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For non-degenerate diffusions in the half-space with oblique reflection, a dichotomy between
recurrence and transience is established; convenient characterizations of recurrence and transience are
given. Verifiable criteria for recurrence/transience are derived in terms of the generator and the
boundary operator. Using these criteria, ‘real variables proofs’ of some results due to Rogers,
concerning reflecting Brownian motion in a half-plane, are obtained. The problem of transience down
a side in the case of diffusions in the half-plane is dealt with. Positive recurrence of diffusions in half-
space is also considered; it is shown that the hitting time of any open set has finite expectation if
there is just one positive recurrent point.
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1. Introduction

Recurrence and transience of diffusion processes in Rd have been studied by several authors
(see Khasminskii 1960; Friedman 1975; Bhattacharya 1978; Pinsky 1987; Ichihara 1978);
these authors give verifiable conditions on the diffusion coefficients (or on the generator) for
recurrence/transience. One might consult Pinsky (1995) for an up-to-date review of the
known methods and results for the recurrence classification for diffusion processes without
reflection. (For corresponding recurrence classification results on Markov chains using
martingale ideas based on stochastic analogues of Lyapunov functions, see Meyn and
Tweedie (1993a; 1993b) and the references given therein.)

In this paper, we study recurrence, transience and positive recurrence of non-degenerate
diffusion processes in the half-space/half-plane, with oblique reflecting boundary conditions
at the boundary.

If the state space is a bounded smooth domain, then the reflecting diffusion, being a
Feller continuous strong Markov process on a compact space, has an invariant probability
measure and hence is positive recurrent (see Bhattacharya and Waymire 1990, p. 230).
Therefore problems of interest would be in unbounded domains, like the half-space.
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Another case which can easily be dealt with is the class of diffusions in the half-space
fx1 . 0g with conormal reflection at the boundary. Let L denote the generator. The
coefficients can be extended in a canonical fashion to Rd; and we shall denote once again
by L the generator of the corresponding diffusion in Rd . If fU (t) � (U1(t), U2(t), . . . ,
Ud(t)): t > 0g is the L-diffusion in Rd , then f ~U (t) � (jU1(t)j, U2(t), . . . , Ud(t)): t > 0g is
the diffusion in the half-space with conormal reflection at the boundary (see Bhattacharya
and Waymire 1990). Clearly ~U is recurrent if and only if U is.

We now outline briefly the organization of the paper. In Section 2 we establish the
dichotomy between recurrence and transience (starting, of course, with the natural
definitions), and derive criteria for recurrence and transience. We give proofs only when
they differ from the case of diffusions (in Rd) without boundary conditions. (See case (ii)
in the proof of Lemma 2.2(a) and the proof of (c) ⇒ (d) in Proposition 2.3.) The main
difference is the following. It is not clear if an analogue of Lemma 2.3(b) of Bhattacharya
(1978) holds in the case of reflecting diffusions. (Of course, maximum principles under
stronger differentiability conditions are available as in Protter and Weinberger (1967).)
Applying the results of Section 2, in Section 3 we study the case of Brownian motion in the
upper half-plane with variable skew reflection; this leads to a real variables proof of some
results of Rogers (1991) concerning the same problem (Rogers had used complex analytic
tools, in particular the so-called Pick functions).

In Section 4 we consider the diffusion f(X 1(t), X 2(t))g in the space fx1 . 0g with
fX 1(t)g being recurrent; we give conditions for fX 2(t)g to go to ÿ1 a.s. Positive
recurrence is considered in Section 5; it is shown that if one point is positive recurrent then
the hitting time of any open set has finite expectation, and in particular the diffusion itself
is positive recurrent. Miscellaneous examples and comments are given in Section 6.

2. Criteria for recurrence and transience

Let D � fx 2 Rd : x1 . 0g, d > 2, and �D � D [ @D. We have the coefficients a, b defined
on �D, ª defined on @D satisfying the following conditions:

(A1) For each x 2 �D, a(x) � ((aij(x)))1<i, j<d is a d 3 d real symmetric positive
definite matrix; there exist º1, º2 . 0 such that, for any x 2 �D, any eigenvalue of
a(x) 2 [º1, º2]; and aij(.) are bounded and Lipschitz continuous.

(A2) For each x 2 �D, b(x) � (b1(x), b2(x), . . . , bd(x)) is a vector in Rd ; bi(.) are
bounded Lipschitz continuous.

(A3) For each x 2 @D, ª(x) � (1, ª2(x), ª3(x), . . . , ªd(x)) is a vector in Rd , and each
ªi 2 C3

b(@D).

Let the generator L and the boundary operator J be given by

Lf (x) �
1
2

X
d

i, j�1

aij(x)
@2 f (x)
@xi@xj

�

X
d

i�1

bi(x)
@ f (x)
@xi

, x 2 D, (2:1)
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Jf (x) �
@ f (x)
@x1

�

X
d

i�2

ªi(x)
@ f (x)
@xi

, x 2 @D: (2:2)

Let Ù � C([0, 1): Rd) be endowed with the topology of uniform convergence on compacts.
Let X(t) denote the tth coordinate map on Ù, that is X (t, ø) �: ø(t); let fB tg be the natural
filtration.

Let fPx: x 2 �Dg be the (L, J)-diffusion on �D, that is,

(i) Pxfø: X (0, ø) � x, X (t, ø) 2 �D, 8t > 0g � 1;
(ii) for each f 2 C2

b(Rd) with Jf > 0 on @D,

f (X (t))ÿ
� t

0
1D(X (s))Lf (X (s)) ds is a Px-submartingale: (2:3)

Moreover, there exists a continuous, non-decreasing, progressively measurable process î(t) on
Ù such that

(i) î(t) �
� t

0 1@D(X (s)) dî(s);
(ii) for each f 2 C2

b(Rd),

f (X (t))ÿ
� t

0
1D(X (s))Lf (X (s)) dsÿ

� t

0
1@D(X (s))Jf (X (s)) dî(s) is a Px-martingale. (2:4)

The (L, J)-diffusion {Px:x 2 �D} is strong Markov and Feller continuous; or equivalently
under fPxg the process fX (t): t > 0g is strong Markov and Feller continuous. By the
existence of a continuous transition density under the conditions (A1)–(A3), the strong Feller
property follows: see Ramasubramanian (1996).

For any open set V in �D, define the stopping time

ôV � inf ft > 0 : X (t) =2 Vg:

Note that we are not assuming V to be bounded. If V is bounded, by Lemma 3 in
Ramasubramanian (1986), we have Px(ôV ,1) � 1 for all x 2 �V .

Lemma 2.1. Let V be a bounded open set in �D, g a bounded measurable function such that,
for x 2 V

g(x) � Ex[g(X (ôV ))]: (2:5)

Then g is a continuous function on V.

Proof. In view of strong Markov, strong Feller properties of (L, J)-diffusions, Theorem 13.1
of Dynkin (1965) and Lemma 2.2 of Bhattacharya (1978), it is enough to show that

lim
t#0

sup
x2K

Px(jX (t) ÿ xj. å) � 0, (2:6)

for any K � �D, K compact and å . 0. But this follows from the uniform estimate given in
Stroock and Varadhan (1971, p. 181). u
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Lemma 2.2 (a) Let U1, U2 be open sets in �D such that U1 is non-empty and �U1 \ �U2 � ö.
Let ó i � inf ft > 0: X (t) =2 (Ui)c

g, i � 1, 2. Then x7!Px(ó1 , ó2) is a strictly positive
continuous function on (U1)c

\ (U2)c.
(b) Let U be an open set in �D. Then x 7!Px(ôU ,1) is a strictly positive continuous

function on U.

Proof. (a) Let g(x) � Px(ó1 , ó2), and x 2 �U c
1 \

�U c
2 be arbitrary. Let V be a neighbourhood

of x such that x 2 V � �V � (U1)c
\ (U2)c. Then we have

g(x) � Ex[EX (ôV )(1fó 1 , ó 2g
] � Ex[g(X (ôV ))]: (2:7)

Hence by Lemma 2.1, g is continuous on V. It remains to show that g is strictly positive.
Case (i): x 2 D \ �U c

1 \
�U c

2. Since (L, J) diffusion behaves like L-diffusion till hitting @D,
by the support theorem of Stroock and Varadhan (1972), it follows that g is strictly
positive.

Case (ii): x 2 @D \ �U c
1 \

�U c
2. Let ä . 0 be such that B(x: ä) \ �Ui � ö, i � 1, 2. Then by

the strong Markov property, g(x) � Ex[g(X (ôB))], where ôB � inf ft > 0: X (t) =2 B(x: ä)g.
Suppose g(x) � 0. Then Px(ó1 , ó2) � 0, PxX (ôB)ÿ1-a:s: Since (L,J)-diffusion does not hit
@D \ @B(x: ä), which is a (d ÿ 2)-dimensional manifold (see Theorem 3.7 of Rama-
subramanian 1988), it follows that Pz(ó1 , ó2) � 0 for some z 2 D \ @B(x: ä). This
contradicts case (i). Hence g is strictly positive.

(b) Follows directly from (a) by taking U1 � Int (U c) and U2 � ö. u

Definition. (a) A point x 2 �D is said to be a recurrent point for (L, J)-diffusion if, for every
å . 0,

Px(X (t) 2 B(x : å) for a sequence of t’s " 1) � 1: (2:8)

(b) A point x 2 �D is a transient point for the (L,J)-diffusion if

Px lim
t!1

jX (t)j � 1

� �

� 1: (2:9)

If all the points are recurrent (transient) then the diffusion is recurrent (transient).

Proposition 2.3. Assume (A1)–(A3). The following statements are equivalent.

(a) x0 2 �D is a recurrent point.
(b) Px0 (X (t) 2 U for some t > 0) � 1, for all non-empty open sets U � �D.
(c) There exist z0 2 �D, 0 , r0 , r1, y 2 @B(z0: r1) such that Py(ô ,1) � 1, where

ô � inf ft > 0: X (t) 2 B(z0: r0)g.
(d) There exists a compact set K � �D such that Px(X (t) 2 K for some

t > 0) � 1, for all x 2 �D.
(e) Px(X (t) 2 U for some t > 0) � 1, for all x 2 �D and for all non-empty open

sets U � �D.
(f) Px(X (t) 2 U for a sequence of t’s"1) � 1, for all x 2 �D and for all non-empty

open sets U � �D.
(g) (L, J)-diffusion is recurrent.
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Proof. We will prove only (a) ⇒ (b) and (c) ⇒ (d); proofs of other implications are either
trivial or analogous to the corresponding implications in Bhattacharya (1978).

(a) ⇒ (b). Let x0 2 �D be a recurrent point, and assume, without loss of generality, that
x0 =2 U. Let B be a ball such that �B � U. Choose å . 0 such that B(x0, å) \ �B � ö. Let U1

be a bounded open set such that B(x0, å) [ �B � U1. By Lemma 2.2, and as the diffusion
exits out of bounded sets in finite time, we have

inf
y2 @U1

Py(ó1 , ó2) . 0, (2:10)

where ó1 � ô
�Bc and ó2 � ôB(x0, å)c . The rest of the proof follows as proof of (a) ⇒ (b) in

Proposition 3.1 of Bhattacharya (1978).
(c) ⇒ (d). Let K � B(z0: r0); y 2 @B(z0: r1). By (c) we have Py(ô ,1) � 1.
Case (i): y 2 D. Define

V (x) � 1 ÿ Px(ô ,1): (2:11)

By Lemma 2.2, V is continuous on Kc. By the strong Markov property

0 � V (y) � E y[V (X (ç))], (2:12)

where ç is the exit time from B(y: ä) with B(y: ä) \ K � ö, B(y: ä) � D. By (2.12) we
have V (z) � 0, PyX (ç)ÿ1-a:s: Now by the support theorem for L-diffusions (see Stroock and
Varadhan 1972), and continuity of V , V (z) � 0 for all z 2 @B(y: ä). This holds for all
sufficiently small ä , (r1 ÿ r0) ^ d(y, @D). If z 2 D \ Kc, then one can find points
y0, y1, : : : , yk�1 2 D \ Kc such that y0 � y, jyj�1 ÿ yjj, (jyj ÿ z0j ÿ r0) ^ d(yj, @D) and
yk�1 � z. By repeating the above argument, we find

V (y0) � V (y1) � : : : � V (z) � 0: (2:13)

Thus V � 0 on Kc
\ D. By continuity, V � 0 on Kc and hence on �D.

Case (ii): y 2 @D. As in equation (2.12) we have 0 � V (y) � Ey[V (X (ç))] by the strong
Markov property. Hence V (X (ç)) � 0, Py a.s. Since (L, J)-diffusion does not hit
@D \ @B(y: ä) (see Ramasubramanian 1988) we have V (z) � 0 for some z 2 D \ Kc.
Thus the problem is reduced to case (i). Hence the proposition is proved. u

For any compact set K define ó K � inf ft > 0: X t 2 Kg.

Theorem 2.4. Assume (A1)–(A3).
(a) (Dichotomy.) (L, J)-diffusion is not recurrent if and only if (L, J)-diffusion is transient.
(b) (L, J)-diffusion is recurrent if and only if there exist a compact set K with non-empty

interior, a point x 2 Kc and a measurable function u such that

(i) u(z)"1 as jzj"1;
(ii) Ex[u(X (ó K))] < u(x).

(c) (L, J)-diffusion is transient if and only if there exist a compact set H with non-empty
interior, y 2 Hc and a measurable function u such that
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(i) E y[1fó H ,1gu(X (ó H ))] < u(y);
(ii) u(y) , inf

z2H
u(z).

Proof. (a) If (L, J)-diffusion is transient then it trivially follows that (L, J)-diffusion is not
recurrent. Now let us suppose that (L, J)-diffusion is not recurrent. Let x 2 �D be arbitrary
and choose r0, r1 such that jxj, r0 , r1. Put ä1 � supj yj�r1

Py(ó0 ,1), where
ó0 � inf ft > 0: X (t) =2 B(0: r0)c

g. Since no point in �D is recurrent by the previous
proposition, we have Py(ó0 ,1) , 1 for all y such that jyj � r1. Now as y 7!Py(ó0 ,1) is a
continuous function, we have ä1 , 1. Hence, proceeding as in the proof of Theorem 3.2(b) of
Bhattacharya (1978), we get the result.

(b) Necessity. Let u be a function such that u(z) � û(jzj), where û is a strictly increasing
function with lim r!1 û(r) � 1. Let K � B(0: 1) and choose x such that jxj. 1. As the
diffusion is recurrent, jX (ó K )j � 1, Px a.s. Hence we have

Ex[u(X (ó K ))] � û(1) , u(x): (2:14)

Sufficiency. Suppose the diffusion is not recurrent and so by part (a) it is transient. Let
A � fó K ,1g. By transience we see that Px(Ac) . 0; and again by transience and (b)(i)
note that u(X (ó K )) � 1 on Ac. Hence we have Ex[u(X (ó K))] � 1, which is a
contradiction.

(c) Necessity. Let H � B(0: 1). Put u(x) � Px(ó H ,1), x 2 �D. Then we have
u(x) � Ex[1fó H ,1g1] � Ex[1fó H ,1gu(X (ó H ))], since u(X (ó H )) � 1 on fó H ,1g. By
transience u(x) , 1 for jxj. 1, but u(z) � 1 for all z 2 H . Hence (ii) is also satisfied.

Sufficiency. Suppose the diffusion is not transient. Hence by part (a) it is recurrent.
Therefore by (i) and (ii) of (c),

u(y) > E y[1fó H ,1gu(X (ó H ))] � E y[u(X (ó H ))]

> inf
z2H

u(z) . u(y), (2:15)

and hence we have a contradiction. Therefore the diffusion is transient. u

We now derive some corollaries which are analogues of Proposition 3.1 and 3.2 of
Pinsky (1987).

Corollary 2.5. If there exist r0 . 0 and u 2 C2(Rd
nB(0: r0=2)) such that

(i) u(x)"1 as jxj"1;
(ii) Lu(x) < 0, jxj > r0;

(iii) Ju(x) < 0, fjxj > r0g \ @D,

then (L, J)-diffusion is recurrent.

Proof. By Itô’s lemma, the optional sampling theorem and by conditions (ii), (iii) above, we
have

Ex[u(X (t ^ ó K ))] < u(x), (2:16)
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where K � B(0: r0). Let A � fó K ,1g. If Px(Ac) . 0 then by dichotomy (Theorem 2.4(a))
the diffusion is transient and hence lim t!1 jX (t, ø)j � 1, for ø 2 Ac. Hence as u can be
taken to be non-negative without loss of generality,

lim
t!1

Ex[u(X (t ^ ó K))] > lim
t!1

Ex[1Ac u(X (t ^ ó K))] � 1: (2:17)

Note that (2.17) contradicts (2.16). Hence Px(Ac) � 0.
Now letting t !1 we have

Ex[u(X (ó K ))] < u(x): (2:18)

By Theorem 2.4(b) we have that the diffusion is recurrent. u

Corollary 2.6. If there exist r0 . 0 and a function u 2 C2
b(Rd

n(B(0: r0=2)) such that

(i) Lu(x) < 0, jxj > r0;
(ii) Ju(x) < 0, fjxj > r0g \ @D;

(iii) there is a point x0 such that jx0j. r0 and u(x0) , inf jxj�r0
u(x), then the diffusion

is transient.

Proof. Let K � B(0: r0). Without loss of generality let us take u > 0. By Itô’s lemma, the
optional sampling theorem and by conditions (i), (ii) above, we have

Ex0 [u(X (t ^ ó K ))] < u(x0): (2:19)

Now

Ex0 [1
fó K ,1g

u(X (ó K ))] � lim
t"1

Ex0 [1
fó K < tgu(X (ó K ))]

< lim
t"1
fEx0 [1

fó K < tgu(X (ó K ))] � Ex0 [1
fó K . tgu(X (t))]g

� lim
t!1

Ex0 [u(X (t ^ ó K ))] < u(x0): (2:20)

Hence by Theorem 2.4(c) we have transience. u

Now let us give some criteria for recurrence and transience of diffusions in terms of the
coefficients of L and J. These are analogues to the criteria in Bhattacharya (1978). Let L, J
be defined as in (2.1), (2.2).

Define

A(x) �
X

d

i, j�1

aij(x)
xixj

jxj2
,

B(x) �
X

d

i�1

aii(x),

C(x) � 2
X

d

j�1

xibi(x):
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Put

�â(r) � sup
jxj�r

B(x) ÿ A(x) � C(x)
A(x)

â(r) � inf
jxj�r

B(x) ÿ A(x) � C(x)
A(x)

�I(r) �
� r

1

�â(u)
u

du; I(r) �
� r

1

â(u) du

u
:

Proposition 2.7. Assume (A1)–(A3).

(a) Let u(x) �
�
jxj
1 exp (ÿ�I(r)) dr. If u(x) !1 as jxj ! 1 and Ju(x) < 0 for

x 2 @D, jxj. 1, then the diffusion is recurrent.
(b) Let v(x) �

�
jxj
1 exp (ÿI(r)) dr. If limx!1 v(x) ,1 and Jv(x) > 0 for

x 2 @D, jxj . 1, then the diffusion is transient.

Proof. This easily follows from Corollories 2.5 and 2.6 and the proof of Theorem 3.3 in
Bhattacharya (1978). u

Remark 2.8. Note that (L, J)-diffusion can be transformed to (~L, @=@x1 )-diffusion through a
C2-diffeomorphism of �D (see Ramasubramanian 1986). Let ~a, ~b denote the coefficents of ~L.
Define ~A, ~B, ~C analogous to A, B, C above with ~a, ~b replaced by a, b.

Define

~â(r) � sup
jxj�r

~B(x) ÿ ~A(x)� ~C(x)
~A(x)

~u(x) �
�
jxj

1
exp ÿ

� r

1

~â(u)
u

du

 !

dr

Note that @~u=@x1 � 0 on @D. Thus if ~u(x) !1 as jxj ! 1, we have that (L, J)-diffusion is
recurrent. Similarly we can also have a condition for transience.

Remark 2.9. The boundedness assumptions in (A1), (A2) can be relaxed to linear growth
conditions on a, b. Under such conditions the (L, J)-diffusion is conservative. As in Lemma
2.5 of Bhattacharya (1978), the strong Feller property can be established. It is now clear that
the analysis of this section can be carried through under the relaxed assumptions. We omit
the details.
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3. Reflecting Brownian motion in the upper half-plane with
variable skew reflection

In this section we will deal with recurrence and transience of reflecting Brownian motion
(RBM) with variable oblique reflection in the upper half-plane. Rogers (1991) has dealt with
this problem but has used complex analytic techniques to get the results. Here we will give a
real variables proof of these results, using in particular Corollaries 2.5 and 2.6 above.

In this case it is convenient to deal with the problem in polar coordinates. Therefore we
shall describe the set-up in Cartesian coordinates as well as in polar coordinates.

Let

S � f(x1, x2): x2 . 0, ÿ1, x1 ,1g � f(r, Ł): r . 0, Ł 2 (0, ð)g

@1S � f(x1, 0): x1 . 0g � f(r, Ł): r . 0, Ł � 0g

@2S � f(x1, 0): x1 , 0g � f(r, Ł): r . 0, Ł � ðg

@S � @1S [ @2S [ f(0, 0)g; �S � S [ @S:

Here the generator L is the Laplacian, viz.,

L �
1
2

˜ �

1
2

@2

@x2
1

�

@2

@x2
2

 !

�

1
2

@2

@ r2
�

1
r

@

@ r
�

1
r2

@2

@Ł2

� �

:

For x 2 @S, let ª(x) be the direction of reflection and let ç(x) be the angle that ª(x) makes
with the normal at x, clockwise direction being taken to be positive.

As in Section 2, we will assume that the normal component of ª is bounded away from
0; Hence without loss of generality, we may take the normal component to be 1. So we may
write ª(x) � (ª1(x), 1) � (tan ç(x), 1). As ª is bounded, and bounded away from the
tangential direction, note that there exists a â . 0 such that

ÿð=2 � â < ç(x) < ð=2 ÿ â:

Also, we assume that ç(x) 2 C3
b(@S).

Now the boundary operator J can be written as

Jf (x) � ª1(x)
@ f (x)
@x1

�

@ f (x)
@x2

�

tan ç(.)
@ f (.)
@ r

�

1
r

@ f (.)
@Ł

, on @1S

ÿtan ç(.)
@ f (.)
@ r

ÿ

1
r

@ f (.)
@Ł

, on @2S:

8

>
>
<

>
>
:

(3:1)

For x 2 @1S, note that ç(x) � ç(jxj, 0), and for x 2 @2S, we have ç(x) � ç(jxj, ð). We will
use this notation in the sequel.

Theorem 3.1. (a) If lim inf r!1ç(r, ð) � lim inf r!1(ÿç(r, 0)) . 0, then the RBM is
recurrent.
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(b) If lim supr!1ç(r, ð) � lim supr!1(ÿç(r, 0)) , 0, then the RBM is transient.
(c) If ç(r, 0) is non-decreasing and ç(r, ð) is non-increasing, and if

lim
r!1

ç(r, 0) � lim
r!1

ç(r, ð),

then the RBM is recurrent.

Proof. (a) Let lim inf r!1(ÿç(r, 0)) � î1 and lim inf r!1 ç(r, ð) � î2. By hypothesis
î1 � î2 � å . 0. Put î1 ÿ å=4 � Ł1, î2 ÿ å=4 � Ł2 and Æ � (Ł1 � Ł2)=ð. Note that
Ł1 � Ł2 . 0 and hence Æ . 0. Now define the function u on the set B(0 : 1)c

\ �S in
terms of polar coordinates as follows:

u(r, Ł) � rÆ cos (ÆŁ ÿ Ł1): (3:2)

Clearly 1
2˜u � 0. Note that ÿð=2 ,ÿŁ1 < ÆŁÿ Ł1 < Ł2 , ð=2, for all Ł 2 [0, ð]. Hence

fcos (ÆŁ ÿ Ł1): Ł 2 [0, ð]g is bounded away from 0. Therefore u(r, Ł) !1 as r !1 since
Æ . 0. On @1S we have

Ju(r, Ł) � ÆrÆÿ1 cos Ł1 tan ç(r, 0)� ÆrÆÿ1 sin Ł1: (3:3)

But since lim inf r!1(ÿç(r, 0)) � î1, there exists an s1 such that for all r > s1,
ç(r, 0) > î1 ÿ å=4 � Ł1. Hence tan ç(r, 0) < tan (ÿŁ1). Consequently as Æ . 0, by (3.3),
we have on @1S \ fr . s1g

Ju(r, 0) < 0: (3:4)

Similarly, on @2S

Ju(r, ð) � ÿÆrÆÿ1 cos Ł2 tan ç(r, ð) � ÆrÆÿ1 sin Ł2: (3:5)

But as lim inf r!1 ç(r, ð) � î2, we have, for some s2 . 0, for all r > s2, ç(r, ð) >
î2 ÿ å=4 � Ł2. Substituting in (3.5) we see that, on @2S \ fr > s2g

Ju(r, ð) < 0: (3:6)

Hence by (3.4) and (3.6), we have on [@1S \ fr > s0g] [ [@2S \ fr > s0g], Ju < 0, where
s0 � max fs1, s2g. Now by Corollary 2.5 the process is recurrent.

(b) Let lim supr!1(ÿç(r, 0)) � î1 and lim supr!1 ç(r, ð) � î2. By hypothesis î1 � î2 �

ÿå , 0. Put î1 � å=4 � Ł1 and î2 � å=4 � Ł2. Note that Ł1 � Ł2 , 0 and let
Æ � (Ł1 � Ł2)=ð , 0. Define

u(r, Ł) � rÆ cos (ÆŁ ÿ Ł1): (3:7)

Proceeding as in the proof of part (a) with obvious modifications and using Corollary 2.6, it
can be proved that RBM is transient in this case.

(c) Let lim r!1 ç(r, 0) � ÿŁ1 and lim r!1 ç(r, ð) � Ł2. By assumption ç(r, 0)" ÿ Ł1 and
ç(r, ð)#Ł2. Define

u(r, Ł) � log r � Ł tan Ł1: (3:8)

With u defined by (3.8) and using Corollary 2.5, recurrence of RBM in this case can be
established along similar lines as in part (a). u
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Remark 3.2. Parts (a) and (b) of Theorem 3.1 have been proved by Rogers (1991) using
complex analytic methods. It may be mentioned that Rogers obtains other results as well
concerning RBM with variable reflection field, using Pick functions from complex analysis;
see also Rogers (1990). Since two-dimensional Brownian motion is well behaved under
conformal mappings, the complex analytic approach as considered by Rogers is a natural tool
to use. Observe that Brownian motion in R2 is a critical case as far as recurrence/transience
is concerned; that is Brownian motion in R2 just fails to be transient! (The authors thank
Prof. Varadhan for this remark.) This aspect is also manifest in part (b) of Theorem 3.1, in
the sense that a mild perturbation by a suitable ‘reflection field’ is enough to make the
process transient. Our ‘real variables’ approach enables us also to consider other critical cases
like Example 6.3.

A particular case of part (c), viz., when ª(x) � constant, has been dealt with by Williams
(1985). In fact our choice of the function u in the above proofs has been inspired by
Varadhan and Williams (1985).

Proposition 3.3. Let ç(x) be the angle of reflection on the boundary @S such that it satisfies
ç(x1) � ç(x1 � 1), that is, we consider periodic reflecting conditions. Now let

ª1 � inf fç(x1): x1 2 [0, 1]g,

ª2 � sup fç(x1): x1 2 [0, 1]g:

Then if ª1 � 0 and ª1 , ª2, then the RBM is transient.

Proof. Put u(r, Ł) � rÆ cos (ÆŁÿ ç) ÿ Ł tan ª2, where Æ � ÿª2=2 and ç � ä2=2. Then,
along the same lines as in the proof of Theorem 3.1(b), we have transience of the
process.

Note. The condition in Proposition 3.3 above is not covered by the inequalities of Theorem
3.1(a)–(b).

Remark 3.4. Consider the generator and boundary operator as follows:

~L f (x) � (m2
� 1)

@2 f (x)

@x2
1

� 2m
@2 f (x)
@x1@x2

�

@2 f (x)

@x2
2

, x 2 D,

~J f (x) �
@ f (x)
@x2

, x 2 @D:

where m is a positive constant. That is, we consider diffusion with generator ~L and
normal reflection at the boundary. By a transformation of the upper half-plane as in
Ramasubramanian (1988), we see that (~L, ~J ) diffusion is transformed to (˜, J)-diffusion,
where

Jf (x) � m
@ f (x)
@x1

�

@ f (x)
@x2

:
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By Theorem 3.1(c) we see that (˜, J)-diffusion is recurrent. Hence (~L, ~J )-diffusion is
recurrent. It is interesting to note that Proposition 2.7 does not yield any information
concerning the recurrence of (~L, ~J )-diffusion. This is not altogether very surprising because
both Theorem 3.3. of Bhattacharya (1978), and Proposition 2.7 work well when the generator
and the boundary operator preserve the class of radial functions.

Our proof of Theorem 3.1(a) and a theorem due to Menshikov and Williams immediately
suggest the following result concerning passage-time moments.

Proposition 3.5. Suppose the hypothesis of Theorem 3.1(a) holds. Let Æ be as in the proof of
Theorem 3.1(a). Then there exists a positive constant c , 1 such that r . 0,

(i) Ez(ô p
r ) ,1, for p , Æ=2, jzj. r;

(ii) Ez(ô p
r ) � 1, for p . Æ=2, jzj. rc, where ôr � inf ft > 0: jZ(t)j � rg.

Proof. Let u be the function as in the proof of Theorem 3.1(a). Then the proposition follows
by applying Theorem 4.1 of Menshikov and Williams (1996) to the function u. As Ju < 0,
the proof of Theorem 4.1 essentially goes through, with minor changes. u

4. Transience down a side in the half-plane

In this section we revert to the notation of Section 2. Let

D � f(x1, x2): x1 . 0, ÿ1, x2 ,1g:

Let

Lf (x) �
X

2

i, j�1

aij(x)
@2 f (x)
@xi@xj

�

X
2

i�1

bi(x)
@ f (x)
@xi

, x 2 D, (4:1)

Jf (x) �
@ f (x)
@x1

� ª2(x)
@ f (x)
@x2

, x 2 @D: (4:2)

be respectively the generator and boundary operator. Let (X 1(t), X 2(t)) denote the (L, J)-
diffusion on �D. Suppose fX 1(t)g is recurrent (that is, for any open set U in [0, 1) and any
x 2 �D, Px(X 1(t) 2 U for a sequence of t’s"1) � 1). We give conditions for fX 2(t)g to go to
ÿ1 a.s. Similar conditions can be given for fX 2(t)g to go to �1. In this regard let us prove
the following proposition.

Proposition 4.1. Let there be a function u 2 C2(R2) with the properties

(i) u > 0 and u(x) � û(x2);
(ii) û(x2) decreases as x2# ÿ1;

(iii) û(x2) increases to 1 as x2"1;
(iv) Lu < 0 on D and Ju < 0 on @D.
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Then the diffusion is transient, and furthermore

Px lim
t!1

X 2(t) � ÿ1

� �

� 1, 8x 2 �D:

Proof. Let r 2 R be arbitrary but fixed. Let

ôr � inf ft > 0: X 2(t) � rg,

S1 � f(x1, x2): x2 . rg,

S2 � f(x1, x2): x2 , rg:

Step 1. We will show that

sup
x2L

Px(ôr ,1) , 1, (4:3)

for any horizontal line L � S2. This, in particular, implies that the process is transient.
Suppose (4.3) does not hold; then supx2L Px(ôr ,1) � 1. So given å . 0, there exists an

x(0)
2 L such that

Px(0) (ôr ,1) . 1 ÿ å=2, (4:4)

u(x(0)) > Ex(0) [u(X (t ^ ôr))]

� Ex(0) [1
fô r< tgu(X (ôr))] � Ex(0) [1

fô r . tgu(X (t))]: (4:5)

Let A � fôr ,1g and AT � fôr < T). Choose T such that Px0 (AT ) . 1 ÿ å. This is possible
as AT"A. Consequently as u > 0, we get

u(x(0)) > Ex(0) [1
fô r<Tg û(r)]� Ex(0) [1

fô r . Tgu(X (T))]

� û(r)Px0 (AT ) � Ex(0) [1Ac
T

u(XT )]

. û(r)(1ÿ å): (4:6)

But this contradicts (ii) above. Hence (4.3) holds and step 1 is complete.
Step 2. We will show that, for all x 2 S1,

Px(ôr ,1) � 1: (4:7)

Put

ç2k � inf ft . ç2kÿ1: X 1(t) � 1g; ç2k�1 � inf ft . ç2k : X 1(t) � 2g:

Since the process fX 1(t)g is recurrent note that Px(çk ,1) � 1 for all k. Hence by
condition (iv), Itô’s lemma and the optional sampling theorem we have

Ex[u(X (çk ^ ôr))] < u(x), (4:8)

for all k. Let A � fôr ,1g and B � fçk ,1 for all kg. Suppose (4.7) does not hold. Then
Px(Ac) . 0, and hence by recurrence of fX 1(t)g we have Px(Ac

\ B) . 0. By transience of the
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process (by step 1) and as X1 and X2 are bounded below by r ^ 0 on Ac, note that for a.a.
ø 2 Ac,

X 1(t, ø)� X 2(t, ø) !1 as t !1: (4:9)

This implies that, for a.a. ø 2 Ac
\ B,

X 2(çk(ø), ø) !1 as k !1: (4:10)

Now by (4.8) and condition (iii)

u(x) > lim
k!1

Ex[u(X (çk ^ ôr))] > lim
k!1

Ex[1Ac
\Bu(X (ôr ^ çk))] � 1,

which is a contradiction. Hence (4.7) holds and step 2 is complete.
Step 3. Let x � (x1, x2) be arbitrarily chosen. Choose r, r1 such that r1 , r , x2. Define

är1 � sup fPy(ôr1 ,1): y such that y2 � rg:

By step 1, är1 , 1. By the strong Markov property,

Px(X 2(t) � r for a sequence of t’s"1) < Px(æ2i�1 ,1)

� Ex[1æ2iÿ1,1

PX (æ2iÿ1)(ôr ,1)] < är1 Px(æ2iÿ1 ,1) < : : : < äi
ri

, (4:11)

where

æ2i � inf ft . æ2iÿ1: X 2(t) � rg

æ2i�1 � inf ft . æ2i: X 2(t) � r1g, i � 1, 2, : : ::

As är1 , 1 note that äi
r1
! 0. Hence Px (lim sup t!1X 2(t) , r) � 1. As r , 0 is arbitrary, the

proposition is proved. u

Example. Consider the function u(x) � ex2 . Let L, J be defined as in (4.1). Then
Lu(x) � (a22(x) � b2(x))ex2 and Ju(x) � ª2(x2)ex2 . Hence, if a22(x) � b2(x) < 0 and
ª2(x2) < 0, we have, on assuming the recurrence of X1, that the process is transient down
to ÿ1.

Note. Conditions for recurrence of X1 are being investigated. In this connection one may
consult Ramasubramanian (1983) for conditions for recurrence of projections of diffusions in
Rd (without boundary conditions). Such conditions (together with appropriate modifications
required to ensure that the derivatives along the reflecting directions are negative) in the
present context are not difficult to prove.

5. Positive recurrence of diffusions in the half-space

In this section we will deal with positive recurrence of diffusions and the existence of
invariant measures. First, let us define some stopping times which will be used below. We
consider diffusions in the half-space �D, where

D � f(x1, x2, : : : , xd): x1 . 0g:
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Let U be an open set in �D. Define

ôU � inf ft > 0: X (t) =2 Ug � exit time fromU :

ó U � inf ft > 0: X (t) 2 Ug � entrance time intoU :

For c . 0, define

ôc � inf ft > 0: jX (t)j � cg:

Definition. A point x 2 �D is said to be positive recurrent if there exist bounded open sets U1,
U2 such that x 2 U1 � �U1 � U2 and

sup fEz(ó U1 ): z 2 @U2g,1: (5:1)

The diffusion is said to be positive recurrent if all points are recurrent.

Lemma 5.1. Let x be a positive recurrent point; let U1, U2 be open balls such that (5.1)
holds. Let U, V be balls such that �U1 � U � �U � U2 � �U2 � V . Then

sup fEz(ó U1 ): z 2 @Ug,1 (5:2)

sup fEz(ó U1 ): z 2 @Vg,1: (5:3)

Proof. By the strong Markov property, Lemma 3 of Ramasubramanian (1986) and by positive
recurrence of x, we have

sup
y2@U

Ey(ó U1 ) < sup
y2@U

E y[1ó U1 , ôU2
. ó U1 ]� sup

y2@U
E y[1ó U1 . ôU2

. ó U1 ]

< sup
y2@U

E y(ôU2 )� sup
y2@U

E y[EX (ôU2 )(ó U1 )]

,1: (5:4)

By Proposition 2.3, the existence of a positive recurrent point implies that the diffusion is
recurrent and hence we have ó U2 ,1, Pz a.s. for z 2 �U c

2. Therefore we have

sup
z2@V

Ez(ó U1 ) � sup
z2@V

Ez[Ez(ó U1 jB ó U2
)]

� sup
z2@V

Ez(EX (ó U2 )(ó U1 )

< sup
z2@U2

Ez(ó U1 ) ,1: (5:5)
u

Proposition 5.2. If there exists one positive recurrent point, then the diffusion itself is
positive recurrent.

Proof. Let x0 be a positive recurrent point and let y be an arbitrary point. We will show that
y is positive recurrent. Since x0 is a positive recurrent point, we can find two balls U1, U2
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such that (5.1) holds. Let U3, U4 be balls such that �U2 � U3 � �U3 � U4 and y 2 U3. By
Lemma 5.1,

sup Ezfó U1 : z 2 @U4g,1: (5:6)

Since ó U3 , ó U1 , Pz a.s. for z 2 @U4, we have

sup fEz(ó U3 : z 2 @U4g,1: (5:7)

Combining (5.6) and (5.7), we see that y is a positive recurrent point. As y was chosen to be
arbitrary, the diffusion is positive recurrent. u

Our next objective is to obtain an upper bound for the expected hitting time of a
bounded open set. For this we need the following lemma.

Lemma 5.3. Let A be a bounded open set in �D, and let r . 0 be such that �A � B(0: r). Then
there exist M . r, 0 , pA , 1, such that, for all x 2 B(0: r),

Px(X (1) 2 A and jX (t)j < M , 8t 2 [0, 1]) > pA: (5:8)

Proof. Since the diffusion has a continuous positive density and A is an open set, note
that

p0 � inf fPx(X (1) 2 A): x 2 B(0: r)g. 0: (5:9)

Let å � p0=4. By tightness of measures fPx: x 2 B(0: r)g on C([0, 1]: Rd), we can find a
compact set Kå � C([0, 1]: Rd) such that, for all x 2 B(0: r),

Px(Kå) . 1 ÿ å:

By Arzela-Ascoli’s theorem, there exists M . 0 such that jø(t)j < M , for all t 2 [0, 1], for
all ø 2 Kå. Hence, for all x 2 B(0: r), by (5.9) we have

Px(Xÿ1
1 (A) \ Kå) � Px(Xÿ1

1 (A)) ÿ Px(Xÿ1
1 (A)nKå)

. p0 ÿ å � 3
4 p0 �: pA (5:10)

whence the lemma follows. u

Now with M, r as in the preceding lemma, let ç0 � 0 and put:

ç1 � inf ft > 0: jX (t)j � rg _ (1 ^ ôM );

ç2i � inf ft . ç2iÿ1: X (t) =2 B(0: M)g ^ (ç2iÿ1 � 1);

ç2i�1 � inf ft . ç2i: X (t) 2 @B(0: r)g:

Let F � fó A < 1, ôM . 1g, where A, M are as in the preceding lemma. By (5.10) note that

Px(F) . pA: (5:11)

Proposition 5.4. Let A, r, M, pA be as in Lemma 5.3. For any x 2 B(0: r),
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Ex(ó A) <
1
pA

2 � sup
jzj<M

Ez(ôr)
� �

� Ex(ôr): (5:12)

Proof. If sup
jzj<M Ez(ôr) � 1, note that (5.12) trivially holds. So assume

supjzj<M Ez(ôr) ,1. Then note that any point in B(0: r) is positive recurrent and hence
the diffusion itself is positive recurrent. This, in particular, implies that the diffusion is
recurrent. Therefore all the stopping times involved in the proof are well defined.

Ex(ó A) � Ex

�ó A^ç1

0
ds

" #

� Ex

X

i>1

�ó A^ç2i

ó A^ç2iÿ1

ds

" #

� Ex

X

i>1

�ó A^ç2i�1

ó A^ç2i

ds

" #

: (5:13)

Clearly,

Ex

�ó A^ç1

0
ds

" #

< Ex(ç1) � Ex(ôr _ (1 ^ ôM ))

< 1 � Ex(ôr): (5:14)

Next, by the strong Markov property for i > 1,

Ex

�ó A^ç2i

ó A^ç2iÿ1

ds

" #

� Ex 1
fó A . ç2iÿ1g

EX (ç2iÿ1)

�ó A^ô M^1

0
ds

" #

< Px(ó A . ç2iÿ1): (5:15)

As fó A . ç1g � F c, we have

Px(ó A . ç1) < (1 ÿ pA): (5:16)

Now observe that, for i > 3,

Px(ó A . ç2iÿ1) � Ex[1fó A . ç2iÿ1g
1fó A . ç2iÿ3g

]

< Ex[1
fó A . ç2iÿ3g

EX (ç2iÿ3)(1fó A .(ô M^1)g)]

< Px(ó A . ç2iÿ3) sup
jzj<r

Pz(ó A .(ôM ^ 1))

< (1 ÿ pA)Px(ó A . ç2iÿ3): (5:17)

As ç3 . ç1 a.s., by (5.16) we have

Px(ó A . ç3) < (1 ÿ pA): (5:18)

By (5.17) and (5.18) we have

Px(ó A . ç2iÿ1) < (1ÿ pA)iÿ1
: (5:19)
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Combining (5.15), (5.16) and (5.19), we have

Ex

X

i>1

�ó A^ç2i

ó A^ç2iÿ1

ds

" #

<
1
pA
� (1 ÿ pA): (5:20)

By the strong Markov property and the fact that X (ç2i) 2 B(0: M), we have

Ex

�ó A^ç2i�1

ó A^ç2i

ds

" #

� Ex 1
fó A . ç2ig

EX (ç2i)

�ó A^ô r

0
ds

" #

< Px(ó A . ç2i) sup
jzj<M

Ez(ôr): (5:21)

As ç2i . ç2iÿ1 a.s., we have

Px(ó A . ç2i) < Px(ó A . ç2iÿ1) < (1 ÿ pA)iÿ1
: (5:22)

Combining (5.21) and (5.22), we obtain

Ex

X

i>1

�ó A^ç2i�1

ó A^ç2i

ds

" #

<
1
pA

sup
jzj<M

Ez(ôr)
� �

: (5:23)

Now combining equations (5.13), (5.14), (5.20) and (5.23), we have the proposition. u

Corollary 5.5. If the diffusion is positive recurrent then E y(ó A) ,1, for any y 2 �D and for
any non-empty open set A � �D.

Proof. Without loss of generality take A to be bounded open. Let y 2 �D be arbitrary but
fixed. Let x 2 A be arbitrary. By positive recurrence there exist open balls U1, U2 such that
x 2 U1 � �U1 � U2 and (5.1) holds. Now choose r . jyj such that �A [ �U1 � B(0: r). For any
M such that B(0: r) [ �U2 � B(0: M), sup

jzj<M Ez(ó U1 ) ,1 by Lemma 5.1. Hence we have
supjzj<M Ez(ôr) ,1, by continuity of sample paths. Choose a suitable M, such that Lemma
5.3 and Proposition 5.4 hold. Now the corollary follows. u

Proposition 5.6. Let r0 . 0, å . 0, u 2 C2(Rd
nB(0: r0=2)) be such that

(i) Lu(x) < ÿå, jxj > r0;
(ii) Ju(x) < 0, fjxj > r0g \ @D;

(iii) u(x) > 0 for all x such that jxj > r0.

Then the diffusion is positive recurrent.

Proof. Let ôn
r0
� inf ft > 0: jX (t)j =2 (r0, n)g. Then by Itô’s formula,

Ex[u(X (t ^ ôn
r0

))] ÿ u(x) < ÿåEx(t ^ ôn
r0

): (5:24)

So Ex(t ^ ôn
r0

) < [u(x) ÿ Ex(u(X (t ^ ôn
r0

)))]=å. Hence Ex(ôn
r0

) < u(x)=å as t !1. But since
ôn

r0
"ôr0 as n !1, we have
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Ex(ôr0 ) <
u(x)

å
,1: (5:25)

From (5.25) it follows that sup
jzj�r Ez(ôr0 ) ,1 for any r . r0. Hence we have that the

process is positive recurrent. u

Remark 5.1. If the diffusion is recurrent, then, by the argument and results of Maruyama and
Tanaka (1959), there exists a unique (up to scalar multiplicity) ó-finite invariant measure.
Furthermore, if the diffusion is positive recurrent, then, by the same arguments, the invariant
measure is a probability measure. (Note that the Condition 6 of Maruyama and Tanaka
(1959) is needed just for open balls.)

Remark 5.2. In Bhattacharya (1978) a point x is said to be positive recurrent if, for all
0 , r0 , r1, we have Ez(ó B(x:r0)) ,1, for all z 2 @B(x: r1). However, to prove the existence
of an invariant probability measure a condition similar to (5.1) above is needed.

Remark 5.3. Estimate (5.12) is stated (with a brief indication of proof) in Dupuis and
Williams (1994), in the context of semimartingale RBMs in the orthant. As this estimate is
likely to be very useful we thought it appropriate to write up a proof.

Note. Our analysis concerning recurrence, transience and positive recurrence can easily be
extended to unbounded domains that are C2-diffeomorphic to the half-space.

6. Further comments and examples

Example 6.1. Let D � f(x1, x2): x1 . 0g. Put L � ˜=2 ÿ ì@=@x1, ì . 0. Note that in R2,
L-diffusion is transient as the diffusion is (B1(t) ÿ ìt, B2(t)), where B1 and B2 are Brownian
motions.

But let us consider (L, J)-diffusion where J � @=@x1. Now by taking u(x) � log jxj, we
see that

Lu < 0 on D;
Ju < 0 on @D:

Furthermore, u(x) !1 as jxj"1. Hence the process is recurrent, by Corollary 2.5.

Example 6.2. Now consider

D � f(x1, x2): x2 . 0g:

Let â1, â2 be negative constants, and

Lf (x) � ˜ f (x) � â1x1
@ f (x)
@x1

� â2x2
@ f (x)
@x2

Jf (x) � ª1(x1)
@ f (x)
@x1

�

@ f (x)
@x2

;
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that, is we consider an Ornstein–Uhlenbeck process in the upper half-plane with reflection
field (ª1(x1), 1). We can have positive recurrence of the process in the following cases.

Case (i). Let ª1(x1) < 0, for x1 > 1, and ª1(x1) > 0, for x1 < ÿ1. Then with the function
f (x) � log jxj, applying Proposition 5.6, we can see that the process is positive recurrent.

Case (ii). Let â1 � â2 � â. Now consider the upper half-plane in polar coordinate form,
that is,

D � f(r, Ł): r . 0, Ł 2 (0, ð)g:

Then the diffusion and boundary operators transform to

Lr,Ł �
@

@ r2
�

1
r

@

@ r
�

1
r2

@

@Ł2
� âr

@

@ r

J �
tan ç(.)

@

@ r
�

1
r

@

@Ł
on Ł � 0

ÿtan ç(.)
@

@ r
ÿ

1
r

@

@Ł
on Ł � ð:

8

>
>
<

>
>
:

Now if the reflection field satisfies the condition in Theorem 3.1(a), then by Proposition 5.6
applied to the function u(r, Ł) as in the corresponding proof, we have positive recurrence of
the Ornstein–Uhlenbeck process.

Similarly, if the reflection field satisfies the condition in Theorem 3.1(c), we have positive
recurrence of the Ornstein–Uhlenbeck process. In particular, we see that the Ornstein–
Uhlenbeck process with constant angles of reflection is positive recurrent.

Example 6.3. Let S be the upper half-plane as in Section 3. Let

Lf (x) �
X

2

i, j�1

aij(x)
@2 f (x)
@xi@xj

,

where

aij(x) � äij �
g(r)
r2

xixj,

in which g(r) is a bounded Lipschitz continuous function. Note that S � f(r, Ł): r . 0, Ł 2
(0, ð)g. Let J be given by (3.1). In polar coordinates L above is transformed to

L � (1 � g(r))
@2

@ r2
�

1
r

@

@ r
�

1
r2

@2

@Ł2
:

Case (i). Let the reflection field satisfy the condition in Theorem 3.1(a). Assume
g(r) > 0. Take Æ, s0 and u as in the proof of Theorem 3.1(a). Note that 0 , Æ , 1. Then on
[@1S \ fr > s0g] [ [@2S \ fr > s0g] we have

Ju < 0: (6:1)

As g(r) > 0, we have

Lu < g(r)Æ(Æ ÿ 1)rÆÿ2 cos (ÆŁ ÿ Ł1) < 0,
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and in this case the process will be recurrent.
Case (ii). Let the reflection field satisfy the condition in Theorem 3.1(b). Assume

g(r) , 0. Take Æ, u as in the proof of Theorem 3.1(b). Since Æ , 0 we choose s0 . 0 such
that, on [@1S \ fr > s0g] [ [@2S \ fr > s0g], we have

Ju < 0: (6:2)

As Æ , 0 and g(r) , 0, note that

Lu < 0:

Hence the process is transient. In particular, if g(r) � ÿ1=(1 � log r), we have recurrence in
the unrestricted case (see Friedman 1975, p. 202). But in the upper half-plane with the
reflection as above, the process is transient.

Example 6.4. Let D � (x1, x2, x3, x4): x1 . 0g and let (1, ª2, ª3, ª4) be the reflection field on
@D, where ª2, ª3 and ª4 are constants. Consider Brownian motion in �D with reflection field
as above. The equation can be explicitly written for reflection Brownian motion in �D,

Z1(t) � B1(t)� î(t)

Z2(t) � B2(t)� ª2î(t)

Z3(t) � B3(t)� ª3î(t)

Z4(t) � B4(t)� ª4î(t)

where î(t) is the local time at 0 for the Brownian motion B1(t), and the Brownian motions
B1(t), B2(t), B3(t) and B4(t) are independent. Without loss of generality, assume that
ª2

2 � ª2
3 � ª2

4 � 1. Let O be the orthogonal transformation in R3(� @D) taking (ª2, ª3, ª4) to
(1, 0, 0). Hence

O(Z2, Z3, Z4)T
� O(B2, B3, B4)T

� O(ª2, ª3, ª4)Tî(t)

� (~B2, ~B3, ~B4)T
� (î(t), 0, 0)T

where (~B2, ~B3, ~B4) is again a three-dimensional Brownian motion. Consider the trans-
formation T : R4

! R4 such that T (x1, x2, x3, x4) � (x1, y2, y3, y4), where (y2, y3, y4)T
�

O(x2, x3, x4)T. As T is a smooth transformation, it would preserve recurrence and transience.
Let T(Z1, Z2, Z3, Z4) � (~Z1, ~Z2, ~Z3, ~Z4), where

~Z1(t) � B1(t)� î(t)

~Z2(t) � ~B2(t)� î(t)

~Z3(t) � ~B3(t)

~Z4(t) � ~B4(t):

Now note that (~Z1, ~Z3, ~Z4) is a three-dimensional reflected Brownian motion with normal
reflection in the space �E � f(x1, x3, x4): x1 > 0g and is transient. Hence the diffusion
(~Z1, ~Z2, ~Z3, ~Z4) is transient. In general this result is true for dimensions greater than 4.

Recurrence and transience of diffusions 117



To conclude, we mention two cases in which the asymptotic behaviour of the diffusion is
not clear to the authors.

(a) Brownian motion in three dimensions with reflection field ª(x), where ª is bounded
smooth. One would expect this process to be transient; however, even when ª � constant
we do not know the result.

(b) For the Ornstein–Uhlenbeck process in the half-plane with drift coefficients
â1x1, â2x2, (â1 , 0, â2 , 0) we do not know whether the process is recurrent. In particular,
we do not know the behaviour of the process when ª is such that hx, ª(x)i. 0, for all
x 2 @D. Also we are not able to say anything about positive recurrence.
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