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model of the corresponding switching system and globalasymptotic stability of these systems. Section 3 shows theequivalence of these two systems as regards stability andfurther sections consider switching systems only. Section 4discusses the main results of this paper. A su�cient con-dition is provided for the asymptotic stability of the sys-tem. It is shown that when this condition is satis�ed thereexists a common Lyapunov function for the sub-systems.Section 5 deals with a special case which leads to simulta-neous normalization of the system matrices. In this casethe sub-systems have a common quadratic Lyapunov func-tion. Also, a constructional procedure is provided to checkwhether the theorem's premise is satis�ed. An exampleillustrates the procedure. This result can be viewed as ageneralisation of the result in [6], a su�cient condition forstability of switching systems.2 Notations and De�nitionsThis section outlines the mathematical model of a freefuzzy system and that of the corresponding switching sys-tem. Stability of these systems in the asymptotic sense isalso de�ned.The Takagi and Sugeno [2] model for the fuzzy systemis chosen. Let the system state vector at time instant kbe �x(k) = [x1(k) : : :xn(k)]T where x1(k) : : :xn(k) are thestate variables of the system at time instant k. Then thefree fuzzy system is de�ned by the implications below:Ri : IF �x1(k) is Si1;AND � � �ANDxn(k) is Sin� (1)THEN �x(k + 1) = Ai�x(k)for i = 1 : : :N . Here S lj is the fuzzy set corresponding tothe state variable xj and implication Rl. Ai 2 Rn�n; i =1 : : :N are the system characteristic matrices. The truthvalue of the implication Ri at time instant k denoted bywi(k) is de�ned aswi(k) = ^��Si1 (x1(k)); : : : ; �Sin(xn(k))�where �S(x) is the membership function value of the fuzzyset S at the position x and ^ is an operator satisfyingmin(l1; : : : ; ln) � ^ (l1; : : : ; ln) � 0Usually ^ is taken to be the minimumoperator which givesthe minimum of its operands. Then, at instant k the statevector is updated according to�x(k + 1) = �PNi=1 wi(k)Ai�x(k)�PNi=1 wi(k) (2)



= NXi=1 �i(k)Ai�x(k); �i(k) = wi(k)PNi=1 wi(k)A fuzzy system is completely represented by the set of char-acteristic matrices A = fA1; : : : ; ANg and the fuzzy setsSlj ; l = 1; : : : ; N ; j = 1; : : : ; n. Corresponding to this freefuzzy system a corresponding switching system is describedbelow:The state update at time instant k is given as�x(k + 1) = A�x(k) (3)where A 2 A i.e., it is one of the matrices A1; A2; : : :AN .Also, de�ne 8k � 1Ak = A� A� : : :� A| {z }k timeswhere the Cartesian product is de�ned to be the multipli-cation of matrices in the same order. De�nitions of globalasymptotic stability of these systems are now given:De�nition 1 The fuzzy system described in (2) is globallyasymptotically stable if�x(k) �! 0 as k!1 (4)or equivalently there exists k � k, a norm on Rn,k�x(k)k �! 0 as k �! 1for all initial values x(0) 2 Rn and for all possible fuzzysets Sji ; 8i = 1 : : :N; 8j = 1 : : :n.De�nition 2 The switching system described in (3) isglobally asymptotically stable if�x(k + 1) = A(k)�x(0) �! 0 as k !1; 8�x(0) 2 Rn (5)where A(k) 2 Ak. Equivalently,A(k) �! 0 as k!1; A(k) 2 Ak (6)For any matrix A 2 Rn, let �(A) be the spectral radiusof A, i.e., the largest magnitude of the eigen values of A.Let � (Ak) be de�ned as� (Ak) = maxf�(A) : A 2 AkgLet k � k be a matrix norm on Rn and �(A) be the largestsingular value of A. Then,�(A) = q�(ATA)= kAksp (7)where k � ksp is the spectral norm on a matrix. Also let� (Ak) = maxf�(A) : A 2 Akg. Let (A)ij represent theelement aij where A = [aij]. Let A� denote the conjugatetranspose of A.

3 Equivalence of the stability of switchingand fuzzy systemsThis section illustrates the equivalence of the stabilityof a fuzzy system and its corresponding switching system.A necessary condition for stability of either of these sys-tems is also given. The following theorem illustrates someequivalent statements about the stability of the switchingsystem. The proof might be hidden in some textbook, wegive it here for completeness.Theorem 3.1 The following are equivalent:1. The switching system in (3) is globally asymptoticallystable as in Def 2.2. � (Ak) �! 0 as k!13. � (Ak) �! 0 as k!1Proof (1) =) (2)By (6), A(k) ! 0 as k ! 1; A(k) 2 Ak . By (7), �(�) isa matrix norm and hence� (A(k)) �! 0 as k !1; 8A(k) 2 AkIn particular, maxA(k)2Ak f� (A(k))g �! 0 as k ! 1.Hence � (Ak) �! 0; as k!1(2) =) (3)Now � (Ak) = maxf�(A) : A 2 Akg� maxf�(A) : A 2 Akgsince kAk � �(A) from Theorem 5.6.9 in [1]. Hence� (Ak) � � (Ak) � 0; 8k � 1and � (Ak)! 0 as k !1.(3) =) (1)From Section 7.2 in [7] , �(A) is a continuous function ofthe elements of A. Since � (Ak)! 0 as k !1 we have� (A(k)) �! 0 as k!1; 8A(k) 2 AkSince � (A(k)) is a continuous function of A(k),A(k) �! 0 as k!1; 8A(k) 2 AkHence arriving at (6) which is the required result.The following theorem illustrates the equivalence of sta-bility of a fuzzy system and that of the correspondingswitching system.Theorem 3.2 A necessary and su�cient condition for thestability as in Def 1 of a fuzzy system (2) is that the corre-sponding switching system (3) be stable as in Def 2.



Proof Necessity : The fuzzy system in (2) degeneratesinto the switching system when wi = 1 or 0; i = 1 : : :N andPNi=1 wi = 1. Thus the switching system should necessarilybe stable.Su�ciency : Let the switching system represented byA = fA1; : : : ; ANg be stable as in Def 2. The proof thatfuzzy system too is stable uses the fact that given any twosequences ak and bk in Rn such thatkakk � kbkk 8k � K and ak ! 0 as k!1implies bk ! 0as k !1 (8)Now the fuzzy system is stable if 8�x(0) 2 Rn and all fuzzysets Sji ; i = 1 : : :N; j = 1 : : :n, as k !1, �x(k) ! 0 NXik=1�ik(k � 1)Aik! � � � NXi1=1�i1(0)Ai1! �x(0) ! 0i.e., NXik=1�ik(k � 1)Aik! � � � NXi1=1�i1(0)Ai1! ! 0i.e. Xi1:::ik=1:::N �ik(k � 1) � � ��i1(0)Aik � � �Ai1 ! 0Nowk Xi1:::ik=1:::N �i1(0) � � ��ik(k � 1)Aik � � �Ai1ksp� Xi1:::ik=1:::N �i1(0) � � ��ik(k � 1)kAik � � �Ai1ksp= Xi1:::ik=1:::N �i1(0) � � ��ik(k � 1)� (Aik � � �Ai1)� Xi1;:::;ik=1:::N �i1(0) � � ��ik(k � 1)� maxi1;i2;:::;ik �� �AikAik�1 � � �Ai1�	= � (Ak) Xi1;:::;ik=1:::N �i1(0) � � ��ik(k � 1)= � (Ak)since Pij=1:::N �ij = 1; 8j = 1 : : :k.Now since the switching system is stable, by Theo-rem 3.1 we have � (Ak) ! 0 as k ! 1. >From (8), LHS! 0 and the condition for stability (4) is satis�ed. Hencethe fuzzy system too is stable as in Def 1.Henceforth, only the stability of the switching systemis mentioned. The following theorem provides a necessarycondition for the stability of the switching system.Theorem 3.3 A necessary condition for stability as inDef 2 of the switching system in (3) is that every �niteproduct sequence of the matrices in A be stable. i.e., theirspectral radius is less than 1. Equivalently,� (Ak) < 1; 8k � 1 (9)

Proof Suppose not. Then 9Al = Ai1Ai2 � � �Ail 2 Al suchthat � (Ai1Ai2 � � �Ail) � 1. Then consider the switchingsequence �x(k + l) = Ai1Ai2 � � �Ail�x(k)Then, �x(k+m � l) = Aml �x(k). Clearly �x(k) 6! 0 as k !1since � (Al) � 1. Hence every �nite product sequence ofthe matrices has to be stable.Comment 1 : As an immediate consequence of the preced-ing theorem the matricesA1; A2; : : : ; AN should themselvesbe necessarily stable. i.e., � (Ai) < 1 8i = 1 : : :N .Comment 2 : Also the result expressed in Theorem 4.3 of[3], a necessary condition for stability that the matrices bepairwise stable is evident as a special case of Theorem 3.3in which � (A2) is considered.4 A Su�cient Condition for StabilityThe following Theorem 4.1 provides a su�cient condi-tion for stability of (3). Theorem 4.2 shows that when thecondition in Theorem 4.1 is satis�ed, there exists a commonLyapunov function V (�x) for all the system matrices in A.However this common V (�x) is not necessarily quadratic.Theorem 4.1 A su�cient condition for stability as inDef 2 of the switching system (3) is that there exists a sim-ilarity transformation S 2 Rn�n and a matrix norm k � ksuch that kS�1ASk < 1; 8A 2 A (10)Proof Let� = max �kS�1ASk; 8A 2 A	 < 1 (11)Let A(k) 2 Ak = Ai1Ai2 � � �Aik (12)Also, let S be the similarity transformation. Now 8A(k) 2Ak,� (A(k)) = � (Ai1Ai2 � � �Aik)= � �S�1Ai1Ai2 � � �AikS�� kS�1Ai1Ai2 � � �AikSkfrom Theorem 5.6.9 in [1]� kS�1Ai1Sk � kS�1Ai2Sk � � � kS�1AikSk� �k from (11) and (12)Hence � (Ak) � �k; � < 1 and � (Ak) �! 0 as k ! 1.Hence the switching system is asymptotically stable.Theorem 4.2 If (10) in Theorem 4.1 is satis�ed and thenorm in (10) is an induced norm, then there exists a com-mon Lyapunov function for all the system matrices in A,i.e., there exists a function V : Rn ! R+ such that8A 2 A,� V (�x(k)) > 0; �x(k) 6= 0



� �V (�x(k)) = V (A�x(k)) � V (�x(k)) < 0 8k � 0Proof Let the premise in Theorem 4.1 be satis�ed andS be the similarity transformation. Let Q = S�1. De-�ne V (�x(k)) = kQ�x(k)k2 where the vector norm here in-duces the matrix norm in (10). Now since S is nonsingular,V (�x(k)) 6= 0 when �x(k) 6= 0. Now, 8A 2 A and �x(k) 6= 0,�V (�x(k)) = kQ�x(k + 1)k2 � kQ�x(k)k2= kQA�x(k)k2 � kQ�x(k)k2= kQAS�y(k)k2 � k�y(k)k2where �y(k) = Q�x(k)� kS�1ASk2k�y(k)k2 � k�y(k)k2< 0 since �x(k) 6= 0 and from (10)This function is the common Lyapunov function.However, this common Lyapunov function need notbe quadratic, i.e., V (�x(k)) need not be of the form�x(k)TP �x(k) where P is a positive de�nite matrix.Comment 1 : A convenient matrix norm that can be usedin (10) is the spectral norm k � ksp = �(�) and is inducedfrom the Euclidean vector norm. ( See 5.5.6 in [1]). Hence,in particular, Theorem 4.1 reduces to the existence of anonsingular S such that � �S�1AS� < 1; 8A 2 A. In thiscase the commonLyapunov function in Theorem 4.2 can bechosen to be quadratic. This is expressed in the followingtheorem.Theorem 4.3 The satisfaction of (10) in Theorem 4.1and the norm in (10) being the spectral norm (i.e. inducedfrom the Euclidean vector norm) is a necessary and suf-�cient condition for the existence of a common quadraticLyapunov function for all the system matrices in A, i.e.,V (�x) is of the form �xTP �x where P is a positive de�nitematrix.Proof Necessity : Suppose there exists a common Lya-punov function V (�x) = �xTP �x for all the system matri-ces A 2 A. Since P is positive de�nite 9S nonsingular3 P = QTQ where Q = S�1. Then,V (�x(k)) = �x(k)TP �x= �x(k)TQTQ�x(k)= kQ�x(k)k2 (13)where k � k is the Euclidean normSince �V (�x(k)) < 0; 8�x(k) 2 Rn, from (13) we have8A 2 A, kQ�x(k + 1)k � kQ�x(k)k < 0kQA�x(k)k � kQ�x(k)k < 0kQAS�y(k)k � k�y(k)k < 0 (14)where �y(k) = Q�x(k)Since (14) is valid 8�y(k) 6= 0, we have,sup�y(k)6=0 kQAS�y(k)kk�y(k)k � 1 < 0

Hence � �S�1AS� < 1 8A 2 A.Su�ciency : Let S nonsingular be such that� �S�1AS� < 1 8A 2 A. Then choose P = QTQ whereQ = S�1. Clearly P is positive de�nite. Then theclaim is that the common quadratic Lyapunov function isV (�x) = �xTP �x = kQ�x(k)k2. We prove the claim by show-ing that �V (�x(k)) < 0 8A 2 A. This proof follows thesame pattern as that in Theorem 4.2 by replacing the gen-eral induced norm there by the spectral norm �(�).Comment 2 : It is evident that if there exists a matrix normk � k such that kAk < 1; 8A 2 A, then the switching sys-tem is stable, since the similarity transformation S can betaken to be I, the identity matrix. A convenient norm onthe matrix is the spectral norm k � ksp equal to the largestsingular value of the operand matrix. In view of the theo-rem and comment above, a simpli�ed su�ciency conditionthus is that �(A) < 1; 8A 2 A since �(�) the spectral normis the norm induced from the Euclidean vector norm.Comment 3 : In particular, this motivates interest in Nor-mal matrices as, for these matrices, eigen and singularvalues coincide. If M is normal, � (M ) < 1, � (M ) =� (M ) < 1, thereby satisfying the condition mentioned inthe above Comment. A normal matrix M is characterizedby MM� = M�M (See Section 2.5, [1]).5 Simultaneous NormalizationSince the spectral radius is a norm on Normal matricesand spectral radius of each individual A-matrix of the sub-systems is necessarily less than unity, simultaneous trans-formation of Ai; i = 1 : : :N into normal matrices through asimilarity transformation is motivated. The following the-orem is a fallout of the results in the previous section andthe proof follows from Theorem 4.1 and Comments 2 and3 on Theorem 4.1 .Theorem 5.1 The switching system in (3) is stable ifthere exists nonsingular S such that S�1AS is normal8A 2 A and the spectral radius of each matrix A is lessthan unity.Since spectral radius of the matrices being less thanunity is a necessary condition for stability, simultaneoussimilarity transformation of Ai; i = 1 : : :N into normalma-trices is considered. A matrix A is said to be normalizableif there exists nonsingular S such that S�1AS is normal .From [5], S is necessarily of the form S = TAU where TAis a modal matrix of A and U is a Unitary matrix. LetNA = �S�1AS : S = TAU ;U unitary	. It can be shownthat if M 2 NA thenNA = fU�MU : U is unitary g (15)Evidently, �(A) = �(M );M 2 NA. To check for simultane-ous normalization of the matrices Ai; i = 1 : : :N , initialythe problem of pairwise normalization of these matrices is



considered. Once pairwise normalization is achieved, fur-ther conditions can be attached so that simultaneous nor-malization is achieved.Henceforth for simplicity, let the matrices Ai; i = 1 : : :Nhave distinct eigen values. Then the modal matrix TA ofA can be represented as T̂AKAMA where T̂A is the modalmatrix of A with normalized columns of right eigen vec-tors of A, KA is a diagonal matrix with nonzero complexelements and is the scaling term and MA is a permutationmatrix. AlsoMAMTA = MTAMA = I. From Theorem 4 andCorollary 1 in [5] we haveTheorem 5.2 Let A and B be two normalizable matri-ces. Then they are simultaneously normalizable i� TAT �A =TBT �B . If A and B have distinct eigen values, then theabove condition reduces to the existence of two positive def-inite matrices D1 and D2 such thatD1 = QD2Q� Q = T̂�1A T̂B (16)D1 = KAK�A; D2 = KBK�BNow a relationship is developed between pairwise normal-ization of the matrices Ai; i = 1 : : :N and their simultane-ous normalization. Let the matrices be pairwise normaliz-able and let the transformation Sij; i 6= j simultaneouslynormalize the matrices Ai and Aj; 8i; j = 1 : : :N . Also,Sij = Sji; 8i; j = 1 : : :N . The following theorem now givesthe additional constraints on the transformations so thatthe matrices are simultaneously normalizable.Theorem 5.3 A necessary and su�cient condition for si-multaneous normalization of the matrices Ai; i = 1 : : :Nis: the matrices should be pairwise normalizable and thereexist �xed l1; l2 in 1 : : :N such thatS�1l1 l2Sl1i or S�1l1 l2Sl2i = Ui a unitary matrix 8i = 1 : : :N(17)Proof If the matrices are simultaneously normalizable sayby a transformationW , then clearly they are pairwise nor-malizable by the same transformation and alsoWW�1 = Iis unitary. Hence only su�ciency is to be proved.The claim is that the transformation Sl1 l2 simultaneouslynormalizes all the matrices. Now, since Sl1i and Sl2i nor-malize Ai, we have 8i = 1 : : :NS�1l1 l2AiSl1 l2 = S�1l1 l2Sl1 iM1AiS�1l1i Sl1 l2 orS�1l1 l2Sl2 iM2AiS�1l2i Sl1 l2= UiM1AiU�1i orUiM2AiU�1i from (17)= ~MAi 2 NAi from (15)where M1Ai ;M2Ai 2 NAi .The condition in Theorem 5.3 involves checking forS�11 S2 being unitary, where S1; S2 are two transformationsthat normalize the same matrix. The following theoremprovides conditions on the transformations S1 and S2 forthis to occur.

Theorem 5.4 Let S1 and S2 be two transformations thatnormalize a matrix A. Let Si = T̂AKiMiUi; i = 1; 2. Then,S�11 S2 is unitary i�j (K1)jj j=j (K2)jj j; 8j = 1 : : :n (18)Proof NowS�11 S2 = �T̂AK1M1U1��1 �T̂AK2M2U2�= U�1MT1 DM2U2where D = K�11 K2. Hence we have,�S�11 S2� �S�11 S2�� =�U�1MT1 DM2U2� �U�1MT1 DM2U2��= U�1MT1 DD�M1U1= ~U�1DD� ~U1since M1 is a permutation matrix. Now, ~U�1DD� ~U1 = Ii� D is also unitary or DD� = I. Since D = K�11 K2,K1;K2 diagonal, the condition that D be unitary reducesto the one in (18).The procedure of verifying the satis�ability of Theo-rem 5.1 is summarized below in two steps. Step 1 checksfor pairwise normalization of the matrices as in [5] andStep 2 which is carried out upon the success of Step 1,checks for additional constraints on the similarity trans-formations Sij so that simultaneous normalization of thematrices is achieved:Step 1 The matrices Ai; i = 1 : : :N are checked for pair-wise normalization. This is done as in [5]. The condi-tions for pairwise normalization of two matrices, say, Al1and Al2 is exposited below. The condition (16) in Theo-rem 5.2 is to be veri�ed. i.e., KAl1 and KAl2 are to befound such that TAl1T �Al1 = TAl2T �Al2 As in Theorem 5.2,de�ne Q = T̂�1Al1 T̂Al2 . Compute the matrices Q = [qkm]and Q��1 = [skm]. With KAl1 = diag fakg ;KAl2 =diag fbkg ; D1 = diag �j ak j2	 and D2 = diag �j bk j2	, asin Theorem 5.2, the condition D1 = QD2Q� is valid i�j ak j2 skm = qkm j bm j2 8k;m = 1 : : :n (19)Now de�ne the matrix Rl1l2 = [rkm] for every nonzero qkmrkm = skmqkm (20)If the values undetermined from (20) can be adjusted suchthat Rl1l2 has rank 1, then the matrices Al1 and Al2 aresimultaneously normalizable.Remark 1 : A necessary condition for (19) to be satis�ed isthat Q and Q��1 show the same zero-nonzero pattern andall nonzero entries satisfy arg (skm) = arg (qkm).Remark 2 : If (19) is satis�ed, then Rl1l2 can be written asrkm = j bm j2j ak j2 ; 8k;m = 1 : : :n; (21)



Hence Rl1l2 is the outer product of two vectors, whosekth elements are j bk j2=j �KAl2 �kk j2 and 1= j ak j2=1j�KAl1 �kkj2 . Hence Rl1l2 is a positive rank 1 matrix. Also,if Rl1l2 is a rank 1 positive matrix then the system of equa-tions in (19) have a solution.Remark 3 : Thus if all the matrices are pairwise normal-izable, let the transformation that pairwise normalizes Aiand Aj beSij = T̂AiKi(ij)Mi(ij)Ui(ij) = T̂AjKj(ij)Mj (ij)Uj (ij)Then, as constructed in Step 1, Rij corresponds to theouter product of the vectors whose kth elements are1j(Ki(ij))kkj2 and j (Kj(ij))kk j2.Remark 4 : (19) represents an over determined set of equa-tions and does not uniquely determine the scaling matricesKi(ij) and Kj(ij) to the extent of a scaling factor in thetransformations Sij and it is therefore necessary to checkthe conditions of Theorem 5.2 through the matrices Rij.Step 2 Once Step 1 is satis�ed, the existence of the ma-trices Sij is ensured and the matrices Rij are determinedas in Step 1. This step now checks for the satis�abilityof (17) in Theorem 5.3. >From Theorem 5.4 the condition(17) simpli�es to the following :8i = 1 : : :N; 9l1; l2 3j Kl1 (l1l2) j=j Ki (l1i) j or j Kl2 (l1l2) j=jKi (l2i) jAs in Remark 3 above, only the outer product of vectorsformed out of these scaling matrices Ki(ij) and Kj(ij) isexpressed as matrices Rij. Hence, this condition simpli�esto the following:8i = 1 : : :N; 9l1; l2 3 the pair (Rl1l2 ; Rl1i)(Rl2l1 ; Rl2i) has a common premultiplyingvector in the outer product representation (22)This common premultiplying vector has the jth elementeither j (Kl1 (l1l2))jj j2 or j (Kl2 (l1l2))jj j2 depending uponwhich of the two matrix pairs (Rl1l2 ; Rl1i) or (Rl2l1 ; Rl2i)satis�es (22). Appendix A provides a condition on tworank 1 matrices P;Q which have a common premultiplyingvector in their vector outer product representation. TheLemma and the remark that follows it in the Appendixcan then be used to detect the existence of l1; l2 such that(22) is satis�ed.The example below illustrates the application of boththe Steps 1 and 2 in checking for simultaneous normaliza-tion of the matrices A 2 A.Example 5.1 Let N = n = 3. Also let the matrices inA be:A1 = 24 �1:9 0:3 0:5�4:8 1:1 1:0�7:2 2:6 0:3 35A2 = 24 4:7 �1:9 �0:1�11:1 �4:8 0:1�12:3 �5:8 0:1 35

and A3 = 24 1:7 �0:433 �0:0332:2 �0:2 �0:11:4 �0:5 0:6 35It can be seen that � (A1) = 0:781; � (A2) = 0:985; � (A3) =0:728 and are less than unity. Also, � (A1) =9:327; � (A2) = 18:882; � (A3) = 3:177 are all greater thanunity and hence the simpli�ed su�cient condition in Com-ment 2 to Theorem 4.1 is not applicable. Now pairwisenormalization of these matrices is checked as in Step 1.Step 1: The modal matrices of A1; A2; A3 are respec-tively,̂TA1 = 24 0:229 0:333=0:689 0:333=� 1:690:688 0:667=1:689 �:667=� 1:6890:688 0:667=2:33 0:667=� 2:33 35T̂A2 = 24 0:224=0:561 0:224=� 0:561 0:4080:57=0:364 0:57=� 0:364 0:8170:791=0:703 0:791=� 0:703 0:408 35and T̂A3 = 24 0:341=� 1:82 0:341=1:18 0:2180:763=� 1:997 0:763=1:997 0:4360:55=� 2:337 0:55=2:337 0:873 35To check for pairwise normalizationofA1; A2 we �nd Q12 =T̂�1A1 T̂A2 and Q��112 respectively as:24 0:689=� 0:225 0:689=0:225 00:53=� 1:45 0:53=2:14 0:685=� 1:2260:53=� 2:14 0:53=1:45 0:685=1:226 3524 0:726=� 0:225 0:726=0:225 00:471=� 1:45 0:471=2:14 0:73=� 1:2260:471=� 2:14 0:471=1:45 0:73=1:226 35Hence, the matrix R12 computed as in (20) and the entryr13 not found from (20) is adjusted such that R12 has unitrank is R12 = 24 1:053 1:053 1:2630:889 0:889 1:0670:889 0:889 1:067 35Similarly Q23 = ^TA2�1 ^TA3 and Q31 = T̂�1A3 T̂A1 are com-puted. Also, Q21 = Q�112 ; Q13 = Q�131 ; Q32 = Q�123 arecomputed. As before, the matrices R23; R21; R32 and R31are calculated and the matrices R13 and R23 are:R13 = 24 1:132 1:132 1:1050:956 0:956 0:9330:956 0:956 0:933 35 andR23 = 24 1:075 1:075 1:051:075 1:075 1:050:896 0:896 0:875 35It is seen that the matrices R12; R23; R13 are of rank 1 andhence the matrices A1; A2; A3 are pairwise normalizable.Also, the matrices R21; R32; R31 are also of rank 1.Step 2: It is seen that the pair (R12; R13) has a com-mon premultiplying vector in their vector outer product



representation. Thus l1 = 1; l2 = 2 can be chosen and(22) is satis�ed. Thus the matrices are simultaneously nor-malizable and hence the corresponding switching system isstable.Comment 4 : Simultaneous normalization can be thoughtof as an extension of simultaneous diagonalization of thematrices since diagonal matrices are normal. This case hasbeen studied in [6] as a class of commuting matrices andthe proof there proceeds by actually constructing a com-mon Lyapunov matrix. We show that this result followsnaturally in our framework of simultaneously normalizablematrices. This ties the circle of ideas of demonstratingstability by showing the existence of or by actually con-structing a common quadratic Lyapunov function for thematrices in A.Theorem 5.5 [6] If the matrices Ai; i = 1 : : :N commutepairwise, then the switching system (3) is stable.Proof Let the matrices A1; A2; : : :AN commute pairwise.Then the matrices are simultaneously diagonalizable (The-orem 1.3.12, [1]) and hence simultaneously normalizable.The switching system then is evidently stable by Theo-rem 5.1.To see this, the matrices are now pairwise diagonaliz-able (Theorem 1.3.12, [1]) and let Sij be the transforma-tion which diagonalises both Ai and Aj . Here, Sij = Sji.The claim is that any of these Sij will simultaneously di-agonalise all the matrices Ai; i = 1 : : :N . This is seen asbelow:Now, if S1; S2 diagonalise a matrixA andD is any diagonalmatrix, then S�11 S2DS�12 S1 = D. This is becauseS�11 S2 = �T̂AK1M1��1 �T̂AK2M2�= MT1 D12M2; where D12 = K�11 K2 is diagonalNow S�11 S2DS�12 S1 = MT1 D12M2DMT2 D�112 M1= MT1 D12DD�112 M1= D (23)Here the notation is as previously used. T̂A is the modalmatrix of A with normalized right eigen vectors of A asits columns, K1;K2 are diagonal scaling matrices withnonzero complex entries, and M1;M2 are permutation ma-trices. Now, since Sl1 i diagonalises Ai to say Di, we have8i = 1 : : :N ,S�1l1l2AiSl1 l2 = S�1l1 l2Sl1iDiS�1l1i Sl1l2= Di from (23)Hence, any transformation Sl1 l2 which diagonalisesAl1 andAl2 , will also diagonalise the other matrices. Hence thematrices are simultaneously diagonalizable.

6 ConclusionsStability of the Sugeno-Takagi model [2] of a fuzzy sys-tem has been considered in the asymptotic sense. A nec-essary condition for the global asymptotic stability whichgeneralizes a result reported in [3] is given. A su�cientcondition is also provided here for the global asymptoticstability of the system. A particular case of this su�cientcondition, simultaneous normalization of the system matri-ces, is considered and a constructive procedure to check forsimultaneous normalization is developed. This condition iseasily checked using software utilities such as Matlab. Anecessary and su�cient condition for asymptotic stabilityis yet elusive and further e�orts should be aimed in this di-rection.The approach considered in this paper concentratesonly on the consequents of the fuzzy implication rules andbrackets all antecedents together, i.e., these results holdfor very general systems since stability is shown for all pos-sible fuzzy sets and membership functions. A method totake into account the speci�c knowledge of antecedents isneeded.Appendix AGiven two rank 1 matrices P and Q, a procedure isoutlined below which checks whether the matrices have acommon premultiplying vector in their vector outer prod-uct representation.Lemma 1 Let P = [pij] and Q = [qij] be rank 1 matrices.Then necessary and su�cient conditions on the matricesso that they may have a common premultiplying vector intheir vector outer product representation are1. The zero-nonzero pattern of P and Q coincide. Upona non-match, the column containing the zero that didnot match, should all be zero.2. 8j = 1 : : :n;8i = 1 : : :n; qij 6= 0; pijqij = kjRemark 1 : If P and Q have a common premultiplyingvector in their vector outer product representation, then9a; b; c 2 Rn 3 P = abT and Q = acT . The two conditionsin the lemma are evident from this representation.
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