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Abstract. We consider RBSDE in an orthant with oblique reflection and with time and
space dependent coefficients, viz.

T T T
Z(t)=¢& +[ b(s, Z(s)) ds+/ R(s, Z(s)) dY (s) —/ (U(s), dB(s))

with Z;(-) > 0, Y;(-) nondecreasing ang (-) increasing only whex;(-) = 0,1 <i <

d. Existence of a unique solution is established under Lipschitz continuity®fand a
uniform spectral radius condition i On the way we also prove a result concerning the
variational distance between the ‘pushing parts’ of solutions of auxiliary one-dimensional
problem.

Keywords. Backward SDE'’s; Skorokhod problem; oblique reflection; spectral
radius; total variation; local time; contraction map; subsidy-surplus model.

1. Introduction

Since backward stochastic differential equations were introduced about a decade back
there has been a lot of interest in them owing to wide applicability in stochastic control,
differential games and economics. Recently backward stochastic differential equations
with reflecting barrier have been studied by El Karetial [5] and Cvitanic and Karatzas

[1] in the one-dimensional case; and by Gegout-Petit and Pardoux [7] in a convex domain
in higher dimensions; these works concern the case of normal reflection at the boundary.

On the other hand, following the impetus given by queueing theory, deterministic as
well as stochastic Skorokhod problem in an orthant with oblique reflection at the boundary
has been studied by many authors over the last two decades; see the references in [11].

The aim of this article is to study reflected backward stochastic differential equations
(RBSDE’s) in an orthant with oblique reflection at the boundary. The drift vector and the
reflection matrix can be time and space dependent; existence and uniqueness are established
under a uniform spectral radius condition on the reflection matrix (plus, of course, a
Lipschitz continuity condition on the coefficients); such a condition has proved useful in
the study of Skorokhod problem; see [8,9,11,12].

In 82, after describing the set up, we indicate briefly two situations from economics
where RBSDE can be used as a model. The first one is a backward stochastic analogue of
the subsidy-surplus model considered in Ramasubramanian [11], and the second example
is a backward stochastic (oblique) analogue of a projected dynamical system studied in
Nagurney and Siokos [10].
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An auxiliary one-dimensional RBSDE is discussed in 3. A result concerning the varia-
tional distance between the ‘pushing parts’ of solutions of two auxiliary one-dimensional
equations s established, the inspiration being a deterministic analogue due to Shashiashvili
[14]; see also [15]. Existence of a unique solution to RBSDE is proved in 84 by a contrac-
tion mapping argument; the metric is given in terms of total variationZahdorm. As in
[11] a couple of a priori results help in confining the analysis to a smaller space. Itis also
shown that it is enough to have the reflection coefficients defined on the boundary.

2. RBSDE in an orthant with oblique reflection

Let {B(t) = (B1(t),...,B4(t) : 0 <t < T} be ad-dimensional standard Brownian
motion defined on a probability spa(®, F, P);let{F;} be the naturalfiltration generated
by {B(#)}, with Fo containing allP-null sets.

LetG = {x e R? : x; > 0,1 < i < d} denote the/-dimensional positive orthant. We
are given the following :

£ is anFr-measurabl&-valued bounded random variable;

b:Qx[0,T] xRY - R4 R:Qx[0,T] x R* - My(R) are both bounded
measurable functions such that for each R?, b(-, -, z) = (b1(-, -, 2), ..., ba(-, -, 2)),

R(-, -, 2) = ((rij (-, -, 2)))1<i, j<a are{F;}-predictable processes; it is also assumed that
ri; (- --) = Lwhich s just a suitable normalization. (Héyg (R) denotes the class dfx d
matrices with real entries.)

Apair {Y(t) = (Y1(t), ..., Ya@)} {Z(t) = (Za1(1), ..., Za(1))},0 <t < T of {F}-
progressively measurable continuous integrable processes is said to solve RBSDE
(&,b, R) if there is an {F;}-progressively measurable square integrable process
U(t) = ((Uij(t)))1<i, j<a Such that

(i fori=1,...,d,0<t<T

T
Zih) = & + / bi(s, Z(s)) ds + Yi(T) — Yi(1)

t

T T d
w3 [ mezonane - [ Y e @
Jj#i Ut roj=1

(i) Z@t) e Gforall 0<t <T;
(i) Y;(0) =0, Y;(-) continuous, nondecreasing arjd-) can increase only whe#; (-) =
0,1<i <d;thatis,

t
Yi(t) = /0 Loy (Zi(5)) Y s). (2.2)

Equation (2.1) is the analogue of Skorokhod equation. Note that the prig¢esseed not
be continuousb is the drift andr gives the reflection directions.
We now describe briefly two situations where the above model may be applicable.

Remark2.1. Following Ramasubramanian [11], RBSEE b, R) can be viewed upon as
a subsidy-surplus model. We consider an economy aittierdependent sectors, with the
following interpretations:
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(&) Z;(r) = current surplus in Sectarat timetz;

(b) Y;(¢) = cumulative subsidy given to Sectoover [0, ¢];

(c) & = desired surplus in Sectoiat timeT;
of course,Z; (¢), Y; (t) depend on ‘information’ only up to time

(d) f; b;(u, Z(u)) du = net production of Sectar over [s, t] due to evolution of the
system; this being negative indicates there is net consumption;

(e) fs’ rl.]; (u, Z(u)) dY; (u) = amount of subsidy for Sectgrmobilized from Sectoi over
[s, tT;

)] jff rlf}'(u, Z(u)) dY; (u) = amount of subsidy mobilized for Sectpmwhich is actually
used in Sector (but not as subsidy in Sectoyover s, t].

The condition (iii) in RBSDEE, b, R) means that subsidy for Sectocan be mobilized

only when Sectoi has no surplus; this is matural minimality condition The uniform
spectral radius condition (A3) which is imposed in 84 would mean that the subsidy mobi-
lized from external sources is honzero; so this would be an ‘open’ system in the jargon
of economics; see also 82 of [11]. This suggests that the above situation may be called a
stochastic differential subsidy-surplus modda Duffie and Epstein [2].

Remark2.2. We give another interpretation. Suppose the system represeadiers each
specializing in a different commodity. For this model we assufite- - ) < 0, i # j. Here

Z;(t) = current price of Commodity at timer; there is a price floor viz. prices cannot

be negative;

Y; (t) = cumulative ‘tatonnement’ (adjustment) involved in the price of Commadity

over [0 1];

bi(t, Z(t)) dr = infinitesimal change in price of Commoditydue to evolution of the

system;

& = desired price level of Commodityat timeT .

Condition (iii) (thatis, (2.2)) of RBSDE, b, R) then meansthattatonnement/adjustment
dy;(-) can take place only if the price of Commodityis zero. In such a case
fS’ ri;(u, Z(u)) dY;(u) = tatonnement from Tradémwhen price of Commodity is zero.

Note that d’; (-) can be viewed upon as a sort of artificial/forced infinitesimal consump-
tion when the price of Commaodityis zero to boost up the price; henq}a(t, Z())dY; (1)
is the contribution of Tradetd towards this forced consumption. As before, (A3)
implies that there is nonzero ‘external tatonnement’, like perhaps governmental interven-
tion/consumption to boost prices when prices crash.

In the context of the Skorokhod problem with normal reflection, a similar interpretation
is given in ([10] pp. 76-80) in connection with financial networks; these authors call
the model as a ‘projected dynamical system’; see also [4]. One-dimensional RBSDE (of
course, with normal reflection), has been proposed as a model for pricing of American
contingent claims in El Karoui and Quenez ([6], pp. 229-231).

Since ‘tatonnement’ can be viewed upon as a ‘subsidy’, the above may also be taken as
a special case of Remark 2.1.

3. Auxiliary one-dimensional problem

In this section we look at an auxiliary one-dimensional problem needed for studying the
d-dimensional problem.
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Let (2, F, P),{B(®)},{F:},0 <t < T be asin 82. We are given the following:

¢ is anFr-measurable bounded nonnegative random variable;

f12x[0,T]xR >R, g;:Qx[0,T]xR— R, 1< j <k, arebounded
measurable functions such that for each R, f(, -, 2), g;(, -, z) are{F;}-predictable;

Aj, 1< j < kare{F;}-progressively measurable integrable continuous nondecreasing
processes.

A pair {L(1)}, {M(¢)},0 <t < T of real valued{F;}-progressively measurable con-
tinuous integrable processes is said to solve the auxiliary one-dimensional problem cor-
responding tdc, f, g;, A;) if there exists af.F; }-progressively measurable square inte-
grable proces§V (1) = (Vi(1), ..., V4(t))},0 <t < T such that

(i) the Skorokhod equation holds, viz.

M) =<+ / /. M(s))dv+2 f 810, M()) 04, (5)
b 1o [ 3 Vits) dets) (3.1)
roe=1

(i) M@)>0forallO<r <T;
(i) L(O) =0, L(-) nondecreasingd,(-) can increase only whei (-) =0

Proceeding as in the proof of Proposition 4.2 and Remark 4.3 of [5] the following result
can be proved.

Lemma3.l. Let{L()}, {M(2)},0 <t < T be asolution to the auxiliary one-dimensional
problem. Le{¢(r)}, 0 < ¢t < T denote the local time at 0 of the continuous semimartingale
{M(t)}. Then

k
0< dL() < Lioy(M(1)) {If(t, 0)dr + Z g (7, 0)] dAj(t)} (3.2)
j=1
k
0 < det) < Iigy(M (1)) {If(t, 0)dr + Z g (, O)IdAj(l)} . (3.3)
j=1

Ifin addition A;, 1 < j < k are absolutely continuous then

](f)

dL(t) + = dE(t)_I{o}(M(t)) [f(t 0)+Zg,(r 0) } dr.  (3.4)

The next result concerns the variational distance betweeb-fharts of the solutions of
two auxiliary one-dimensional equations; it has been motivated by a deterministic analogue
due to Shashiashvili [14] in the context of Skorokhod problem. For our purposes it suffices
to consider the case wheh: @ x [0, T] — R is {F;}-predictable ang; = O for all ;.

To be more precise, for=1,2 let f® : Q x [0, T]— R be boundedF;}-predic-
table process,c® bounded nonnegativg Fr}-measurable random variable; let
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{LP@®)}, {MP (1)},0 < ¢ < T solve the auxiliary one-dimensional problem correspond-
ing to (¢®, f®,0,0) so that

T
M®B () =¢c® 4 / FO)ds + LOT) — LO (1)
t

T
—/ <V(k)(s), dB(s)>, (3.5)
t

/ MP () dL® (s) = 0, (3.6)

M® 1) >0, L% ©0) = 0, L¥(.) continuous nondecreasing= 1,2, 0 < ¢t < T; (all
these hold a.s.). By Proposition 5.1 of [5] unique square integibiy ), L& (), v® ()
exist solving the above. Clearl/V () — L@ (.) is of bounded variation a.s.; in fact, by
the preceding lemma®, L@ are absolutely continuous; l&t(-), 2@ (.) denote their
respective derivatives. Let(L —L?)|(-) denote the measure given by the total variation
of (L(l) _ L(Z))(.)_

Theorem 3.2.Foranyd >0,0<s <r<T

t
E/ @ — DY) =2 D@) | dr

t
- E/ @ —dL® — L))
< E[(@ — )MV (1) - MP (1) — (& — )IMD(s) — MP(s)]]

t
- E/ & oM () — MP ()| dr

t
+E / @ — DIV — FO) dr. (3.7)

Proof. All equalities/inequalities below are satisfied almost surely. We dehole=
eD)y—£@()forg = A, L, f, V. Proceeding as in the proof of eq. (13) in Shashiashuvili
([14], pp- 171-173) using

10.00) (M) LD (r) = 0, I 00,0/ (M (r)) dLP (r) = 0
wegetforO<s <r<T
t Y t e Y e
/ D)) = / (=g () + Loy (F () x (M1 dD) ) (3.8)

wherey (+) is {F;}-progressively measurable function taking only the valués—1 and
the function sgn is defined by

1 if x>0
sgnx) = {0 if x=0.
-1 ifx<O

Progressive measurability gf(-) follows by the proof of Radon—Nikodym theorem and
p. 171 of Shashiashvili [14]. Therefore denoting the integrand on the r.h.s. of (3/8) by
and using (3.5) fok = 1, 2, we get
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/St(em — D) dr = [(eer — DIA@)|(r)
_ / @~ DI dD)
_ _/S’(eﬂf ENGYIOL
n /St(em —1J () (V(r), dB(r))

t
—/ (& —D)Jr)dM ()

=h+ L+ 13 (3.9
As |J(r)| < 1itis clear that
t
Bty <E [ @ - Difne, (3.10)
and/» being an Ito integral
E(Iy) = 0. (3.11)

Lett — £(¢, a) denote the local time of the continuous semimarting?ilata € R. By
the version of Ito—Tanaka—Meyer formula given in Exercise 1.25, Chapter VI (p. 219) of
[13] we get

d(&@ — DIM|(r)) = M|(r)0€" dr + (&7 — 1) dIM|(r)

@ -1
—~ 2 —
+ (& — D[sgn(M)(r) d(M)(r)]

= |M|(r)ee’" dr +

[de(r, 0) + de(r, 0—)]

and consequently
t o~ o~
/ (€ — Hsgn(M (r)) d(M)(r)

P P t o~
= (& — 1)|M|(t) — (& —1)|M|(s) —f &70|M|(r) dr

1

t t
-3 [ / (" — 1)de(r, 0) + / (& —1)de(r, o—)} . (3.12)

By Theorem 1.7, Chapter VI of [13]

! o~ o~
/ — (& = Dx (N Loy (M) (r)) d(M)(r)

1 t
< 5/ (& — 1] d(e(, 0) — £, 0-)(r)

t t
< % [/ (" — 1) de(r, 0) +f (" — 1) de(r, 0—)} ) (3.13)
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By (3.12), (3.13)
t
I3 < (& — 1)|M|(t) — (& — 1)|M|(s) —f &"6|M|(r) dr (3.14)

Taking expectation in (3.9) and (3.14), and using (3.10), (3.11) the required estimate (3.7)
is now immediatell

4. Existence and unigueness
We make the following assumptions on the coefficiéntg.

(Al):Forl=<i <d, z+ bi(w,t,z) is Lipschitz continuous, uniformly ovéw, t); there
is a constang; such thatb; (w, t, z)| < B; for all w, ¢, z. Denotes = (B4, ..., Ba)-

(A2):Forl<i, j <d, z— rij(w,t,z) is Lipschitz continuous, uniformly ovem, 1).
Alsor;; = 1foralli.

(A3): Fori # j there exists constant; such thatlr;;(w, t, z)| < v;;. SetV = (v;;) with
v;; = 0; we assume that(V) < 1 whereo (V) denotes the spectral radius bf

If (V) < 1 observe that
I-=V)t=I14V+V24Viq. .

is a matrix with nonnegative entries; hdrés the(d x d) identity matrix.
We first establish an a priori estimate.

PROPOSITION 4.1
AssumgA1)—A3) and leté be a boundedFr-measurableG-valued random variable.
Suppos€Y (1)}, {Z(t)},0 <t < T solve RBSDK¢, b, R). Then
Oo<dr(r)<(I—V) 'Bd (4.1)
in the sense that
0<dri(t) < (I —V)'Bydr,1<i<d (4.2)

In particular dY; (-) is absolutely continuous, and hence the local tim@attZ; (-) is also
absolutely continuous for eaéh=1, ..., d.

Proof. Foreachfixed=1,...,dnotethaf{L(t) = Y; (1)}, {M@) = Z;(t)}, 0<r <Tis
a solution to the auxiliary one-dimensional problem correspondingtc;, f(w, s, z) =
bi(w,s,Zi (s, w)), gj(w,s,2) = rij(w,s, Z;,(s,w)), dA;(s) = dY;(s),j #i,1 <
i,j<dwhereZ;, =(Z1,...,Zi-1,2. Zit1. - - ., Za).

By Lemma 3.1 and our hypotheses

0 < dYi(1) < Loy (Zi()) | 1bi (1, ZO) | dr + Y Irij (¢, Z(1))| dY;(0)
i#i
< Bide+ ) vy dy;(n).
i#i
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Consequently

dy; () — Zvij dy;(t) < Bidr,1<i <d.
J#i

The above can be expressed as
(I =V)dy);(1) =(B);dt,1<i <d. (4.3)

Aso (V) < 1 we can get (4.1), (4.2) from (4.3). The last assertion is now a consequence
ofLemma3.1. B

Remark4.2. Aso (V') = o(V), whereV' denotes transpose &f, by (A3) it follows
that there are constanis > 0,1 < j <d and O< o < 1 such that

Zailrij(w,t,z)ISZaivij < aa;j (4.4)
i#]j i#]j
forall j=1,....d,weQ, 0<t<T,zeRY see, for example, Dupuis and Ishii [3]

for a proof.(]

Let# > 0 be a constant. Let! denote the space of all (equivalence classeg.8f)-
progressively measurable proces$gg) = (Y1(2), ..., Yo(t)}, {Z(@) = (Z1(0), ...,
Z4(1))},0 <t < T such that

() Zit)=0,0<:r<T,1<i<d,
(i) Y;(0) =0, Y;(-) is nondecreasing, ¥ i <d,
d
iy EY [y " ailZi)]dr < oo
i=1

d
V) EY fq e aip (Y dr < 00
i=1

whereg;, (g) denotes the total variation gfover ¢, T]. The constan > 0 will be chosen
suitably later; the constanés are as in Remark 4.2.
For (Y, Z), (Y, Z) € 'H define the metric

d T
A 2. @2 =EY. [ iz - Zio)d
i=1

d T
+ EZ/ & a;p(Y; — Y;) dr. (4.5)
i=170

Note that(H, d) is a complete metric space.

Let H denote the collection of allY, Z) € H such that there is afiF;}-progres-
sively measurable procesB(t) = (D1(t),..., D4(t)),0<t < T with 0< D;(t) <
(I —= V)1 p) as.and;(t) = [y Di(s)ds,0 <t < T.

Observe that{ is a closed subspace Bfand hence™, d) is a complete metric space.
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Let (Y, Z), (Y, Z) € H with D;, D; being respective derivatives &f, ¥;. Since
—_~ T —_
o (Vi — ) =/ IDs(s) — Di(s)l ds (4.6)
t

using integration by parts and (4.5) we have

d T
d((Y, 2), (Y, Z2) = E Z / & ai| Zi(t) — Zi(1)| ot

—i—EZ/

As a; > 0 for all i, note that(ﬁ d) can be identified with a closed subspace of
LY (@ x [0, 7], dP x & dr) - RY) x L1 (2 x [0, T, dP x (69’0‘1) dr) — RY).
In view of Proposition 4.1 we need to seek a solution onI?ﬂlﬂ
Letb, R satisfy (A1)-(A3) and be a boundedr-measurablé-valued random vari-
able. Let(Y, Z) € H. For fixed 1< i < d set

t
(eﬂ a, |D; (1) — D;(t)| dr. 4.7)

filw, t) = bi(w, t, Z(t, ) + Zl"ij((x), 1, Z(t,w))Dj(t, w). (4.8)
J#
By our assumption, note thgtis bounded. So by Proposition 5.1 of El Karetal[5] there

exists a unique pair; (r), Z;(t), 0 < t < T of nonnegativé.F; }-progressively measurable
square integrable processes solving the auxiliary one-dimensional problem such that

T T
Zi) = & + / Fi(s) ds + V(T) — Ty6) — f (O(s). dB(s))  (4.9)
t

t

for some{7;}-progressively measurable square integrable pro{i@lsst)} (of course,
Y;(0) =0, Y (-) is non- decreasmg and can increase only vvﬁg(n) =0).
SetY (1) = (Y1(1), ..., Ya(1), Z(t) = (Z1(0), ..., Za(1)), 0 <1 < T.

Lemmad.3. AssumdA1)—(A3); let £ be bounded. ItY, Z) € H then(Y, Z) € H.

Proof. As Z-(-) is square integrable it is clear that
d T .
EZ/ egta,-|Z,-(t)|dt<oo.
i=17/0

By Lemma 3.12 (+) is absolutely continuous. To complete the proof it is enough to prove
that0< dY (r) < (I — V)18 dr is in the sense of (4.2). Again by Lemma 3.1, (4.8), (A1)
and (A3)

0 <d¥i() < [bi(t, 0) dr + Y |rij(t, 0)| D; (1)
J#L
<Bidi+ > vi;Dj(r)dr.
J#
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Asv;; =0and & () < (I — V)~18dr the above can be written as

0<dY(r) <Bdr+ VI —V)'8d
=[I+VvU-V)Ypdi=U-V)1Bd

completing the proof. B

Note. Analogues of Proposition 4.1 and Lemma 4.3 for (deterministic) Skorokhod problem
have been proved in [11]]

Before we state our main result a comment concerning Lipschitz continuity may be in
order. OnR¢? define the norniiz| = Zle a;|zil; sincea; > 0 for all i, this norm is equi-
valent to the Euclidean norm. So we may as well assume that Lipschitz continuity in (A1),
(A2) is with respect to this norm; that is, there is a cons#ént 0 such that

|f(w,t,2) — f(w,1,2)] < K|z —7Z] (4.10)

forallz?eRd, weQ0<t<T, f=0b,rj,l<ij<dwhere|z-7Z| =

Z ailz; — Zt
Consequently by (4.7), fary, Z), (Y Z) eH

T
(Y, 2), (7, 2) = E / N2 — Z() di
0
T (et _ R
+E/ %—D||D(t)—D(t)|| dr. (4.11)
0

Theorem 4.4. AssuméA1)—(A3) and lets be a boundedrr-measurables-valued ran-
dom variable. Then there is a unique, Z) € H solving RBSDE¢, b, R). Moreovery, Z
are continuous processes aficc dY;(r) < (I — V)~ 18); dr,0<r<T,1<i <d.

Proof. In view of Proposition 4.1 it is enough to prove that the ni#pZ) (Y Z) isa
strict contraction ofH where(Y Z) is as in the discussion prior to Lemma4.3; by Lemma
4, 3(Y Z) cH wheneverY, Z) does. N

Let YD, ZD), (Y@, z@) ¢ H. Let YD, ZD), (Y@, Z@) ¢ H be obtained by
solving the associated auxiliary one-dimensional problems as in the discussion prior to
Lemma 4.3; see (4.8), (4.9). So there exist matrix valygd-progressively measurable
square integrable procesde&), U@ such that

T
Z0@) =& + / bits, Z® () ds + 3 / rij (s, 2% () D® (s) ds
! JF#
T _ T,
+ / D® (s)ds — / (00, dB)) (4.12)
t t
where &;(k)(t) = 5fk)(t) dr, in(k) (1) = Dl.(k) (OHde,fori=1,...,d, k=12

Applying Theorem 3.2t¢Y ", Z*), k = 1, 2 for a fixedi, using an analogue of (4.6),
integration by parts and (4.12) we get
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T (1 =2 T (1 (2
E/ e9f9|z§>(r)—z}>(t)|dt+E/ & 00,7 —7P) dr
0 0
T =1 =2 T <@ <2
=E/ e9'9|zf)(z)—z§)(z)|dt+Ef @ —1)DP (1) — DP (1) dr
0 0
T
<E [ & = Dbi(t. ZP 1)) = bi(e, 2P (1))| dt
0

T
+E/ @ -1
0

Y i@, ZP )DL (0) = rij 1, ZP 1)) DP (1)) |l
J#i

T
<E / & —D)bi(r, ZV (1)) — bi (1, 2P (1))| ot
0
T
+E / (@ = 1) 1rij 1, ZP @) = rij(t, ZP @)ID 1)
0 J#i

T
+E / €@ =D It ZP)IDP ) - DP 1) dr. (4.13)
0 J#i

As (YD, zy e H note that)_; D;.l)(t) <Y ;(I—V)"1p); < K1 for some constant
K1. So by the Lipschitz condition (4.10) and (A3) we now get

T T
E [ / @012 1) — Z2 (1) di + / & 0, (Y —?,@)dz]
0 0
T
< K(K1+DE / & —DIzV1) - 291 dr
0

T
p® )
+ E/O G 1)Zv,j|Dj (1) — D7 (1) dr. (4.14)
J#i
Multiplying (4.14) bya;, adding and using (4.4)
0d(YD,ZD), Y2, Z?))

T
< () KK+ DE [ @ = 01200 - 220l d
0

T
+ E/ @ -1 ZZaiviﬂD;l)(t) - Dj?)(m dr
0 e
T
= (Y a) KK+ l)E/ &1zD @) — 2@ @) dr
0
T
+ aE/ @ — 1DV 1) — D) dr. (4.15)
0

Choose large enough tha (3" a;) K (K1 + 1) < «. Then we get using (4.11), (4.15)
d(¥®, ZM), ¥?,Z?) <ad(r®, zP), (v @, 2?)). (4.16)

As a < 1 this shows thatY, Z) — (?, 2) is a strict contraction orﬂ, completing the
proof. W
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While considering diffusions with boundary conditions, usually the reflection terms are
specified only for on the boundary. More precisely, ford j < d denoting thej-th face
of the orthantby);G = {x € G: x; = 0}, note that the column vecter; (- - -) denotes the
direction of reflection 0 ; G; sor;; (¢, z) is generally defined only far € 9;G. Of course
bounded Lipschitz continuous function 8G can be extended 16 or R? with the same
Lipschitz constant and the same bounds needed in (A3); see [14] for example. But there is
no unique way of extension 16 or R¢. However our next result indicates that it does not
matter which extension we take, only the values on the boundary determine the process.

Theorem 4.5. Letb satisfy 81). LetRV (- ) = ((r(-+)). RA () = (P (-+))
satisfy @2), (A3) with the same Lipschitz constant and the sémg)). Let(Y ®, 70y ¢
H solve RBSDHE, b, R®), k = 1,2. Suppose,.(/.l)(t,z) = rl.(/.z)(l,z) for z € 9;G,
1<i<d O<t<Tforj=1,....,d. Then(Y®, 6 zD)y = (y@ z@),

Proof. Proceeding as in the proof of Theorem 4.4 with obvious modifications we get
T T
E [/ &012% (1) —Z§2>(t)|dt+/ & 0, (v — Y}Z))dz]
0 0
T
<E f & = Dbi(t, ZP (1)) — bi(t, 2P (1))| dr
0
T
r D¢ 7Dy _ @ D) €
+E/O (e 1);|rij (0, ZP @) —r7 @, ZP @)D (1) e

T
+E /0 @ — 1 ; |ri(j2) t, ZVt)) — rl.(]?>(;, z(2>(z))|D§1)(r) dr
JF#i
T
+E / @ -1y |r§j2>(z, Z@)|D (1) - D§2>(z)|dt. (4.17)
0 J#

For any; note thatDﬁ.l)(-) > 0 only if Zi.l)(-) =0, thatis only ifZV(.) € 3;G. So by
our hypothesis the second term on the r.h.s. of (4.17) is zero. Therefore imitating the proof
of (4.14)— (4.16) with the same choice®ive get

d(r®, zH), v®,2?) < ad(@v?, 2D), (v?, 2?)).
As 0 < a < 1 the result now followsHl
Entirely analogous arguments yield the following continuity result.

PROPOSITICN 4.6

Lete™ p™ RW 5 =0,1,2,....satisfy the hypotheses of Theorémwith the same
bound, Lipschitz constant(v;;)). Let (Y™, Z™) e H solve RBSDE&™, p™, R™)
for n=0,12... Assume E[™ —£O| - 0,sup, b, 2) - b2, 2)| - 0,
sup . |rif;l)(t,z) - rl.(f)(t,z)l — O0asn — oo for all i,j. Then(Y®, 6 z"W) —
YO, 7OyinH.

We conclude with a few comments.
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Remarkd.7. From the uniqueness @f, Z) itis clear tha{U (¢)} is also unique. It is also
clear thatr andZ are square integrable.

Remark4.8. An important feature of BSDE as well as RBSDE with normal reflection is
the dependence of the drifton the ‘control’ variableU (-) as well; in these cases the
appropriate metric is given by afb?-norm; see [5] and the references therein. However
when one considers the case of oblique reflection (wjtk: 0) the suitable metric seems
to be in terms of theLl-norm given by (4.5). It is not quite clear to the author how
dependence df;, r;; onU(-) andY (-) can be handled.

Remark4.9. In view of Theorem 4.1 of El Karowt al [5] and Theorem 4.1 of Rama-
subramanian [11] a natural question is: Is there a comparison result for RBSDE in an
orthant vis-a-vis the usual partial order? Note that Theorem 4.1 of El Katali5] gives
monotonicity property of only thé/-part of the solution of the auxiliary one-dimensional
problem. If in addition one can have monotonicity property of Khpart of the solution
(perhaps in the opposite direction !) then the analysis in 84 of Ramasubramanian [11] can
possibly be modified to give a comparison result.
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