotheses (PSH) open up; this can lead to a combinatorial explosion. This is prevented
by specifying an overall upper limit for the number of alternative PSH that are kept open
for consideration at any given point of time.

Whenever this limit is exceeded, hypotheses are discarded from the low probability end.
PHS is also discarded whenever it reaches a dead end, i.e. none of the subsequent phrases in
the PT can be matched with the remaining words in the word lattice. During this processing
each content word in the word lattice is replaced by the corresponding class exemplar. The
original words replace the class exemplar when the processing is complete. This phrase
matching procedure is carried out until all the columns of the PT and all the words in the
word lattice are exhausted/accounted for. The sequence of phrases so matched is the most
likely sentence hypothesis.

The elegance of this method lies in the process of classifying content words into equiv-
alence classes and using class exemplars as the constituents of phrases. This gives phrase
definitions a high degree of generality. On the other hand, this means that BSLP cannot
distinguish between words belonging to the same equivalence class. Consequently, it is
insensitive to errors of the acoustic processor which result in confusions between content

words in the same equivalence class. It is easy to see that the human listener would also
have the same problem in similar situations.

8.3  Perplexity computation

Let w; be the ith word belonging to the word-vocabulary of size Ny,. Let g(-) be the
true statistics (here, estimated from the training corpus) of a model and p(-) the statistics
corresponding to a corpus that is to be evaluated against the true statistics. For the training
corpus p(-) = pt(-) = q(-) and for a testing corpus p(-) = p;(-). If H is the per-word
entropy (computed for logarithm to the base 2) of a corpus then perplexity = 27 (Lee
1988).

For a trigram model, the per-word entropy of a word trigram can be expressed as

Ny
H =) p(wj_2, wi_1, w;)log(q(w;|wi—2, wi1)). (1)
i=l

For a BSLP model, let the total number of word tokens and sentences that are present in a
corpus be Ny, and Ny.n, respectively. Let ¢; be the jth category belonging to the category-
vocabulary of size N, and S, ; the number of elements in jth category. Let N,,; denote
the number of columns in a phrase table, N } denote the number of phrases in column k,

and f/" be the /th phrase in the kth column where [ =1,2,..., N jff The last phrase entry
of each column is the null phrase. For a given column, entry for the null phrase denotes
the probability of that particular column being skipped while a sentence is parsed.

The phrase probability in a given column is given by

P = n(f*)/ Nyens,
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where n( flk) is the frequency of occurrence of that phrase in the kth column. The cross
entropy associated with the kth column can be expressed as

Nk

Hy = Z p(f) log(q (ff)). @)

I=1

The entropy for the entire sentence using the BSLP model with a phrase as the unit is given
by

Neot

Hsent = Z H. ‘ (3)

k=1
The per-word entropy (for the reduced corpus) will then be

Hy = Nsent/Nw- 4)

For the conversion of the reduced corpus to the actual corpus, i.e., from CE to the actual
word, let us assume that all the elements in a given category occur with equal probability
(1/Sc;: thisis alo gical assumption in the present task domain). Then, the per-word increase
in entropy (for category to word conversion) is given by

Ne
AH =7 p(cj)10g(Se))- (5)
j=1

The entropy of the word trigram model is obtained from (1). The entropy and perplexity
of the training sentences were 1.01 and 2.0 respectively and those of test sentences were
5.25 and 38.1. The total BSLP entropy at word level is obtained by adding (4) and (5). The
total perplexity of training sentences was 15.0 and that of test sentences was 15.9 indicating
that the size of the training corpus is inadequate. The perplexity results reflect the relative
performance of the models. We discuss these results in the “Language modelllng” part of
the section on “Discussion”.

9. Performance

The complete recognition system is trained on the first 200 sentences (containing 1829
words) and tested on 50 sentences (containing 463 words). The first two rows of table 5
show the percentages of the actual word being identified as the best match or included
within the list of best four candidates. The third and fourth rows denote the word level

Table 5. Percentage word accuracy of VOICE speech recognition system.

Training set Test set :
Sent: 001-200 (1829 words) Sent; 201-250 (463 words)
First choice 78.2 73.7
Within best four choices 92.8 o 90.9
Bigram grammar 87.0 , - 853

Language model 93.0 91.4
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match between the language processor output sequence and the actual sentence. The bigram
language model is constrained to select a word within the first four choices. Hence, the
resulting matching score is limited by the actual word being listed within the candidate
list. On the other hand, the phrase-structured language processor can supply a word if the
available choices do not satisfy the semantic structure of the sentence. This results in an
overall accuracy that is even better than that considering the best four choices.

10. Discussion

The current system uses domain knowledge to provide meaningful constraints on statistical
models to speech recognition. These are, in turn, better equipped to handle uncertainties
in the knowledge about mapping from the acoustic signal to the intended message. Rather
than assuming that statistical and knowledge-based approaches are mutually exclusive,
our approach recognises their mutual complementarity and integrates their strengths. For
instance, acoustic-phonetic knowledge guides the initial choice of a variety of features;
statistically motivated criteria determine the final selection of discriminative features for
the classification. Similarly, knowledge of the intrinsic durational distributions of different
classes of sounds motivates the use of durations (in addition to acoustic likelihoods),
while comparing two segments. The optimal method of integrating them in the definition
of a distance measure in the segment space is, on the other. hand, evolved through an
experimental study.

The modular architecture employed in our approach allows us to tap the outputs of the
system at different stages of processing. This facilitates the performance evaluation of
each module independently. The system can then act as a testbed for comparing various
modelling approaches for each module. This provides for constant improvement of system
performance by plugging in superior modules as and when they become available. Some

of the areas where improved versions of modules may lead to better recognition accuracy
at the sentence level are listed below.

10.1 Feature vector

There is considerable scope for improvement in the features used for frame level broad
acoustic classification. Quefrency-weighted cepstral coefficients derived from linear pre-
diction analysis were chosen as the base set of features for representing the instantaneous
spectrum as they perform well in classification experiments. The Euclidean distance in
this space is shown to be equivalent to the Itakura—Saito distance which is based on maxi-
mum likelihood analysis. However, some studies have highlighted the advantage of using
mel-scaled cepstral coefficients (Davis & Mermelstein 1980; O’Shaughsnessy 1987) and
performing dimensionality reduction after a principal component analysis (Krishnan 1994).
A comparative study of feature representations showed that line spectral-pair frequency
representation augmented with spectral amplitudes yields the highest recognition results
in a multi-speaker, context independent single frame monophthong vowel recognition task
(Krishnan 1994). Usage of such representations can be studied.
Cepstral differences are inadequate for the representation and classification of obstruent
sounds such as plosives. Thus, there is a need for features which can capture the dynamics
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of speech in a more sophisticated form as noted by Yegnanarayana & Sundar (1991). One
needs a larger annotated and time-aligned database to train classifiers on such sounds and
to facilitate the fine acoustic classifiers of all speech sounds. The performance gap between
training and test corpora indeed indicates that the training data is inadequate.

10.2 Broad acoustic classes

Although the grouping of phonemes into broad acoustic classes has a strong foundation
based on knowledge of the speech production mechanism , certain observations point to a
need for re-examining the composition of classes. For example, the class of weak unvoiced
fricatives has only one member. There is also a considerable overlap between the class
“middle” vowels, and “front” and “back” vowels. The hierarchical classification strategy
followed here imposes rather strong constraints on the task decomposition as all realizations
of a phonetic unit have to be associated with a single broad category. Consequently, the
confusion between voicebar and nasals has been taken care by merging the two classes
during fine acoustic classification. A sophisticated extension of this approach would be to
allow for a fine acoustic unit to be a member of multiple classes and design fine acoustic
classes accordingly.

10.3  Segmental reliability measure

Examination of misrecognized words at the output of the lexical access stage showed
that a large number of templates contained spurious segments. The current version of the
segmentation module has no provision for rejecting a portion of signal. Hence extraneous
segments were detected in the transition regions where the activation levels of all the
phonetic classes were relatively low. This is because the current matching process provides
equal emphasis on each segment, irrespective of its reliability. Segmental features such as
the probabilistic output of the classifiers (acoustic likelihood), the probability of transition
into and out of a segment, and durational probability can be used to compute a reliability
measure of the segment. Incorporation of such a reliability measure for each segment might
improve overall accuracy even further. The framework developed for lexical access can
easily be upgraded to include such a reliability factor (say, the average activation of the
selected phonetic class in the segment) in the definition of inter-segment distance.

An obvious improvement to the existing system would be to perform fine acoustic
classification for members of all broad acoustic classes. Modularization of the system
allows for such improvements. Acoustic-phonetic knowledge can be used to collect a
large set of features for subclassification within each class; these need not be restricted to
a subset of the feature set used for broad acoustic classification. The class-specific feature
set can be pruned using discriminant criteria such as Fisher’s criterion.

10.4 Lexical access

Use of multiple reference templates for each word should improve the performance of the
lexical module. Currently, the output of the lexical stage is a lattice of word hypotheses
comprising a fixed number of choices per word. An alternative would be to adapt this
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number depending on the confidence level of the lexical processing module. For a given
test word, the number of choices can be increased till the cumulative likelihoods of all the
choices for that word exceeds a certain threshold. This criterion would limit the number
of word alternatives when the top choice has a very high likelihood thereby reducing
computational load of the language module. More importantly, it ensures that an adequate
number of word candidates are available for the language processor to choose the most
likely candidate based on syntactic constraints. This will help in situations where the
preceding modules cannot confidently rank the word candidates based on acoustic evidence
alone. Such flexibility in the integration of different knowledge sources would enable the
system to perform gracefully even when the acoustic information is inadequate.

10.5 Language modelling

A better estimation of bigram probabilities can be obtained with an extensive sentence
corpus. The statistical approach to syntactical modelling can be extended to N-grams as
well. At present, the blank slate language processor supplies a category exemplar when it
does not find a word in the candidate set which satisfies the constraints of the language
model. This opens up the prospect of going back to the acoustic level recognizer to pick
up a suitable lower level choice consistent with the demands of the language model.

The results on perplexity (a gap in performance between the training and test corpora
for trigram models) indicate that a word-based model cannot generalize for the existing
size of the training corpus. In contrast, for the BSLP model, the difference between the
training and test corpus perplexity is very small. Also the BSLP perplexity is much lower
than that of the trigram model. This indicates that the BSLP is a superior model compared
to the statistical approach and also, that it can generalize optimally for the size of training
corpus available.

The design strategies of the system do not impose significant constraints on the exten-
sion of the system to continuous speech or to a large vocabulary. Though the detection
of word boundaries prior to recognition gave us a convenient unit for distributing com-
putational load in a multi-processor environment, such a segmentation of the utterance
is not really needed here because the broad acoustic classifier can easily demarcate the
speech from silence regions. The modifications and improvements discussed above and a
comprehensive speech database would be expected to enable an implementation of a large
vocabulary, multi-speaker, continuous speech recognition system. The planned develop-
ment (Samudravijaya er al 1994) of a general purpose database of segmented and labelled

Hindi sentences with extensive coverage of phonemic contexts spoken by many speakers
is the first step taken in this direction.

11. Summary

The philosophy and implementation of a speech recognition system for Hindi is described
in this paper. The system follows a hierarchic approach to speech recognition and shows
the power of integrating speech-specific knowledge with statistical pattern recognition
techniques. The modular architecture of the system leaves ample scope for easy replace-
ment of a module at any stage of processing by an advanced version. Also, the architecture
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has the capability to incorporate the characteristics of the top-down approach. The units
of representation and the recognition scheme employed here do not pose any significant
constraints for expansion so that the system can be modified for recognition of continuous
speech by multiple speakers.

Work reported here has been supported by the Department of Electronics of the Government
of India and by the United Nations Development Programme. We dcknowledge the help of
T M Ajitha, Bhiksha Raj and A Sen in the development of the annotated and time-aligned
speech database for Hindi without which the implementation of this system would not
have been possible.
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