
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2009, Article ID 528639, 12 pages
doi:10.1155/2009/528639

Research Article

Reconstruction for Time-Domain In Vivo EPR 3D Multigradient
Oximetric Imaging—A Parallel Processing Perspective

Christopher D. Dharmaraj,1, 2 Kishan Thadikonda,1 Anthony R. Fletcher,3 Phuc N. Doan,3

Nallathamby Devasahayam,1 Shingo Matsumoto,1 Calvin A. Johnson,3 John A. Cook,1

James B. Mitchell,1 Sankaran Subramanian,1 and Murali C. Krishna1

1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1002, USA
2 Department of Computer Science, V.H.N.S.N. College, Madurai Kamaraj University, Virudhunagar, MD 20892-5624, India
3 Center for Information Technology, NIH, Bethesda, MD 20892, USA

Correspondence should be addressed to Murali C. Krishna, murali@helix.nih.gov

Received 26 March 2009; Accepted 1 June 2009

Recommended by Guowei Wei

Three-dimensional Oximetric Electron Paramagnetic Resonance Imaging using the Single Point Imaging modality generates
unpaired spin density and oxygen images that can readily distinguish between normal and tumor tissues in small animals. It is
also possible with fast imaging to track the changes in tissue oxygenation in response to the oxygen content in the breathing
air. However, this involves dealing with gigabytes of data for each 3D oximetric imaging experiment involving digital band pass
filtering and background noise subtraction, followed by 3D Fourier reconstruction. This process is rather slow in a conventional
uniprocessor system. This paper presents a parallelization framework using OpenMP runtime support and parallel MATLAB to
execute such computationally intensive programs. The Intel compiler is used to develop a parallel C++ code based on OpenMP.
The code is executed on four Dual-Core AMD Opteron shared memory processors, to reduce the computational burden of the
filtration task significantly. The results show that the parallel code for filtration has achieved a speed up factor of 46.66 as against the
equivalent serial MATLAB code. In addition, a parallel MATLAB code has been developed to perform 3D Fourier reconstruction.
Speedup factors of 4.57 and 4.25 have been achieved during the reconstruction process and oximetry computation, for a data set
with 23 × 23 × 23 gradient steps. The execution time has been computed for both the serial and parallel implementations using
different dimensions of the data and presented for comparison. The reported system has been designed to be easily accessible
even from low-cost personal computers through local internet (NIHnet). The experimental results demonstrate that the parallel
computing provides a source of high computational power to obtain biophysical parameters from 3D EPR oximetric imaging,
almost in real-time.

Copyright © 2009 Christopher D. Dharmaraj et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. Introduction

In the recent years, Electron Paramagnetic Resonance Imag-
ing (EPRI) has been used to measure tissue oxygen nonin-
vasively, directly, and quantitatively to evaluate hypoxia in
tumors [1–7]. The estimation of the spin density and the
oxygen-dependent EPR line width (LW) of triarylmethyl-
(TAM-) based radicals has been made possible by nonin-
vasive pO2 imaging technique based on the application of
time-domain (TD) EPR Single Point Imaging (SPI) modality
[4, 6]. We recently reported that the 3D tumor oxygen images

in mice by TD-EPRI were well consistent with the blood
perfusion images by Magnetic Resonance Imaging (MRI)
[8].

SPI is based on the pure phase encoding of a constant
time-point in the Free Induction Decay (FID), following a
pulse. Successive FID time-points will produce images with
voxel intensities reduced by the transverse relaxation time
T∗2 which, in turn, linearly depends on the local oxygen
partial pressure pO2. However, phase encoding of all three
spatial dimensions with one spectral dimension creates huge
amount of k-space data. Furthermore, progressively delayed



2 International Journal of Biomedical Imaging

Acquired 3D oximetric data

Filtration and background
subtraction

3D Fourier-based
reconstruction of

spin density images

Oximetry thresholding
and

display of oxygen images

Figure 1: Stages involved in 3D Oximetric data filtration and
reconstruction. Here “Filtration” indicated in the second box refers
to a lowpass digital filter that removes all high-frequency noise
above 20 MHz.

time-points give a “zoom-in” effect to the images since the
field of view (FOV) depends on the delay from the pulse as
well as the phase-encoding gradient steps. In order to keep
the resolution and signal-to-noise ratio (SNR) nearly uni-
form throughout the range of time delay, we perform three
individual three-dimensional (3D) experiments with three
different gradients. The data from the three experiments
are used to derive oxygen maps. However, this requirement
in 3D oximetric imaging results in further three times
larger amount of k-space data in the acquisition computer
[6].

The k-space data sets accumulated for the three gra-
dients thus become large, forcing the digital filtration
and reconstruction tasks (Figure 1) to become enormous
computational efforts, often too demanding for single pro-
cessor architectures. Hence, with the availability of advanced
computer architectures, there is a need to explore and exploit
parallelism in the processing of the SPI oximetric data. In
this work, we present the implementation of a novel parallel
processing approach to speed up the filtration and image
reconstruction tasks in 3D EPR oximetric imaging.

Parallel computing is becoming a dominant paradigm
in high-performance computing [9]. In recent years, par-
allel computing with massive data has emerged as a key
technology in imaging techniques. Cluster-based parallel
processing algorithms has been implemented recently in
the field of hyper spectral imagery to analyze the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) data [10,
11]. Implementation of Fourier-based reconstruction for
Computed Tomography (CT) using parallel computing is
found elsewhere [12]. Bayesian inversion for 3D dental x-
ray imaging has recently been parallelized using a Beowulf
cluster to perform 3D reconstruction [13, 14]. Many par-
allelization techniques have been employed to implement
image reconstruction in positron emission tomography
(PET) [15–17], single photon emission CT [18, 19], and
other imaging modalities [20, 21].

Open Multiprocessing (OpenMP) and Message Passing
Interface (MPI) approaches have been currently used to write
parallel programs. MPI is the standard parallel application
programming interface (API), which has been designed
for distributed memory architectures whereas OpenMP has
emerged as a popular API and widely accepted industrial
standard interface for explicit multithreaded shared memory
architectures [22]. Parallel statistical image reconstruction
for cone-beam x-ray CT on Shared Memory Processor
(SMP) has been implemented using OpenMP as well as
MPI [23]. The ordered-subsets expectation-maximization
(OSEM) algorithm for 3D PET image reconstruction has
been recently parallelized with MPI and hybrid MPI-
OpenMP [24]. However, in molecular modeling application,
OpenMP performed better than MPI environments [25].
The implementation of OpenMP is more suitable than MPI
because of its minimal programming overhead [23].

OpenMP is known to be the first successful directive-
(pragma-) based API for parallel programming intended for
general-purpose computing [26]. OpenMP offers a way to
write programs in C/C++ and FORTRAN and run efficient
applications with a shared memory programming model on
platforms including UNIX and Microsoft Windows [27].
By just inserting the pragma without making any other
changes to the original sequential version of a program, an
excellent parallel performance can be achieved by the users
of OpenMP [28].

For image processing and computer vision, shared
memory parallelization has proved to be a suitable way to
reach better runtime performance. The penalty of using
interprocessor communication is very low on SMP compared
to distributed memory architectures. For a relatively large
data size, it is advantageous to use SMP architecture with
OpenMP rather than distributed architecture with MPI [23].
Recently, a C++ code for content-based image retrieval using
OpenMP has been developed to exploit shared memory par-
allelization [23]. It has also been shown that shared memory
parallelization is more suitable than distributed memory
parallelization for image processing tasks and leads to better
throughput on a parallel computer [29]. These features have
motivated us to perform the parallelization of digital lowpass
filtration and background subtraction tasks using the fea-
tures of OpenMP and C++, on an SMP parallel architecture.

The aim of this work was to investigate the potential
of parallel algorithms in the high-speed processing of 3D
oximetric data for near real-time computation of spin
density distribution and oxygen level in normal and tumor
tissues in small animals. The proposed parallel system can
be viewed as a three-stage procedure. To begin with, the
FIDs are lowpass filtered and background-subtracted using
a parallel C++ program based on OpenMP. This stage is
automatically executed as soon as the 3D data is placed on the
server’s memory. Custom parallel MATLAB code was used in
the second stage to perform the 3D Fast Fourier Transform-
(FFT-) based reconstruction of the filtered data. The 3D
mesh view and 3D spin intensity images were displayed
consecutively on the graphical user interface (GUI). Third,
3D oxygen images were computed and displayed using GUI-
based parallel MATLAB code running on the server. The



International Journal of Biomedical Imaging 3

1 0

5 2.5

18 mm

4.8 mm

(a)

Partitioning

Fiducials

Tumor leg Normal leg

Resonator

(b)

Figure 2: (a) Sketch of the phantom (not to scale). The numbers 0, 1, 2.5, 5 represent the percentage of oxygen present in the four tubes of
the phantom. (b) A cartoon showing position of a C3H mouse with tumor and normal legs in the resonator.

EPR imaging system

Experimental data saved
from instrument

Stage 1
processing Fedora Linux SMP server

with 4 dual core AMD
opteron processor 800

CPUs with 16 GB RAM and
2.5 TB disc

Filtered and normalized data
processed on workstationsGigabit Ethernet

network

MS windows workstations with Intel Celeron 3 GHZ CPU and 2 GB RAM

Stage 2 and 3 processing

Figure 3: The parallel computer architecture showing the EPR imager, parallel server, client workstations, network connectivity, and three
stages of the parallel system.

Distributed Computing Toolbox (DCT) enabled this stage
as a parallel application, with minimal changes in the serial
code.

2. Material and Methods

2.1. Acquisition of SPI Oximetric Data. All experimental
phantom and in vivo small animal data were acquired with
Radio-Frequency Fourier Transform (RF FT) EPR imaging
system. The schematic of the RF FT EPR imager and other
details appear in earlier reports [6, 7]. A brief description
about the collection of raw projection data is presented here.

2.1.1. Phantom Data Collection. In phantom experiments,
four cylindrical tubes of 4.8 mm diameter filled with the
contrast agent Oxo63 [30] were used. The four tubes
containing different concentrations of the contrast agent
were imaged using a 25 mm diameter × 25 mm length
parallel-coil resonator [7].

The schematic of the phantom is shown in Figure 2(a).
The solutions were saturated with gas mixtures 0%, 1%,
2.5%, and 5% oxygen for at least 30 minutes and sealed.
Several data sets were acquired by changing different gradient
settings, number of k-space samples, and number of samples
summed per FID. For instance, two data sets were collected



4 International Journal of Biomedical Imaging

3D oximetric data

Parallel system: stage 1

Parallel system: stage 2

Parallel system: stage 3

Shared directory of
parallel server

Lowpass filtration and
background subtraction

Filtered data in another
shared directory

Reconstruction of 3D
images

Oximetry thresholding

Change start time point,
step value, dead time

Change threshold value

Figure 4: A high-level block diagram showing the stages involved
in parallelization of filtration and reconstruction of 3D oximetric
data.

with gradient settings (1.2, 1.0, 0.8) and (2.2, 1.8, 1.5) G/cm
and (15 × 15 × 15) and (25 × 25 × 25) k-space samples,
respectively. The length of FIDs summed for signal averaging
was set to 640 at a sampling speed of 200 Ms/s.

2.1.2. In Vivo Data Collection. The 3D multigradient oxi-
metric imaging of mouse tumor has been reported earlier
[6, 7]. In a typical experiment, a female C3H Hen MTV
mouse with squamous cell carcinoma (SCC) tumor with
body weight of 32.2 g was anesthetized using isoflurane. The
normal and tumor-bearing legs of the mouse were placed
inside the parallel coil resonator with a vertical partitioning
between the two legs. A cartoon in Figure 2(b) shows the
position of the mouse inside the resonator. A bolus of
Oxo63 was intravenously injected by tail vein cannulation.
Experiments were carried out in compliance with the Guide
for the care and use of laboratory animal resources (National
Research Council, 1996) and approved by the National
Cancer Institute Animal Care and Use committee.

The k-space samples of 23 × 23 × 23 were collected
with three different gradient maxima settings (1.4, 1.14,
0.96 G/cm) keeping the number of FIDs averaged per
gradient setting as 640. All other imaging parameters were
kept the same as for the phantom study. Several data sets
were collected with different numbers of k-space samples,
different gradient settings, and different numbers of FID
sums. If the data collection is carried out using receivers that
are phase shifted during acquisition, the overall size of the
data will be one fourth of what we have mentioned. In the
present configuration of our equipment, the transmitter is
phase shifted in quadrature, and for each of the four transmit
phase, the real and imaginary parts are collected and stored
separately. They are combined during the subsequent data
processing stage (by exchanging real and imaginary parts
and using add/subtract), and this is the reason that for a

23 × 23 × 23 k-space dimension, the data size is given by
(23× 23× 23)∗ 640 (FID data length) ∗ 4 (quadrature data
sets)∗ 2 (real & imaginary pair)∗ 4 (Four bytes required for
an Integer storage) ∗ 3 (number of interleaved experiments)
leading to a total of 747.5 MB.

2.2. Parallel Platform and Technology. A personal computer
(PC) with Intel Celeron 3.06 GHz with 1.99 GB RAM was
used as stand-alone computing platform to perform the
three stages as indicated in Figure 1 using serial MATLAB
codes. The Math Works, Inc. MATLAB 7.1 Release 2007a
software environment was used to develop the serial codes.
The parallel platform and the software technology used
to develop the parallel system are briefly provided in this
section.

The parallel system has four Dual-Core AMD Opteron
SMP 880 CPUs with nonuniform memory access (NUMA)
16 GB RAM and 2.2 TB of attached HDD, running Fedora
Core 6 and Intel C++ Compiler Professional Edition
for Linux (v9.1.037). NUMA provides cache coherency
(ccNUMA), where the memory access time depends on the
memory location relative to the accessing processor. The
term SMP originally stood for symmetric multiprocessor
which means that the cost of a memory access is the same
no matter which CPU (or thread) performs the operation.
The Linux kernel takes care of load balancing across the
machine. Intel C++ Compiler offers the breadth of advanced
optimization, multithreading, and autoparallelization. The
parallel server is located at the Radiation Biology Branch,
National Cancer Institute, NIH in Bethesda, MD, USA.

2.3. Windows PC to Linux Server Connectivity. The parallel
system has been organized to make the tasks easily accessible
from PCs through NIHnet. NIHnet provides a high-speed
network infrastructure, transferring data at 10 gigabits per
second and interconnects the LANs of individual Windows
PCs and the parallel server. The server is capable of gigabit
Ethernet. Figure 3 illustrates the architecture of the parallel
system that includes data acquisition, parallel server, three
stages, client workstations, and the network connectivity.

2.3.1. Server Message Block Networking Protocol. The con-
nectivity between Microsoft Windows clients and the par-
allel server is established via Samba 3.0.2. Samba is a
Server Message Block (SMB) networking protocol used
by Microsoft Windows Network File System. It provides
services for Microsoft Windows clients and integrates with
Windows Server domain. Samba can be a part of Active
Directory domain and runs all distributions of Linux. Samba
is mounted on each of the Windows clients by mapping
network drive of “My Computer” with the appropriate host
name of the server.

2.3.2. Sharing (Tunneling) X11 Windows over SSH. Secure
Shell (SSH), a network protocol is used for port forwarding
or tunneling from a Windows client machine [31]. PuTTY
is a free SSH client with remote file copying support and
connects to the remote Linux server running Samba. X11



International Journal of Biomedical Imaging 5

Table 1: Pseudocode of parallelized filtration program (stage 1 of the parallel system).

(1) Initialize the OMP environment, set the filtration parameters, set the path of raw oximetric data and filter coefficients

(2)
Read data and index files, compute actual number of points, compute the filter coefficients, set the number of threads to
Max Threads

(3)
OPENMP: # pragma omp parallel num threads (num thread) default (shared) shared (input fids, input bg, back) private (i, j,
k, m, wstart, wend) reduction (+: totals) (to start the parallel region)

(4)
OPENMP: # pragma omp for (to allocate buffer for input fids, back subtracted data, real and imaginary parts of the actual
number of points)

(5) OPENMP: # pragma omp for (reading input fids, background data from each one of the three gradient data files)

(6) OPENMP: # pragma omp barrier (wait for the processors to finish reading of three gradient data files)

(7) OPENMP: # pragma omp single for (dummy data writing into random access binary file and header)

(8) OPENMP: # pragma omp for nowait (compute background noise)

(9)
OPENMP: # pragma omp for nowait (compute background noise, subtract from raw signal, compute right position of FID,
write the real and imaginary parts of the fids for each of the gradient file)

(10) OPENMP: # pragma omp barrier (wait before processing the next gradient)

(11) OPENMP: # pragma omp for (deallocate the buffer)

(12) OPENMP: # pragma omp end parallel (end the parallel region)

Table 2: Pseudocode showing the reconstruction and oximetry thresholding (stages 2 and 3 of the parallel system).

(1) Set parallel oxygen thresholding on the GUI

(2) A filtered data set is chosen from the shared directory of the server

(3) Start time point, increment step value, total time points, dead time, zero-factor are provided

(4)
Raw data of 12 time points (4 time points per gradient) are selected from the filtered gradient data by calling a Mex C code and
stored as three binary TPS files in the same shared directory

(5) For every gradient, the raw data of the 4 time points are read from the binary files into a variable and perform the steps 6 and 7

(6) Baseline correction is performed on the each of the 4 time point data

(7) FOV is computed and zero-filling is performed

(8) 3D FFT-based reconstruction is performed on the time point data to generate twelve 3D spin density images

(9) 3D mesh view of the sixth spin density image is displayed

(10) A spin threshold value for oxygen computation is input on the GUI

(11) Create and configure local scheduler and create a parallel job for line width and oxygen computation

(12) Assign number of workers to 4 and assign the oximetric threshold code to the workers

(13) Create task objects for the parallel job and run the parallel job to job queue

(14) Store the LW images from the results of the parallel job, in matrices

(15) Oxygen images are then computed from the LW images

(16) The sagittal, axial, and coronal planes of both spin density and oxygen images are displayed on the GUI simultaneously

(17) The steps from 11 to 17 can be repeated for a different spin threshold value

tunneling requires X window server to be installed on Win-
dows machines. Xming, a free unlimited X Window server
for Microsoft Windows (XP/2003/Vista) is fully featured,
light and fast, simple to install. It is totally secured when used
with SSH and optionally includes an enhanced PuTTY Link
SSH client and a portable PuTTY replacement package. The

X11 clients are allowed to use local windows X11 server by
enabling SSH X11 forwarding option in PuTTY.

2.3.3. Data Transfer. Perl (v.5.8.8) has been used to create an
invisible daemon process to provide immediate response to
the server on arrival of data sets from the client machine. The



6 International Journal of Biomedical Imaging

Table 3: Size (in bytes) of each of the three gradient data sets of
a typical 3D oximetric experiment before and after background
subtraction and filtration. The table shows the size for three
different gradient steps.

Gradient steps Acquired data (bytes) Filtered data (bytes)

21× 21× 21 190095360 86127308

23× 23× 23 249651200 113153108

25× 25× 25 320512000 145312508

Table 4: The time (in seconds) taken by the PC and parallel system
executing the filtration stage, using three different data sets.

Gradient steps
Filtration time

consumed by PC
(seconds)

Filtration time
consumed by parallel

system (seconds)

21× 21× 21 660 14

23× 23× 23 840 18

25× 25× 25 1140 23

daemon is started by the root process of the Linux operating
system and run in the background indefinitely. TORQUE (v
2.1.8), an open source high-performance computing (HPC)
resource manager, provides control over batch processing
of the incoming data sets in the multiuser environment. It
is based on Portable Batch System (OpenPBS), a queuing
system developed for NASA, operating on networked UNIX
environment. In the present work, a PBS job is designed to
perform the digital filtration task and transfer the filtered
data to a shared directory of the server.

2.4. The Parallel System. In the remainder of this section we
will summarize the various stages in the parallel processing
system. Figure 4 illustrates the flow of the three stages
involved in the parallel system.

2.4.1. Creation of an Index File. The data files that are
transferred from the Windows Client computers need to be
identified uniquely by the server. In addition to the file names
and size of each of the 3D oximetric gradient data, there is a
need to transmit data acquisition and filtration parameters
to the parallel server. Hence, immediately after the 3D
Oximetric data is acquired and collected in a Windows PC,
an index file is created automatically containing information
such as name and size of each of the data files, number of
steps in each of the three directional magnetic gradients,
number of points per FID, and other parameters required for
the digital filtration stage.

2.4.2. Parallelization of Digital Filtration. The image data
is collected at a sampling frequency corresponding to a
bandwidth of 200 MHz, whereas the actual phase-encoded
raw data covers just fewer than 20 MHz, being in the range
±10 MHz. In order to avoid unnecessary noise above this
frequency range we use a digital lowpass filtering of the raw
data along with subtraction of background signals which is a

time consuming process. Table 1 shows the flow of the steps
involved in the digital filtration task (stage 1 of Figure 4). The
parallel C++ code begins execution sequentially as a single
thread until a parallel OpenMP pragma is encountered.
The number of threads (num thread) is set in the parallel
environment using “getenv” command and environment
variable OMP NUM THREADS.

The filter method is chosen next, and the correspond-
ing filter coefficients are generated. The information file
(data.mat) and index file in the shared directory are used to
access the data file names and filtration parameters that are
required during the execution of the parallel C++ code.

The parallel environment is created, by setting OpenMP
“parallel” pragma with the specified number of threads
(num thread). This pragma is inserted (step 3 of Table 1) to
instruct the compiler to parallelize the code using multiple
threads. When the initial thread encounters a parallel region,
a team of threads is created and the initial thread becomes the
master thread. All threads execute the statements enclosed
lexically within the parallel region. The buffer variables that
are declared as “shared” clause are shared among all threads
in the team within the parallel region. The variables that need
not to be shared among threads are declared as “private”
clause. The “reduction” clause variables perform a thread-
level summation on those variables.

A work-sharing directive is inserted in each of the steps
4, 5, 7, 8, 9, and 11 of Table 1 to divide the execution
among the threads; for instance, “for” directive is inserted
in the computation of background noise. In step 7, “single”
directive is inserted to allow a single thread in the team to
serialize a section of code, for example, to write dummy data
into the binary output file. In steps 8 and 9, “nowait” clause
is specified to indicate that threads do not synchronize at
the end of the parallel loop. A “barrier” directive is inserted
to reach synchronization among all threads at the end of
each work-sharing construct. In step 6, the threads rejoin
to complete the reading of the three gradient files into
the allocated buffers before step 7 is started. In step 10, a
“barrier” pragma is inserted to wait for all the threads to
finish writing the filtered data into the respective output
files. The filtered data files are stored in the server’s shared
directory. The flowchart of the parallelized filtration stage is
shown in Figure 5.

2.4.3. Parallelization of the Reconstruction Code. The recon-
struction of 3D spin density images from the filtered data
constitutes stage 2 of the parallel system (Figure 4). The
source code has been developed in MATLAB 7.4 as a user-
friendly GUI and available on the server’s source code
directory. Any authorized user of the parallel system can
invoke parallel MATLAB and execute the GUI-based image
reconstruction code. The pseudocode of the reconstruction
stage is given in steps 2–9 of Table 2. In step 3, the zero-factor
means zero-filling of the k-space data, which is the size of the
data matrix that will result upon FT.

2.4.4. Parallel Oximetry Thresholding. Once the 3D mesh
view and 3D spin density images are displayed, parallel



International Journal of Biomedical Imaging 7

Initialize OMP

Set parameters and path

Read three gradients
data and index files

Set number of workers to 8
parallel region is started.

(using OMP “parallel”)

Allocate buffer and read
FIDs (using OMP “for”)

Wait till finish reading data

(using OMP “barrier”)

C

Dummy data write to file

(using OMP “single” “for”)

Compute background noise

(using OMP “for” “nowait”)

Subtract from raw signal

(using OMP “for” “nowait”)

Write FIDs into files
(using OMP “for” “nowait”)

Wait for next gradient

(using OMP “barrier”)

Deallocate the buffer
(using OMP “for”)

OMP end “parallel”

C

1 2 3 4 5 6 7 8
Eight workers

Figure 5: A schematic flow chart of the parallelized filtration (stage 1 of the parallel system).

0

0.5

1

1.5

0 20 40 60 80 100
0

50
100

(a)

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100
0

50
100

(b)

0

0.5

1

1.5

0 20 40 60 80 100
0

50
100

(c)

Figure 6: 3D mesh view of the image from the selected time points from a typical filtered 3D oximetric data of a four-tube data.

thresholding process of the oxygen data (stage 3 of Figure 4)
is performed with different values of spin threshold. The
oximetry thresholding application can be split into interde-
pendent tasks and is accelerated via parallel execution of the
MATLAB code (steps 11–17 of Table 2). The DCT schedules
and evaluates these steps on multiple MATLAB sessions
(workers). A local scheduler object is created and configured
using “findResource” function (step 12). A job object is then
created using “createParallelJob” function. The number of
parallel MATLAB workers (or labs) is assumed to be 4, and
the workers are set to the job. Though the number of workers
is initially set to four, the maximum number of workers can
be modified using “MaximumNumberOfWorkers” variable
of the parallel job. The oximetric thresholding code is made
available to the workers with the job’s “FileDependencies”
property (step 13). The “createTask” function creates the
job’s one task of returning three arguments. Finally, the
job is run using “submit” function (step 14). The user
waits for the job to finish before the results are collected

using “waitForState” function. The results of these three
output arguments are collected in separate matrices using
“getALLOutputArguments” function. One among the three
results is the LW image from which oxygen image is
computed.

In the parallel job (task function), the worker whose
“labindex” value is 1 is treated as master worker while
other workers are treated as slaves. The master worker loads
the spin-thresholded matrix (step 11) in the system and
computes the number of jobs based on the total number
of planes in each of the twelve 3D spin images. Depending
upon the total number of slices and number of workers,
the task is divided into many subtasks and sent to the
individual workers (slaves) using “labSend” function. The
slaves compute the LW matrices and send the matrices to
the master. The “labReceive” function is used by the master
worker to receive the matrices from the individual slaves. The
resultant matrices are stored in the matrices by the master
worker as and when the slaves send answers to master.



8 International Journal of Biomedical Imaging

Table 5: Time (in seconds) for the reconstruction of 3D spin density images.

Gradient steps Reconstruction (PC) time (seconds) for twelve
(100× 100× 100) 3D spin density images

Reconstruction (Parallel system) time (seconds) for
twelve (100× 100× 100) 3D spin density images

21× 21× 21 48.51 14.46

23× 23× 23 65.30 14.29

25× 25× 25 77.30 15.79

(m
M

)

0.3

0.2

0.1

0

(a)

(m
m

(H
g)

)

60

40

20

0

1% O2 0% O2

5% O2 2.5% O2

(b)

Figure 7: Coronal view of 3D spin density (a) and oxygen image (b) of a four-tube phantom containing 3 mM Oxo63 solutions with different
oxygen levels, obtained using the parallel processing system. The percentage levels of oxygen are indicated near the respective tubes of (b).
The data sets acquired with (15× 15× 15) gradient steps, and (1.2, 1.0, 0.8) G/cm maximum gradients were used to reconstruct 3D images
of phantoms.

1 2 3

Normal leg Tumor leg

(a)

10

20

30

40

50

(m
m

(H
g)

)

Hypoxic zones

(b)

Figure 8: Coronal planes of the 3D spin density images (a) and
oxygen images (b) of a C3H mouse with contralateral normal leg
and tumor-bearing leg, obtained using a typical 3D SPI oximetric
data sets, filtered and reconstructed by parallel processing system.
The images (a1, a2, and a3) show the 7th, 8th, and 9th coronal
planes of the 6th 3D spin density image. The images (b1, b2,
and b3) show the 7th, 8th, and 9th coronal planes of the 6th 3D
oxygen image by applying a spin threshold of 0.01. The data sets are
collected at 3 minutes after the injection of the Oxo63 to the mouse.

3. Results and Discussion

In this section, we will describe the implementation and
results of parallelization approach of the procedure explained

in Section 2. The main goal of this work was to show the
feasibility of employing high-performance parallel comput-
ing in the data-intensive filtration and reconstruction of
3D oximetric data. We will follow the same order of the
stages used in the previous section. The parallel hardware
and software environment was set up as given in Section 2.
The performance of the parallel system was tested by feeding
the actual 3D oximetric projection data sets that have been
collected using phantom and in vivo experiments using
SPI modality [6, 7]. The results were then compared with
the ones obtained from the PC version implemented in
MATLAB.

3.1. Data Transfer to Server. The acquired 3D gradient data
files are transferred from the Windows client machine to the
Windows share directory of the server via the NIHnet using
SMB file sharing. The information file is transferred next.
Finally, the index file is copied into the shared directory. The
invisible daemon reads the index file, checks if all the data
files mentioned in the index file exist in the shared directory,
and if so transfers the data files to a temporary subdirectory
of the server.

3.2. Background Subtraction and Filtration. A portable batch
system (PBS) script is created to submit the parallel jobs
to the queue. Once the data files are transferred to the
temporary subdirectory of the server, the parallel C++
code starts executing on the server to perform back-ground
subtraction and filtration jobs. The execution on the parallel
server is managed by the PBS. The resultant filtered data
files are placed in another shared folder of the server for
later processing. Once this stage is performed, the size of
the filtered data is reduced by a factor of 2.2 from that of



International Journal of Biomedical Imaging 9

0

20

40

60

80

100

120

140

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

49

75

88

120

14
21 24 27

PC 21∗21∗21 Parallel 21∗21∗21

Reconstruction of intensity image
Oximetry threshold: 0.02
Oximetry threshold: 0.01
Oximetry threshold: 0.005

(a)

0

20

40

60

80

100

120

140

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

65

84

101

124

14
24 24 27

PC 23∗23∗23 Parallel 23∗23∗23

Reconstruction of intensity image
Oximetry threshold: 0.02
Oximetry threshold: 0.01
Oximetry threshold: 0.005

(b)

0

20

40

60

80

100

120

140

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

ds
)

77

101103

130

16
24 25 28

PC 25∗25∗25 Parallel 25∗25∗25

Reconstruction of intensity image
Oximetry threshold: 0.02
Oximetry threshold: 0.01
Oximetry threshold: 0.005

(c)

Figure 9: A chart showing the time (seconds) consumed by the PC and parallel system during reconstruction of spin density images using
3D Oximetric data sets acquired with gradient steps: (21× 21× 21), (23× 23× 23), and (25× 25× 25). It also shows the time taken by the
parallel system for the reconstruction of oxygen images using spin thresholds: 0.02, 0.01, and 0.005 for each data set.

Table 6: Time (seconds) for the oximetry thresholding (the value of “Thresh” is obtained by looking at the noise level in the spin density
mesh view plot and is used to get the oxygen profile).

Gradient steps
Computation of 12
(100× 100× 100) 3D oxygen
images, using

Thresh: 0.02 Thresh: 0.01 Thresh: 0.005 Thresh: 0.0

21× 21× 21 PC 74.73 88.01 119.99 2372.42

21× 21× 21 Parallel system 20.93 23.66 26.94 224.07

23× 23× 23 PC 84.17 100.64 123.56 2475.22

23× 23× 23 Parallel system 23.93 23.69 27.00 225.07

25× 25× 25 PC 101.31 103.06 130.34 2599.49

25× 25× 25 Parallel system 24.32 25.12 27.82 227.23

acquired data. This can be seen from Table 3. The reduction
has occurred because of the binary data format of the filtered
data and the reduction of the number of points per FID from
640 to 581.

The filtration part of the parallel system was tested
using data sets collected from three different 3D imaging
experiments by varying the number of gradient steps as given
in Table 4. The execution time taken by the filtration task
using 8 parallel workers of the server and the PC is computed
and tabulated in Table 4. It should be noted that the PC was
running the filtration stage using a MATLAB code whereas
the parallel system uses a parallel C++ code. The sequential
execution time of the code was 840 seconds when a data
set with gradient steps 23 × 23 × 23 was used; whereas the
execution time of the parallel code was only 18 seconds.
The parallelization speed-up factor (SF), which is the factor
by which the execution time is reduced, is then given by

SF = τs/τp, where τs and τp are the execution times of the
filtration code by PC and parallel systems, respectively. It is
observed that the SF is 46.66 for the filtration task when data
acquired with 23× 23× 23 gradient steps is used.

3.3. Reconstruction and Oximetry Thresholding. The MAT-
LAB parallel environment starts with 4 workers. How-
ever, the parallel program has been designed so that the
environment will migrate naturally to “free” CPU cores
of the parallel processor. The filtered data needed for the
reconstruction of 3D spin density and oxygen images is
readily available in a separate shared directory of the server
and accessible at any time by the authorized users of the
server through the network.

The parallel MATLAB installed in the server is called
from the client PC after loading the PuTTY session using SSH



10 International Journal of Biomedical Imaging

connection. The parallel MATLAB GUI program can then be
accessed by the users from their Windows Client computer
to select the data set from the shared directory of the server
and to proceed to the second and third stages of the parallel
system. The time-point data files are created using the filtered
data files by choosing proper values of starting time point
(nanosecond), the interval (nanosecond) between steps, the
total time-delay steps, the dead time of the imager and the
zero-factor. Depending upon these values that are chosen,
the time points for each of the gradients are picked up. The
time-point files thus generated for each of the gradients are
stored in the same shared folder of the server.

In a typical experiment, the values of the start time point,
the interval between steps, the total time-delay steps, the
dead time and the zero-factor are given as 250 nanoseconds,
35 nanoseconds, 12, 265 nanoseconds, and 120, respectively.
The start time of 250 nanoseconds is the delay from the
start of the acquisition of data. The dead-time (the time gap
between the end of the pulse and the beginning of the acqui-
sition) of 265 nanoseconds is added to all time steps. With the
increment interval of 35 nanoseconds, the time-point files
are generated with twelve time-delay steps (including dead
time) in the range of 515–900 nanoseconds, four each for
the three gradients. These time-point files are used by the 3D
FFT-based program to reconstruct twelve 3D images of spin
density and derive an oxygen map as well. Out of the twelve
time-course images used for relaxation calculation, the 6th
image occurs in the middle showing the mean intensity and
resolution, and hence it is chosen for display. The 3D spin
density mesh view of the 6th image reconstructed from a
phantom data is displayed in the GUI (Figure 6).

A threshold value is selected based on the following
reasoning. Twelve images are generated as a function of
time delay from the excitation pulse from interleaved
measurements at three different gradients. As the time delay
increases, the signal-to-noise ratio decreases. In order to
have maximum number of pixels included in the evaluation
of decay slopes, it is important to choose an optimum
threshold. Very low thresholds will unnecessarily include
areas where there are no signals and thus lead to waste of
time. Higher thresholds will make many images from the
longer delay times not to be included. We have found by trial
and error that if we consider the middle image (6th image
out of a total of 12) and use 10% of maximum intensity in
this image for threshold, we get optimal sampling of pixel
intensities from all the images. This is the general “rule-of-
thumb” that we have used. It indicates the minimum level of
spin intensity signal that can be used for the computation of
the oxygen image. After providing a proper threshold value
in the GUI, the parallel system computes the line width
and oxygen levels. The coronal, sagittal, and axial slices of
6th 3D spin density image and the corresponding slices of
the oxygen image are simultaneously displayed on the GUI.
The parallel oximetry thresholding stage can be repeated by
changing the values of the spin threshold, different sets of 3D
oxygen images are viewed on the GUI, and oxygen content is
computed.

Figure 7 shows the reconstruction results of the parallel
processing system when the system is supplied with the

data sets of a four-tube phantom. The spin intensity images
and oxygen images are shown in Figures 7(a) and 7(b),
respectively. The levels of oxygen are indicated near the
respective tubes (Figure 7(b)). The data sets acquired with
(15 × 15 × 15) gradient steps and (1.2, 1.0, 0.8) G/cm
maximum gradients were used to reconstruct 3D spin
density and oxygen images of phantoms. The details of the
experiment have been briefly discussed in Section 2.

The reconstruction results have been obtained by the
parallel approach using a set of in vivo 3D oximetric data
collected at 3 minutes after the injection of the Oxo63
through the tail vein of the tumor mouse. There are (100 ×
100 × 100) voxels in each of the twelve 3D spin density
images. Each voxel represents the spin density in the tumor-
bearing leg and the contralateral normal leg of a C3H mouse
in a specific location. Figure 8(a) shows three coronal slices
of the 6th 3D spin density image. The oxygen images are
computed by applying a spin threshold of 0.01 and shown
in Figure 8(b). The slices (a1, a2, and a3) show the 7th,
8th, and 9th coronal planes of the 6th 3D spin density
image. The slices (b1, b2, and b3) show the 7th, 8th,
and 9th coronal planes of the 6th 3D oxygen image. The
tumor type studied here (squamous cell carcinoma, SCC)
is characterized by a large number of growing and “leaky”
blood vessels, and therefore the spin probe accumulates faster
in the tumor region, and the leaked out portion tends to
remain longer in the tumor region. This leads to the tumor
region showing relatively higher spin density throughout the
measurement.

The time taken by the PC and the parallel system for the
reconstruction of twelve 3D spin density images from the
selected time-point data files is computed and tabulated in
Table 5.

For a data set with (23 × 23 × 23) gradient steps,
the parallel system has achieved a speed-up factor of 4.57
compared to the PC performance. This means that a 3D
spin density image with (100 × 100 × 100) voxels can
be reconstructed in less than 1.2 seconds. It can be seen
that the computation time scales well with the number of
workers. We also measured the runtime of the parallel oxygen
thresholding stage by varying spin threshold values. The
execution times of the PC executing serial MATLAB code and
parallel system executing parallel MATLAB code are listed in
Table 6. The “thresh” value in Table 6 is fixed by observing
noise level in the 3D mesh plot.

A bar chart showing the execution time of the reconstruc-
tion and oximetry stages of the PC as well as the parallel
system using the three different data sets and different
“thresh” values is shown in Figure 9.

A speed-up factor of 4.25 has been realized by the parallel
system compared to the PC system, for a data set with 23 ×
23 × 23 gradient steps. This means that an oxygen image
with (100 × 100 × 100) voxels can be computed using the
spin density threshold of .01, in 2 seconds. It is noted that
the computation time scales well for the threshold value of
0.01 with four workers in the parallel MATLAB environment.
The time required for the computation of oxygen images
for a spin intensity threshold less than .01 is high (Table 6)



International Journal of Biomedical Imaging 11

because the computation includes much more additional
noisy data. In order to interactively analyze the experimental
results with the same set of oximetric projection data, the
GUI of the parallel system can now be utilized to change the
input parameters in a flexible and simple environment. The
oxygen images and spin density images are visualized from
the raw filtered data in the parallel MATLAB environment
at almost real time. The interested readers can contact the
corresponding author for a copy of the C++ and MATLAB
codes.

4. Summary

In this article, we have presented a parallel implementation
of lowpass filtration and reconstruction of 3D Oximetric
data, to overcome the limitations faced by the extensive
size of projection data. We were able to efficiently apply
parallelization using C++ code with OpenMP paradigm for
the filtration task and execute it on a parallel computer
system. This task has been performed automatically as
soon as the data sets are transferred to the server from
the client computers. With 8 parallel workers, we could
achieve significant speed up factor during the filtration
of 3D Oximetric data against sequential execution time.
A parallel MATLAB version enables the reconstruction of
3D spin density images and 3D oxygen images of small
animals to study oximetry using EPR technique in the SPI
modality. The parallel system consumes 14.29 seconds for
the reconstruction of twelve 3D spin density images whereas
the PC consumes 65.30 seconds, when a data set with (23 ×
23 × 23) gradient steps has been used as input to both the
systems. The parallel system computes twelve 3D oxygen
images in 23.69 seconds using a spin threshold value of
.01, whereas the PC system consumes 100.64 seconds. The
attempt of parallelization of the reconstruction process on
a high-performance SMP computing environment yielded
useful speed-up results, thus allowing the users to map
the oxygen levels in the tumor readily. The results from
phantom and in vivo experiments and achievable speed-
up factors demonstrate the potential of exploiting parallel
computing in 3D oximetric imaging. More specifically, the
client-server-based implementation of the parallel system
makes the 3D oximetric research environment more flex-
ible and easily accessible. Our recent results indicate that
the readily available computational power offered by last
generation parallel computer architectures, combined with
the design of effective parallel algorithms, may enhance
3D oximetric imaging studies to visualize the pO2 levels
almost in real time. This approach may also be extended to
computational efforts that need to deal with very high data
density.

Acknowledgment

This research was supported by the Intramural Research
Program of the National Institutes of Health, National
Cancer Institute, Center for Cancer Research, Bethesda,
Maryland, U.S.A.

References

[1] H. J. Halpern, C. Yu, M. Peric, et al., “Measurement of differ-
ences in pO2 in response to perfluorocarbon/carbogen in FSa
and NFSa murine fibrosarcomas with low-frequency electron
paramagnetic resonance oximetry,” Radiation Research, vol.
145, no. 5, pp. 610–618, 1996.

[2] P. Kuppusamy, M. Afeworki, R. A. Shankar, et al., “In vivo elec-
tron paramagnetic resonance imaging of tumor heterogeneity
and oxygenation in a murine model,” Cancer Research, vol. 58,
no. 7, pp. 1562–1568, 1998.

[3] H. M. Swartz and R. B. Clarkson, “The measurement of
oxygen in vivo using EPR techniques,” Physics in Medicine &
Biology, vol. 43, no. 7, pp. 1957–1975, 1998.

[4] S. Subramanian, N. Devasahayam, R. Murugesan, et al.,
“Single-point (constant-time) imaging in radiofrequency
Fourier transform electron paramagnetic resonance,” Mag-
netic Resonance in Medicine, vol. 48, no. 2, pp. 370–379, 2002.

[5] P. Kuppusamy, “EPR spectroscopy in biology and medicine,”
Antioxidants and Redox Signaling, vol. 6, no. 3, pp. 583–585,
2004.

[6] K.-I. Matsumoto, S. Subramanian, N. Devasahayam, et al.,
“Electron paramagnetic resonance imaging of tumor hypoxia:
enhanced spatial and temporal resolution for in vivo pO2

determination,” Magnetic Resonance in Medicine, vol. 55, no.
5, pp. 1157–1163, 2006.

[7] N. Devasahayam, S. Subramanian, R. Murugesan, et al.,
“Strategies for improved temporal and spectral resolution in
in vivo oximetric imaging using time-domain EPR,” Magnetic
Resonance in Medicine, vol. 57, no. 4, pp. 776–783, 2007.

[8] S. Matsumoto, F. Hyodo, S. Subramanian, et al., “Low-field
paramagnetic resonance imaging of tumor oxygenation and
glycolytic activity in mice,” Journal of Clinical Investigation,
vol. 118, no. 5, pp. 1965–1973, 2008.

[9] V. Kumar, A. Grama, A. Gupta, and G. Karaypis, Introduction
to Parallel Computing: Design and Analysis of Algorithms,
Benjamin/Cummings, Redwood City, Calif, USA, 1994.

[10] A. Plaza, D. Valencia, J. Plaza, and P. Martinez, “Commodity
cluster-based parallel processing of hyperspectral imagery,”
Journal of Parallel and Distributed Computing, vol. 66, no. 3,
pp. 345–358, 2006.

[11] A. Plaza, “Parallel implementation of end member extraction
algorithms from hyper spectral data,” IEEE Geo Science and
Remote Sensing Letters, vol. 3, pp. 285–290, 2006.

[12] A. Chihoub, “Fourier-based reconstruction for CT: a parallel
processing perspective,” IEEE Engineering in Medicine and
Biology Magazine, vol. 21, no. 6, pp. 99–108, 2002.

[13] J. Zheng, S. S. Saquib, K. Sauer, and C. A. Bouman, “Paralleliz-
able Bayesian tomography algorithms with rapid, guaranteed
convergence,” IEEE Transactions on Image Processing, vol. 9,
no. 10, pp. 1745–1759, 2000.

[14] V. Kolehmainen, A. Vanne, S. Siltanen, et al., “Parallelized
Bayesian inversion for three-dimensional dental X-ray imag-
ing,” IEEE Transactions on Medical Imaging, vol. 25, no. 2, pp.
218–228, 2006.

[15] M. D. Jones, R. Yao, and C. P. Bhole, “Hybrid MPI-OpenMP
programming for parallel OSEM PET reconstruction,” IEEE
Transactions on Nuclear Science, vol. 53, no. 5, pp. 2752–2758,
2006.

[16] R. Möller, “A systolic implementation of the MLEM
reconstruction algorithm for positron emission tomography
images,” Parallel Computing, vol. 25, no. 7, pp. 905–920, 1999.

[17] D. W. Shattuck, J. Rapela, E. Asma, A. Chatzioannou, J. Qi, and
R. M. Leahy, “Internet2-based 3D PET image recontruction



12 International Journal of Biomedical Imaging

using a PC cluster,” Physics in Medicine and Biology, vol. 47,
no. 15, pp. 2785–2795, 2002.

[18] Y. K. Dewaraja, M. Ljungberg, A. Majumdar, A. Bose, and K.
F. Koral, “A parallel Monte Carlo code for planar and SPECT
imaging: implementation, verification and applications in
131I SPECT,” Computer Methods and Programs in Biomedicine,
vol. 67, no. 2, pp. 115–124, 2002.

[19] S. Vollmar, C. Michel, J. T. Treffert, et al., “HeinzelCluster:
accelerated reconstruction for FORE and OSEM3D,” Physics
in Medicine and Biology, vol. 47, no. 15, pp. 2651–2658, 2002.

[20] A. H. Hielscher and S. Bartel, “Parallel programming of
gradient-based iterative image reconstruction schemes for
optical tomography,” Computer Methods and Programs in
Biomedicine, vol. 73, no. 2, pp. 101–113, 2004.

[21] T. Wu, J. Zhang, R. Moore, et al., “Digital tomosynthesis
mammography using a parallel maximum likelihood recon-
struction method,” in Medical Imaging 2004: Physics of Medical
Imaging, vol. 5368 of Proceedings of SPIE, pp. 1–11, 2004.

[22] E. Ayguadé and M. S. Mueller, “Special issue on OpenMP-
guest editors’ introduction,” International Journal of Parallel
Programming, vol. 35, no. 4, pp. 331–333, 2007.

[23] J. S. Kole and F. J. Beekman, “Parallel statistical image
reconstruction for cone-beam X-ray CT on a shared memory
computation platform,” Physics in Medicine and Biology, vol.
50, no. 6, pp. 1265–1272, 2005.

[24] J. P. Jones, W. F. Jones, F. Kehren, et al., “SPMD cluster-based
parallel 3-D OSEM,” IEEE Transactions on Nuclear Science, vol.
50, no. 5, pp. 1498–1502, 2003.

[25] R. Brown and I. Sharapov, “High-scalability parallelization of
a molecular modeling application: performance and produc-
tivity comparison between OpenMP and MPI implementa-
tions,” International Journal of Parallel Programming, vol. 35,
no. 5, pp. 441–458, 2007.

[26] B. M. Chapman and F. Massaioli, “OpenMP,” Parallel Comput-
ing, vol. 31, no. 10–12, pp. 957–959, 2005.

[27] OpenMP Architecture Review Board, “OpenMP Application
Program Interface v 2.5,” 2005, http://openmp.org/wp.

[28] L. Dagum and R. Menon, “OpenMP: an industry standard
API for shared-memory programming,” IEEE Computing in
Science and Engineering, vol. 5, pp. 46–55, 1998.

[29] C. Terboven, T. Deselaers, C. Bischof, and H. Ney, “Shared-
memory parallelization for content-based image retrieval,” in
Proceedings of the Workshop on Computation Intensive Methods
for Computer Vision (ECCV ’06), 2006.

[30] K.-I. Matsumoto, S. English, J. Yoo, et al., “Pharmacokinetics
of a triarylmethyl-type paramagnetic spin probe used in EPR
oximetry,” Magnetic Resonance in Medicine, vol. 52, no. 4, pp.
885–892, 2004.

[31] D. J. Barrett, R. E. Silverman, and R. G. Byrnes, SSH: The
Secure Shell (The Definitive Guide), O’Reilly, Sebastopol, Calif,
USA, 2nd edition, 2005.


