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Abstract

This paper studies the global asymptotic stability of a
class of fuzzy systems. It demonstrates the equivalence of
stability properties of fuzzy systems and LTI switching sys-
tems. A necessary condition and a sufficient condition for
the stability of such systems are given and it is shown that
under the sufficient condition, a common Lyapunov func-
tion exists for the LTI sub-systems. A particular case when
the system matrices can be simultaneously transformed to
normal matrices is shown to correspond to the existence
of a common quadratic Lyapunov function. A constructive
procedure to check the possibility of simultaneous transfor-
mation to normal matrices is provided.
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1 Introduction

Recently, fuzzy control is being used in many practi-
cal industrial applications. One of the first questions to
be answered in this context is the stability of the fuzzy
system. In recent literature, Tanaka and Sugeno [3], have
provided a sufficient condition for the asymptotic stability
of a fuzzy system in the sense of Lyapunov through the
existence of a common Lyapunov function for all the sub-
systems. Tanaka and Sano [4] have extended this to robust
stability in case of systems with premise parameter uncer-
tainty. The model of the fuzzy system considered in these
papers is that proposed by Takagi and Sugeno [2], which
can be shown to be equivalent in stability to a switching
system with L'TT sub-systems.These switching systems turn
out to be a particular class among Linear Time Varying
(LTV) systems. The classical theory of LTV systems is
discussed in Section 9 of [8] and recent advances in LTV
systems are in [9]. Narendra and Balakrishnan [6] have
provided a simple sufficient condition for the stability of
the switching system.

This paper discusses some necessary and some sufficient
conditions for global asymptotic stability of a fuzzy sys-
tem. Section 2 defines the fuzzy system model and the
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model of the corresponding switching system and global
asymptotic stability of these systems. Section 3 shows the
equivalence of these two systems as regards stability and
further sections consider switching systems only. Section 4
discusses the main results of this paper. A sufficient con-
dition is provided for the asymptotic stability of the sys-
tem. It is shown that when this condition is satisfied there
exists a common Lyapunov function for the sub-systems.
Section b deals with a special case which leads to simulta-
neous normalization of the system matrices. In this case
the sub-systems have a common quadratic Lyapunov func-
tion. Also, a constructional procedure is provided to check
whether the theorem’s premise i1s satisfied. An example
illustrates the procedure. This result can be viewed as a
generalisation of the result in [6], a sufficient condition for
stability of switching systems.

2 Notations and Definitions

This section outlines the mathematical model of a free
fuzzy system and that of the corresponding switching sys-
tem. Stability of these systems in the asymptotic sense is
also defined.

The Takagi and Sugeno [2] model for the fuzzy system
1s chosen. Let the system state vector at time instant k
be z(k) = [#1(k) .. xn(k')]T where #1(k) ...z, (k) are the
state variables of the system at time instant k. Then the
free fuzzy system is defined by the implications below:

R IF (z1(k)is S}, AND---ANDz,(k) is ;) (1)
THEN z(k + 1) = A;z(k)

fori = 1...N. Here S} is the fuzzy set corresponding to

the state variable z; and implication Rl Ay e RV i =

1...N are the system characteristic matrices. The truth

value of the implication R’ at time instant k& denoted by

w; (k) is defined as

wilk) = A (psg (1 (R), - s (en ()
where pg(x) is the membership function value of the fuzzy
set S at the position z and A is an operator satisfying
min(ll,...,ln) Z A(ll,...,ln) Z 0

Usually A is taken to be the minimum operator which gives
the minimum of its operands. Then, at instant & the state
vector 1s updated according to

(L wilh A2 (k)

zlk+1 =
s SN wi(k)

(2)



ol _ w; (k)
= EaikAixk;aik:Ni
=1 ( ) ( ) ( ) Zi:l wl(k)

A fuzzy system is completely represented by the set of char-
acteristic matrices A = {A1,..., Ay} and the fuzzy sets
S},l =1,...,N;j=1,...,n. Corresponding to this free
fuzzy system a corresponding switching system is described
below:

The state update at time instant k is given as

2k +1)= Az (k) (3)

where A € A l.e., it is one of the matrices Ay, Ao, ..
Also, define Vk > 1

AN

A= AxAx...x A
——— ™ —

k times

where the Cartesian product is defined to be the multipli-
cation of matrices in the same order. Definitions of global
asymptotic stability of these systems are now given:

Definition 1 The fuzzy system described in (2) is globally
asymptotically stable if

z(k) — 0 as k > o0 (4)
or equivalently there exists || - ||, a norm on R™,
[|z(k)|]| — 0 as k —

for all initial values x(0) € R"™ and for all possible fuzzy
sets S/ Vi=1...N,Vj=1...n.

Definition 2 The switching system described in (3) is
globally asymptotically stable if

z(k+1)=A(k)z(0) — 0 as k = oco; YZ(0) € R" (5)
where A(k) € Ay. Equivalently,
A(k) — 0 as k — o0; A(k) € A (6)

For any matrix A € R", let p(A) be the spectral radius

of A, i.e.; the largest magnitude of the eigen values of A.
Let p (Ag) be defined as

p(Ax) = max{p(4) : A € A}

Let || - || be a matrix norm on R™ and ¢(A) be the largest
singular value of A. Then,

o(4) = \fo(ATa)
= [[Allsp (7)
where || - [|sp is the spectral norm on a matrix. Also let

o(Ag) = max{o(A): A€ Ax}. Let (A);; represent the
element a;; where A = [a;;]. Let A* denote the conjugate
transpose of A.

3 Equivalence of the stability of switching
and fuzzy systems

This section illustrates the equivalence of the stability
of a fuzzy system and its corresponding switching system.
A necessary condition for stability of either of these sys-
tems is also given. The following theorem illustrates some
equivalent statements about the stability of the switching
system. The proof might be hidden in some textbook, we
give it here for completeness.

Theorem 3.1 The following are equivalent:

1. The switching system in (3) is globally asymptotically
stable as in Def 2.

2. 0(Ag) — 0 ask =
3. p(Ap) — 0 as k — oo
Proof (1) = (2)
By (6), A(k) — 0as k — co; A(k) € A . By (7),

a matrix norm and hence

o(-) is

o (A(k)) — 0 as k — oo; YA(k) € A

In particular, maxyyea, 10 (A(k))} — 0 as k — oc.
Hence

o(Ag) — 0; as k = o0

|
(2) = (9)
Now
o(Ay) = max{c(A): A€ A}
> max{p(A4) : A€ Ay}
since ||A|| > p(A) from Theorem 5.6.9 in [1]. Hence
o (Ax) > p(Ar) 2 0; Yk > 1
and p(Ax) = 0 as k — oo. |

(3) = (1)
From Section 7.2 in [7] , p(A) is a continuous function of
the elements of A. Since p (A;) = 0 as &k — oo we have

p(Ak)) — 0 as k — oo, VA(k) € Ay
Since p (A(k)) is a continuous function of A(k),
A(k) — 0 as k — oo; YA(k) € Ap

Hence arriving at (6) which is the required result. |

The following theorem illustrates the equivalence of sta-
bility of a fuzzy system and that of the corresponding
switching system.

Theorem 3.2 A necessary and sufficient condition for the
stability as in Def 1 of a fuzzy system (2) is that the corre-
sponding switching system (3) be stable as in Def 2.



Proof Necessity : The fuzzy system in (2) degenerates
into the switching system when w; = 1 or ;i =1...N and
Zﬁ\;l w; = 1. Thus the switching system should necessarily
be stable. |
Sufficiency : Let the switching system represented by
A = {A;1,..., An} be stable as in Def 2. The proof that
fuzzy system too is stable uses the fact that given any two
sequences ag and by in R™ such that

[lak|| > [|bx]| Y& > K and ap — 0 as k = o
implies by — Oas k — oo (8)

Now the fuzzy system is stable if VZ(0) € R™ and all fuzzy
sets S,i=1...N,j=1...n,as k = oo,

7

(i\f: Olik(k — 1)Azk) (i\f: ail(O)Ail) i‘(O) — 0

ip=1 i1=1
N N
ie., (Z a;, (k — I)Aik) (Z ah(o)Ah) - 0
ip=1 i1=1
ie. Z i (k=1) i, (0) A, - Ay — 0
f1...80x=1...N
Now
I >0 @0 an (k= DAy - Anllsp
f1...0k=1...N
< Y a0 e (k= DA Anlsp
f1...0,=1...N
= Y an(0) s (k= Do (A - An)

i1...0x=1...N

< X
i1, ik=1...N
X MmMaX;, i, ... i {0’ (AzkA

= o(A) )

i1,eeip=1..N

= o(A)

Ozil(O) . 'aik(k — 1)

ip_1 "

'Ah)}

Ozil(O) o 'aik(k - 1)

since ZZ’FLHN a; =1V =1.. .k

Now since the switching system 1is stable, by Theo-
rem 3.1 we have o (Ax) — 0as k — oo. ;From (8), LHS
— 0 and the condition for stability (4) is satisfied. Hence
the fuzzy system too is stable as in Def 1. |

Henceforth, only the stability of the switching system
is mentioned. The following theorem provides a necessary
condition for the stability of the switching system.

Theorem 3.3 A necessary condition for stability as n
Def 2 of the switching system in (3) is that every finite
product sequence of the matrices in A be stable. i.e., their
spectral radius is less than 1. Equivalently,

p(Ar) <1;Vk >1 (9)

Proof Suppose not. Then JA; = A;, A, - - Ai, € A such
that p(A;, Ai, -+ A;) > 1. Then consider the switching
sequence

Then, #(k+m=«1) = APz(k). Clearly #(k) /A 0 as k = oo

since p(A;) > 1. Hence every finite product sequence of
the matrices has to be stable. |
Comment 1 : As an immediate consequence of the preced-
ing theorem the matrices A1, As, ..., Ay should themselves
be necessarily stable. ie., p(A4;) <1 Vi=1...N.
Comment 2 : Also the result expressed in Theorem 4.3 of
[3], a necessary condition for stability that the matrices be
pairwise stable is evident as a special case of Theorem 3.3
in which p (A2) is considered.

4 A Sufficient Condition for Stability

The following Theorem 4.1 provides a sufficient condi-
tion for stability of (3). Theorem 4.2 shows that when the
condition in Theorem 4.1 1s satisfied, there exists a common
Lyapunov function V(z) for all the system matrices in A.
However this common V(%) is not necessarily quadratic.

Theorem 4.1 A sufficient condition for stability as in
Def 2 of the switching system (3) is that there exists a sim-
ilarity transformation S € R"*™ and a matriz norm || - ||
such that

ISLAS|| < 1; VA € A (10)

Proof Let

n= max {[|ST'AS|; VAe A} < 1 (11)

Let
A(k) € Ap = Ay Ay, -+ Ay (12)

Also, let S be the similarity transformation. Now YA (k) €
-Ak ’

p (A(K))

p(Aiy Aiy - Aiy)
P (S_lAilAZ’Q .. Asz>

< ISTH AL A, - A

from Theorem 5.6.9 in [1]
< IS8T ALSI ST AL S - (15T A S|
< 7f from (11) and (12)

Hence p(Ax) < #%;n < 1 and p(Ag) — 0as k — oo.
Hence the switching system is asymptotically stable. |

Theorem 4.2 If (10) in Theorem 4.1 is satisfied and the
norm in (10) is an induced norm, then there exists a com-
mon Lyapunov function for all the system matrices in A,
i.e., there erists a function V : R® — RT such that
VA€ A,

o V(z(k)) >0, 2(k) £ 0



o AV (2(k)) = V (AZ(k)) — V (z(k)) < 0 ¥k > 0

Proof Let the premise in Theorem 4.1 be satisfied and
S be the similarity transformation. Let @ = S~'. De-
fine V (z(k)) = ||QZ(k)||> where the vector norm here in-
duces the matrix normin (10). Now since S is nonsingular,

V ((k)) # 0 when Z(k) # 0. Now, VA € A and Z(k) # 0,

AV (z(k) = [|QE(k+ DI (lQz (k)|
= lQAz(K)I]” — [|Qz(k)[?
= lQASE(K)|I* - 5 (k)II*
where y(k) = Qz (k)

< ISTUASIPIEIE — g
< 0 since (k) # 0 and from (10)

This function is the common Lyapunov function. |

However, this common Lyapunov function need not

be quadratic, i.e., V (Z(k)) need not be of the form
z(k)T Pz(k) where P is a positive definite matrix.
Comment 1 : A convenient matrix norm that can be used
in (10) is the spectral norm || - [|sp = ¢(-) and is induced
from the Euclidean vector norm. ( See 5.5.6 in [1]). Hence,
in particular, Theorem 4.1 reduces to the existence of a
nonsingular S such that o (S_lAS) < 1; VA € A. In this
case the common Lyapunov function in Theorem 4.2 can be
chosen to be quadratic. This is expressed in the following
theorem.

Theorem 4.3 The satisfaction of (10) in Theorem 4.1
and the norm in (10) being the spectral norm (i.e. induced
from the Fuclidean vector norm) is a necessary and suf-
ficient condition for the existence of a common quadratic
Lyapunov function for all the system matrices in A, t.e.,
V (z) is of the form ' Pz where P is a positive definite
matrix.

Proof Necessity : Suppose there exists a common Lya-
punov function V (z) = z7 Pz for all the system matri-
ces A € A. Since P is positive definite 35 nonsingular
5 P=Q"TQ where Q = S~!. Then,

V(z(k) = =zk)7TPz
= (k)" QTQu(k)
= [|Qz(k)|? (13)
where || - || is the Euclidean norm

Since AV (z(k)) < 0, Yz(k) € R", from (13) we have
VA € A,

Qz(k + )|l — llQz(k)ll < 0
|QAZ(K)|| - llQz (k)| < 0
1QASY (k)| = lly(k)ll < 0 (14)
where y(k) = Qz(k)
Since (14) is valid Yy (k) # 0, we have,
ASy(k
g QASHEN

g (k)|

Hence o (S7'AS) <1 VA € A. |
Sufficiency Let S nonsingular be such that
o (S‘lAS) < 1VYA € A. Then choose P = QT(Q where
Q = S7'. Clearly P is positive definite. Then the
claim is that the common quadratic Lyapunov function is
V (z) = z7 Pz = ||Qz(k)||>. We prove the claim by show-
ing that AV (2(k)) < 0 VA € A. This proof follows the
same pattern as that in Theorem 4.2 by replacing the gen-
eral induced norm there by the spectral norm o(-). |
Comment 2 : It 1s evident that if there exists a matrix norm
[| - || such that ||A|| < 1;VA € A, then the switching sys-
tem 1s stable, since the similarity transformation S can be
taken to be I, the identity matrix. A convenient norm on
the matrix is the spectral norm || - ||sp equal to the largest
singular value of the operand matrix. In view of the theo-
rem and comment above, a simplified sufficiency condition
thus is that o(A) < 1;VA € A since o(+) the spectral norm
is the norm induced from the Euclidean vector norm.

Comment 3 : In particular, this motivates interest in Nor-
mal matrices as, for these matrices, eigen and singular
values coincide. If M is normal, p(M) < 1, o (M) =
p (M) < 1, thereby satisfying the condition mentioned in
the above Comment. A normal matrix M is characterized

by MM* = M*M (See Section 2.5, [1]).

5 Simultaneous Normalization

Since the spectral radius is a norm on Normal matrices
and spectral radius of each individual A-matrix of the sub-
systems is necessarily less than unity, simultaneous trans-
formation of A;;2 = 1... N into normal matrices through a
similarity transformation is motivated. The following the-
orem is a fallout of the results in the previous section and
the proof follows from Theorem 4.1 and Comments 2 and
3 on Theorem 4.1 .

Theorem 5.1 The switching system in (3) is stable if
there exists nonsingular S such that ST'AS is normal
YA € A and the spectral radius of each matriz A s less
than unaty.

|
Since spectral radius of the matrices being less than
unity is a necessary condition for stability, simultaneous
similarity transformation of A;,¢ = 1... N into normal ma-
trices i1s considered. A matrix A is said to be normalizable
if there exists nonsingular S such that S™!AS is normal .
From [5], S is necessarily of the form S = T4 U where Ty
is a modal matrix of A and U is a Unitary matrix. Let
Na = {S_lAS S =TaU; U unitary}. It can be shown
that if M € N4 then
Na={U*MU : U is unitary } (15)
Evidently, p(A) = p(M); M € N4. To check for simultane-
ous normalization of the matrices A;,¢ = 1...N, initialy
the problem of pairwise normalization of these matrices 1s



considered. Once pairwise normalization is achieved, fur-
ther conditions can be attached so that simultaneous nor-
malization is achieved.

Henceforth for simplicity, let the matrices 4;,i =1... N
have distinct eigen values. Then the modal matrix T4 of
A can be represented as TA KM, where TA 1s the modal
matrix of A with normalized columns of right eigen vec-
tors of A, K4 1s a diagonal matrix with nonzero complex
elements and is the scaling term and M4 is a permutation
matrix. Also MAMX = MXMA = 1. From Theorem 4 and
Corollary 1 in [5] we have

Theorem 5.2 Let A and B be two normalizable matri-
ces. Then they are simultaneously normalizable iff TAT% =
TpTy. If A and B have distinct eigen values, then the
above condition reduces to the existence of two positive def-
wmite matrices Dy and Dy such that

Di=QDQ" Q=T;'Tp
Dy = KaK%: Dy =Kgk}

(16)

|
Now a relationship is developed between pairwise normal-
1zation of the matrices A;,7 = 1... N and their simultane-
ous normalization. Let the matrices be pairwise normaliz-
able and let the transformation S;;,¢ # j simultanecously
normalize the matrices A; and A;,Vi,j = 1...N. Also,
Sij = Sj;, V4,5 =1...N. The following theorem now gives
the additional constraints on the transformations so that
the matrices are simultaneously normalizable.

Theorem 5.3 A necessary and sufficient condition for si-
multaneous normalization of the matrices A;,i = 1...N
15: the matrices should be parrwise normalizable and there
exist fired l1,l5 in 1... N such that

51_11125112' or 51_11125l2i = U; a unitary matrirVi=1...N
(17)

Proof If the matrices are simultaneously normalizable say
by a transformation W, then clearly they are pairwise nor-
malizable by the same transformation and also WW ! = I
is unitary. Hence only sufficiency is to be proved.

The claim is that the transformation 5j,;, simultaneously
normalizes all the matrices. Now, since S;,; and Sp,; nor-
malize A;, we have Vi=1...N

Sl_lllQAiSlllZ = Sl_lllQShiM}x,Sl_lilSlllQ or
Sl:ll2Sl2iMzg\le_2ilslll2
= UiMilUi_lorUiMlefl from (17)
= MA, € Ny, from (15)
where M}\,’Mi, ENy,. m

The condition in Theorem 5.3 involves checking for
Sl_lSz being unitary, where S7, S are two transformations
that normalize the same matrix. The following theorem
provides conditions on the transformations S; and Ss for
this to occur.

Theorem 5.4 Let S1 and S bg two transformations that
normalize a matriz A. Let S; = TAK;M;U;, i = 1,2. Then,
51_152 s unitary iff

(K1) =] (Ra), Y =1..m (18)
Proof Now
S7lS, = (TAI(lMlUl)_l (TAI(ZMZUZ)
= UrMIDM,U,
where D = K1_1K2~ Hence we have,
(57182) (578)" =
(U M DM, US) (U MT DM, US) ™
= U;MIDD*M U,
= UrDD*l;
since M; is a permutation matrix. Now, ﬁl*DD* U, =1

iff D is also unitary or DD* = [. Since D = Kl_le,
Ky, Ky diagonal, the condition that D be unitary reduces
to the one in (18). |

The procedure of verifying the satisfiability of Theo-
rem 5.1 is summarized below in two steps. Step 1 checks
for pairwise normalization of the matrices as in [5] and
Step 2 which is carried out upon the success of Step 1,
checks for additional constraints on the similarity trans-
formations S;; so that simultaneous normalization of the
matrices is achieved:

Step 1 The matrices A;,¢ = 1...N are checked for pair-
wise normalization. This is done as in [5]. The condi-
tions for pairwise normalization of two matrices, say, A,
and A, is exposited below. The condition (16) in Theo-
rem 5.2 is to be verified. i.e., Ku, and K4, are to be
found such that TAlszl1 = TAIQTL2 As in Theorem 5.2,

define @@ = Tz‘?zll TA,2~ Compute the matrices @ = [qxm]
and Q*7' = [spp]. With Ku, = diag{ar}, Ka,
diag {by}, D1 = diag {| ax |*} and Dy = diag {| bx |*}, as
in Theorem 5.2, the condition Dy = QD,Q* is valid iff

| ag | Skm = qam | bm |> YE,m=1...n (19)

Now define the matrix Ry,;, = [rgm] for every nonzero qgm,

_ Skm
Thkm = ——
dkm

(20)

If the values undetermined from (20) can be adjusted such
that Rj,;, has rank 1, then the matrices A;; and A;, are
simultaneously normalizable. |
Remark 1: A necessary condition for (19) to be satisfied is
that @ and Q*~! show the same zero-nonzero pattern and
all nonzero entries satisfy arg (sipm) = arg (qrm)-

Remark 2: If (19) is satisfied, then Ry ;, can be written as

(21)

rkm:|— Vk,m=1...n,



Hence Ry, is the outer product of two vectors, whose
kth elements are | by |*=| (KAlz)kk |2 and 1/ | ax |*=

W. Hence Ry, is a positive rank 1 matrix. Also,
A1) g

if Ry, i1s arank 1 positive matrix then the system of equa-
tions in (19) have a solution.

Remark 8 : Thus if all the matrices are pairwise normal-
izable, let the transformation that pairwise normalizes A;

and A; be
iy = T K i) M (i) Us(i) = T, 1 () M; () U i)

Then, as constructed in Step 1, R;; corresponds to the
outer product of the vectors whose kth elements are

e and | (G (i) g I*

Remark 4 : (19) represents an over determined set of equa-
tions and does not uniquely determine the scaling matrices
K;(ij) and K;(7j) to the extent of a scaling factor in the
transformations S;; and it is therefore necessary to check
the conditions of Theorem 5.2 through the matrices R;;.
Step 2 Once Step 1 is satisfied, the existence of the ma-
trices S;; is ensured and the matrices R;; are determined
as in Step 1. This step now checks for the satisfiability
of (17) in Theorem 5.3. ;From Theorem 5.4 the condition
(17) simplifies to the following :

Vi= 1...N, 311,12 >
| I(ll (1112) |I| [{z (lll) | or | 1(12 (1112) |I| [{z (122) |

As in Remark 3 above, only the outer product of vectors
formed out of these scaling matrices K;(ij) and K;(ij) is
expressed as matrices R;;. Hence, this condition simplifies
to the following:

Vi=1.. .N, 311,12 > the pair (RlllQ,Rlli)
(Rig1,, Riyi) has a common premultiplying

vector in the outer product representation (22)

This common premultiplying vector has the jth element
either | (K, (lil2)); |2 or | (Ki, (lil2)) |? depending upon
which of the two matrix pairs (R, Riys) or (R, Risi)
satisfies (22). Appendix A provides a condition on two
rank 1 matrices P, @ which have a common premultiplying
vector in their vector outer product representation. The
Lemma and the remark that follows it in the Appendix
can then be used to detect the existence of Iy, 5 such that
(22) is satisfied. |

The example below illustrates the application of both
the Steps 1 and 2 in checking for simultaneous normaliza-
tion of the matrices A € A.

Example 5.1 Let N = n = 3. Also let the matrices in
A be:

—-1.9 0.3 05 47 —-19 -0.1
A= —48 11 10 | A= —11.1 —48 0.1
—-7.2 26 0.3 —-12.3 -58 0.1

1.7 =0.433 —-0.033
and A3 = | 2.2 —0.2 —0.1
14 =05 0.6

It can be seen that p (A1) = 0.781; p (A3z) = 0.985; p (A3) =
0.728 and are less than unity. Also, o(4;) =
9.327; o (A2) = 18.882; ¢ (A3) = 3.177 are all greater than
unity and hence the simplified sufficient condition in Com-
ment 2 to Theorem 4.1 is not applicable. Now pairwise
normalization of these matrices is checked as in Step 1.

Step 1: The modal matrices of A;, Ao, As are respec-
tively,
0.229 0.333/0.689 0.333/ — 1.69
TAl = | 0.688 0.667/1.689 —.667/— 1.689
0.688 0.667/2.33  0.667/ — 2.33
0.224/0.561 0.224/ —0.561 0.408
T4, = | 057/0.364 0.57/—0.364 0.817
0.791/0.703 0.791/—0.703 0.408
0.341/—-1.82 0.341/1.18 0.218
and TAa = | 0.763/—1.997 0.763/1.997 0.436

0.55/—2.337 0.55/2.337 0.873

To chﬁck for pairwise normalization of A;, As we find Q15 =
T,leTAz and QT;l respectively as:

0.689/ —0.225 0.689/0.225 0
0.53/—1.45  0.53/2.14 0.685/ — 1.226
0.53/—2.14  0.53/1.45  0.685/1.226
0.726/ — 0.225 0.726/0.225 0
0.471/— 145 0.471/2.14 0.73/ —1.226
0.471/—214 0.471/1.45  0.73/1.226

Hence, the matrix Ryz computed as in (20) and the entry
r13 not found from (20) is adjusted such that Rjs has unit
rank is

1.053 1.0563 1.263
Ri2 = | 0.889 0.889 1.067
0.889 0.889 1.067

Similarly Q23 = T;;Q_lT;;a and Q31 = T;;TAI are com-

puted. Also, Q21 = Q7, Qs = Q3 Qs = Q53 are
computed. As before, the matrices Ra3, Ra1, R32 and Rs
are calculated and the matrices B3 and Ro3 are:

1.132 1.132 1.105

Ris= | 0.956 0.956 0.933 | and
0.956 0.956 0.933
1.075 1.075 1.05
Roz = | 1.075 1.075 1.05

0.896 0.896 0.875

It is seen that the matrices Rio, Ra3, R13 are of rank 1 and
hence the matrices Ay, A, As are pairwise normalizable.
Also, the matrices Ro1, R32, R31 are also of rank 1.

Step 2: Tt is seen that the pair (Rj2, R13) has a com-
mon premultiplying vector in their vector outer product



representation. Thus [y = 1,ls = 2 can be chosen and
(22) is satisfied. Thus the matrices are simultaneously nor-
malizable and hence the corresponding switching system is
stable.

Comment 4 : Simultaneous normalization can be thought
of as an extension of simultaneous diagonalization of the
matrices since diagonal matrices are normal. This case has
been studied in [6] as a class of commuting matrices and
the proof there proceeds by actually constructing a com-
mon Lyapunov matrix. We show that this result follows
naturally in our framework of simultaneously normalizable
matrices. This ties the circle of ideas of demonstrating
stability by showing the existence of or by actually con-
structing a common quadratic Lyapunov function for the
matrices in A.

Theorem 5.5 [6] If the matrices A;, i = 1...N commute
pairwise, then the switching system (3) is stable.

Proof Let the matrices Ay, Ay, ... Ay commute pairwise.
Then the matrices are simultaneously diagonalizable (The-
orem 1.3.12, [1]) and hence simultaneously normalizable.
The switching system then is evidently stable by Theo-
rem H.1.

To see this, the matrices are now pairwise diagonaliz-
able (Theorem 1.3.12, [1]) and let S;; be the transforma-
tion which diagonalises both A; and A;. Here, S;; = S};.
The claim is that any of these S;; will simultaneously di-
agonalise all the matrices A;, ¢ = 1...N. This is seen as
below:

Now, if 51, .55 diagonalise a matrix A and D is any diagonal
matrix, then Sl_lSzDSz_lSl = D. This is because

. -1,
SrlS, = (TA K Ml) (TAKZMZ)
= MlTDlez, where Dy = K1_1K2 is diagonal
Now
ST'S.DS; S = M{ DisM>DM] DY M,
= MI'D,DD M,
= D (23)

Here the notation is as previously used. T4 is the modal
matrix of A with normalized right eigen vectors of A as
its columns, Ki, Ky are diagonal scaling matrices with
nonzero complex entries, and My, M, are permutation ma-
trices. Now, since Sj,; diagonalises A; to say D;, we have

Vi=1...N,

-1 -1 -1
St AiSts Sty 511 DiS i S,

D; from (23)

Hence, any transformation 5;,;, which diagonalises A;, and
Ayp,, will also diagonalise the other matrices. Hence the
matrices are simultaneously diagonalizable. |

6 Conclusions

Stability of the Sugeno-Takagi model [2] of a fuzzy sys-
tem has been considered in the asymptotic sense. A nec-
essary condition for the global asymptotic stability which
generalizes a result reported in [3] is given. A sufficient
condition is also provided here for the global asymptotic
stability of the system. A particular case of this sufficient
condition, simultaneous normalization of the system matri-
ces, 18 considered and a constructive procedure to check for
simultaneous normalization i1s developed. This condition is
easily checked using software utilities such as Matlab. A
necessary and sufficient condition for asymptotic stability
1s yet elusive and further efforts should be aimed in this di-
rection.The approach considered in this paper concentrates
only on the consequents of the fuzzy implication rules and
brackets all antecedents together, i.e., these results hold
for very general systems since stability is shown for all pos-
sible fuzzy sets and membership functions. A method to
take into account the specific knowledge of antecedents is
needed.

Appendix A

Given two rank 1 matrices P and ), a procedure is
outlined below which checks whether the matrices have a
common premultiplying vector in their vector outer prod-
uct representation.

Lemma 1 Let P = [p;;] and Q = [qi;] be rank 1 matrices.
Then necessary and sufficient conditions on the matrices
so that they may have a common premultiplying vector in
their vector outer product representation are

1. The zero-nonzero pattern of P and @ coincide. Upon
a non-match, the column containing the zero that did
not match, should all be zero.

2.¥5=1...n,

Vi:l...n, qij;éo, ]ﬁ:k’j
i

Remark 1 : If P and @ have a common premultiplying
vector in their vector outer product representation, then
Ja,b,c € R* 3 P = ab” and Q = ac”. The two conditions
in the lemma are evident from this representation.
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