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Abstract. This paper considers a multi-person discrete game with random payoffs. The
distribution of the random payoff is unknown to the players and further none of the players
know the strategies or the actual moves of other players. A class of absolutely expedient
learning algorithms for the game based on a decentralised team of Learning Automata is
presented. These algorithms correspond, in some sense, to rational behaviour on the part
of the players. All stable stationary points of the algorithm are shown to be Nash equilibria
for the game. It is also shown that under some additional constraints on the game, the team
will always converge to a Nash equilibrium.
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1. Introduction

This paper is concerned with a learning problem in a general multiperson stochastic
game with incomplete information. We study a class of decentralised algorithms for
learning Nash equilibria. For this purpose, we employ team concepts associated with
Learning Automata models [13].

The game we consider is a discrete stochastic game played by N players. Each of
the players has finitely many actions one of which he plays at each instant. After
each play, the payoffs to individual players are random variables. The objective for
each player is to maximise his expected payoff. Further, the game is one of incomplete
information [6]. Thus, nothing is known regarding the distributions of the random
payoffs. For learning optimal strategies, the game is palyed repeatedly. We are
interested in (asymptotically) learning equilibrium strategies, in the sense of Nash,
with respect to the expected value of the payoff. Our interest will be in decentralised
learning algorithms. Hence, after each play, each of the players updates his strategy
based solely on his current action or move and his payoff. None of the players has
any information regarding the other players. As a matter of fact, none of the players
need to even know the existence of other players. Thus the game we tackle is also
of imperfect information [6]. :

Such games are useful in tackling problems in many areas such as decentralised
‘control, optimisation, pattern recognition and computer vision. Some of the
applications of the game model considered in this paper are discussed in [14]. In
many such problems Nash equilibria, in fact, represent the desired solutions. (For a
good discussion on the rationality of Nash equilibria see [4, Ch. 2]).

We use a team of learning automata [13] for evolving to the optimal strategies.
Games of learning automata have been used as models for adaptive decision making
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in many applications [17, 15, 18]. In Learning Automata theory, algorithms for
learning optimal strategies have been developed for many special types of finite
stochastic games. Some of the models considered are: Two-person zero-sum games
[9], N-person games with common payoff [17, 16, 20] and non-cooperative games
such as Prisoner’s Dilemma and Stackelberg games [19]. In [14], it is shown that a
team of Learning Automata involved in a general N-person stochastic game will
converge to a Nash Equilibrium if each of the team members makes use of a linear
algorithm called the Lg_; algorithm [13]. This requires that every member of the
team has to use the same algorithm (though may be with different learning parameters).
While this may be useful for applications such as optimization, for general N-person
games (that include non-cooperative games) this is a restrictive condition. Here, we
expand the earlier result [14] to a case where different players use different algorithms
(not necessarily linear) though we require that every player satisfy the the ‘absolute
expediency’ property [13]. Informally speaking, the learning algorithm used by a
player is absolutely expedient if the algorithm ensures that the expected value of his

payoff will increase montonically with time (when all the other players play to a fixed

strategy). We feel that this is a reasonable restriction because, assuming rational
behaviour, each player should try to increase his payoff.

We begin by formulating the learning problem in §2. Section 3 gives a brief
introduction to the necessary ideas from Learning Automata theory. Section 4 presents
the learning algorithm and its analysis. Section 5 concludes the paper with a discussion
of the results presented in the paper.

2. Problem formulation

In this section we introduce our notation and derive a few resuits regarding Nash
equilibria which will be used later on in the analysis of our algorithm. Most of the
formulation in this section can be found in any standard book on Game Theory (e.g.,
£5,2,7]). _

Consider a N-person stochastic game. Each player i has a finite set of actions or
pure strategies, S;, 1 <i<N. Let cardinality of S; be m;, 1 <i< N. (It may be noted
that the sets S;, 1 <i< N, need not have any common elements and we assume no
structure on these sets). Each play of the game consists of each of the players choosing
an action. The result of each play is a random payoff to each player. Let r, denote

the random payoff to player i, 1 <i<N.1Itis assumed that r,e[0, 1]. Define functions
d":H§=18j—+[0,1], 1<i<N,by '

d*(ay,...,ay}= E[r,| player j chose action a;, a;eS;, 1<j<N] (1)

The function d' is called the payoff function or utility function of player i, 1 <i<N.
The objective of each player is to maximise his payoff. A strategy for player i is
defined to be a probability vector q;=[q;,,...,q;, ], Where player i chooses action j
with probability g;;. The strategy of a player can be time varying as it would be, for
example, during learning. Bach of the pure strategies or actions of the ith player can
be considered as a strategy. Let e, be a unit probability vector (of appropriate
dimension) with ith component unity and all others zero. Then e; is the strategy
corresponding to the action i. (It may be noted that any unit probability vector
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represents a pure strategy). A strategy that does not necessarily co
strategy is called a mixed strategy. ’ rreSand 1o apure
Given the actions chosen by the players, (1) specifies the expected payoff. We can

cf:agily extend the functions d', to the set of all strategies. If g' is this extension, then
it is defined as ’

9'(ay,-..,qy) = E[r;]jth player employs strategy q}, 1<j<N]

s . N o
Zj dl(.hs"' ajN) ].:[1 qu, . (2)

Jteeen
DEFINITION 2.1

The N-tuple of strategies (q‘l’,...,qg) is said to be a Nash equilibrium, if for each i,
I <i< N, we have :

3@ 4147, 45, 1 0 = 4@ 0 5 0 00 GR)
VY probability vectors qe[0,1]™ 3)

In general, each q° above will be a mixed strategy and then we refer to @q....q%)
satisfying (3), as a Nash equilibrium in mixed strategies. Every N-person game will
have at least one Nash equilibrium in mixed strategies [4, 5].

We say we have a Nash equilibrium in pure strategies if @?,...,q3) is a Nash
equilibrium with each q° a unit probability vector. In view of (2), for verifying a Nash
equilibrium in pure strategies, we can simplify the condition (3) as given in the
definition below.

DEFINITION 2.2

The thuple of actions (0(1)’. ..»a%) (or equivalently the set of strategies (€;3,---,€,)) is
called a Nash equilibrium in pure strategies if for each i, 1 <i<N,
(0 0,0 S gi
dial,....,a}_,,q L0 senr,dQ) 2 Y@, .00, 0,00, 0 ay) VAES,

| @
Here, for all j, a}’eS i the set of pure strategies of player j.

DEFINITION 2.3

A Nash equilibrium is said to be strict if the inequalities in (3) (equivalently, (4), for
pure strategies) are strict.

Since each of the sets S, is finite, each of the functions, I, S,~[0,1], can be
represented by a hyper matrix of dimension m, x --- x my. These N hyper matrices
together constitute what can be called the reward structure of the game. Since the
game is one of incomplete information these payoff matrices are unknown. Now the
learning problem for the game can be stated as follows.

Let G be a N-person stochastic game with incomplete information. At any instant
k, let the strategy employed by the ith player be g;(k). Let a;(k) and r;(k) be the actual
actions selected by i and the pay off received by i respectively at k,k=0,1,2,.... Find
a decentralised learning algorithm for the players (that is, design functions T;, where
qi(k + 1) = Ti(q:(k), a;(k), 7(K))) such that qi(k)—>q° as k— oo where (q7,...,qy) is 2.
Nash equilibrium of the game. ‘ : '
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In § 4, we present a team of Learning Automata model for solving this problem
after briefly introducing the concept of a Learning Automaton in § 3. In the remaining
part of this section, we state a simple result regarding Nash equilibria, which is needed
for the analysis later on. Define K < [0, 1]™* " *m by

K={Qe[0,1]m*"*™.0 =(q,...,qy), and Vi, 1 <i<N,

q; is a m;-dimensional probability vector} (%)

It is easy to see that K is the set of all N-tuples of mixed strategies or the set of

possible strategies for the game. Let K* = K denote the set of possible pure strategies
for the game. K* is defined by

K* = {Qe[0,1]™*"*™:0 =(q,,...,qy), and Vi, 1 <i <N, q isa

m; — dimensional probability vector with one component unity} (6)-

It is easy to see that K* can be put in one to one correspondence with the set oy_.s.
Hence we can think of the function d’, given by (1) as defined on K*. Similarly,

functions ¢', given by (2), are defined over K. Define functions hs, 1<s<m, 1<i<N,
on K by '

hi(Q) = E[r,| player j employed strategy q, 1<j <N N E A

and player i chose action 5]

= Z ) d(jl:-"sji-lss’ji+1""9jN)].—_[qtjg (7

Jtevess Ji= 1y Ji4 1aeeen JN t#s

where Q =(q;,...,qy). From (2) and (7), we have

MS

]

‘1 he(Q)gi, =¢'(0) (®)

s

Lemma 2.1. Any Q°=(q%,...,q%)eK is a Nash equilibrium if and only if
hi(Q°) <g(Q%), Vs,i.

COROLLARY 2.1

Let Q°=(q},...,q%) be a Nash equilibrium. Then for each i,
his(Q°) = g'(Q°)Vs such that q2>0.

Both the above results follow directly from the definition of Nash equilibria and are
standard results in Game theory (see, for example, [7, Thm. 3.1], and [2, Ch. 3]).
3. Learning Automata

In this secltion, a brief introduction to Learning Automata [13] models is given.
The basic Learning Automata system consists of a Learning Automation interacting

&

. o
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with an environment. At each instant, the Learning Automaton chooses from a finite
set of possible actions and outputs it to the environment. The environment then
responds with a signal which evaluates the action. This signal is known as the Scalar
Reinforcement Signal (SRS). This is a real number and a higher value of the SRS
indicates better performance of the system. The SRS is assumed to be stochastic in
nature. Otherwise each action can be tried once and the action which returns the
highest value of the SRS be selected as the optimal action.
The environment is defined by the tuple (A, R, # ) where

1. A is the set of actions. It is assumed to be a finite set and
A= {al,...,am}.

2. R is the set of values the SRS can take. In our case R will be a subset of the closed
interval [0, 1]. We denote the value of the SRS at instant k by r(k).

3. # ={F,,...,F,} is a set of probability distributions over R. F; is the distribution
of the SRS, given that the action taken by the system is a;.
When the F’s are independent of time, the environment is said to be a stationary

environment. We consider such environments in this section. Define

d; = E(r)

where E' denotes expectation with respect to F;. Thus, d; is the expected value of the
SRS if action g, is the output. The optimal action is defined as the action which has
the highest expected value of the SRS. It is seen that the optimal action is defined
independently of the system used to learn it. Thus, the problem is completely defined
by the environment.

The basic model of the learning automaton maintains a probability distribution
over the set of actions 4. The notation used is the same as the used in describing
the environment above. The number of actions is m and the probability distribution
is a m-dimensional real vector p such that

p=(p1$"':pm)t
p=0 Vi 1<i<m

Zl’i:l
i=1

At instant k, if p(k) is the action probability vector, the probability of choosing the
ith action is p;(k). Formally, a learning automaton is defined by the tuple (A4, Q, R, T)
where : '

1. A is the (finite) set of actions available to the automaton.

2. Q is the state of the learning automaton. In standard learning automata theory,
Q is the action probability vector p. In estimator algorithms [17], Q consists of
the action probability vector along with a vector of estimates. In the algorithms
considered in this paper Q =p. Hence we use p for the state of the learning
automaton. ' ,

3. Ris the set from which the SRS takes its values. It is the same as R in the definition

~ of the environment. o
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4. T is the learning algorithm which updates p.
plk+1)=T(p(k), r(k), a(k))
a(k) is the action of the automation at instant k.

The optimal action is defined to be that which has the highest value of d;. One
method of evaluating the performance of the system is to check whether the probability
of choosing the optimal action becomes unity asymptotically. This is difficult to
ascertain and various other performance measures have been defined [13]. They are
briefly described below.

Any algorithm should at least do better than a method which chooses actions
randomly (with equal probability) at each instant. An automaton which uses this
technique is called the pure chance automaton. For comparing the performance of
automata with the pure chance automaton, the average value of the SRS at a state
p is needed. This is denoted by M (k). Thus

M (k)= E[r(k)|p(k)]
For the pure chance automaton, this quantity is a constant, denoted by M,.

1 m
My=— Z d;
mi=1

An automaton should at least do better than M,. This property is known as
expediency.

"
o

DEFINITION 3.1
A learning automaton is said to be expedient if

liminf E[M (k)] > M,

k— o0

This property does not say much. What is really needed is that the automaton
converge to the optimal action. Let the actions of the automaton be {a,,...,a,}. Let
a, be the unique optimal action. That is, d, > d, for all i #s.

DEFINITION 3.2

A learning automaton is said to be optimal if

lim E[M (k)] = d,

k—co

Optimality is not an easy property to prove. In fact, no algorithm has this property.
A weaker property is that of e-optimality. This says that even though the optimal

value d, cannot be achieved, it should be possibie to approach it within any prespecified
accuracy.
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DEFINITION 3.3

A learning automaton is said to be e-optimal if

liminf E[M (k)] >d;—¢

k= 0

is achieved for any &> 0 by an appropriate choice of the automaton parameters.

In general, different values of the automaton parameters would be required for
different values of e.

A property which can be checked without asymptotic analysis and has been shown
to imply e-optimality in stationary environments [13] is absolute expediency.

DEFINITION 3.4

A learning automaton is said to be absolutely expedient if
~E[M(k+1)pk)]> M(k)

for all k, all probabilities in the open interval (0, 1) and all stationary environments with
a unique optimal action.

Necessary and sufficient conditions for an algorithm to be absolutely expedient
were first given in [10] and generalised in [1].

Various algorithms have been developed for learning automata. The class of
algorithms considered in this paper is those of absolutely expedient algorithms. These
algorithms are described below.

p(k) is the action probability vector at instant k. Let a(k) denote the action at
instant k and r(k) the SRS. It is necessary that the SRS take values from a subset of

the closed interval [0, 1]. The general form of the absolutely expedient algorithm is

If the action chosen at instant k is a(k) = a; then
pollk + 1) = py(k) — br(k)y(p(K)) + b(1 — (k) Bjs(p (k) 5 7]

pytk+ 1) =pyfk) +br(R) T oy (p(R) — b1 —r(k)) 2, (k)

s#j

©)

where 0 < b < 1 is the learning parameter. The following conditions are imposed on
the o and f functions so that p(k + 1) remains a probability vector.

ajs(p) < Ds VJ: N

Y B <p; Vi

s#j

(10)

Necessary and sufficient conditions for this algorithm to be absolutely expedient
were given by Aso-Kimura [1]. These are

Z psasj—'__ ;jpjajs V]

s#j

Z psﬁsj= g.pjﬁjs Vj
s¥]

s#j

(11)
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If we set o = p; and f;,= 0 we get the Ly _; algorithm mentioned earlier. This is the
algorithm considered in [14] for the Game problem. The algorithm is easily seen to
satisfy conditions (11).

Absolutely expedient algorithms have been shown to be e-optimal with respect to
the learning parameter b [11]. The first conditions for absolute expediency were given
in [10]. In these class of algorithms, a;(p) = a,(p) and B;,(p) = B,(p). Necessary and
sufficient conditions for these class of algorithms to be absolutely expedient are

a;/p;=Alp) Vj 12)
_ﬁj/Pj=l-l(P) /]

A set of conditions which are easily seen to be more general than the (12) conditions
but more restrictive than the (11) conditions are -

psas}"—"pjajs Vj,S S#J

‘ . (13)
psﬁsj = pj‘Bjs VJ’S § :/‘-.]

« and f which satisfy (13) but not (12) are
ais::ﬁjs:pjpsz Vj. s, S#] | (14)

The following simple lemma will be needed in the the next section.

Lemma 3.1 If p;=0 or p,=0, and the Aso-Kimura conditions (11) are satisfied, then
ps(asj+ﬂsj)=0 (15)

Proof. Trivially, condition (15) is satisfied if p, = 0. Let p, %0 and p ;=0. As a; < p;,
;= 0. By the Aso-Kimura conditions (11),

Z paBajz Z 'pjﬂja
a#j a#j

Thus X, ;p,8,;=0and as each term is non-negative, p_f§, ;= 0for all a. In particular,
psﬁsj = 0 ' -

It is also seen from the above proof that

pj=0=(a;+ ;) =0. : (16)

An additional condition which will be used in certain proofs in the next section is

the following '

This is satisfied, for example, by the L, _, algorithm.
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4. Algorithm and analysis

We consider an N-person game where the ith player has m; pure strategies. We will
represent each player by a learning automaton and the actions of the automaton are
the pure strategies of the player. Let p;(k) = [p;;(k)---P;m,(k)]' denote the action
probability distribution of the ith player. p;;(k) denotes the probability with which
ith automaton player chooses the jth pure strategy at instant k. Thus p,(k) is the
strategy employed by the ith player at instant k. Each play of the game consists of
each of the automata players choosing an action independently and at random
according to their current action probabilities. The payoff to the ith player will be
the reaction to the ith automaton which will be denoted by r;(k). The learning
algorithm used by each of the player is as given below.

1. At each instant k, player i selects an action from his action set S; according to his
current action probability vector p;(k). Thus, if a;(k) is the action at instant k and
Si = {ail, ey aimi}, then

Prob(a;(k) = a;;) = p;(k).

2. Based on the actions taken by all the players, player i receives a payoff r;(k) given

by (1).
3. Let the action of the ith player at instant k be a;;. Every player updates his action

probabilities according to the following rule..
pi(k + 1) = p, (k) — br (K)o, (p -(k))+ b1 —r(k)B;;(p, (k) s#]

pyy(k + 1) = p,i(k) + bry(k) Y, o, (p,(K)) — b(1 ~r,(K) Z Biis(p; (k)

s#]j

(18)

where 0 < b < 1 is the learning parameter. For simplicity of notation, it is assumed
here that all players use the same value of b. All the results would hold even if
different values of the learning parameter were used by the players. o, B,;; are
the functions used by player i to update his strategy and are analogous to o, and
B, functions for the single automaton described in the previous section. It may
be noted that different players may use different functions to update their strategies
provided the functions satisfy the conditions described below.

The o and f functions satisfy the Aso- Klmura conditions for absolute expediency.

They are

Z p:s 1s1_ ZP” ijs

s*j
) p,sﬂ,s, Z P8 (19)
s¥EJ s#j ; .

o and B are non-negative and satisfy conditions (10) to keep p;(k + 1) an action

probablhty vector. They can be written as
%P < by Vijs. S#]

. ; B ®)<p; Vij (20)
s#j




288 V V Phansalkar et al

In addition to these conditions an additional condition is imposed to ensure that
the updating is not stopped prematurely. This is

0+ By # 0 if p,; #0 and p, #0. @1

4.1 Analysis of the algorithm

The analysis of the algorithm is carried out in two stages. First, weak convergence
techniques are used to show that the algorithm can be approximated by an appropriate
ODE (Ordinary Differential Equation) as b—0. Then, solutions of the ODE are
analysed to obtain information about the behaviour of the algorithm.

The learning algorithm given by (18) can be represented as

P(k + 1) = P(k) + bG(P(K), a(k), r(k)) (22)

where a(k) = (a,(k)---ay(k)) denotes the actions selected by the automata team at k
and r(k) = (r,(k)---ry(k)) are the resulting payoffs.

Let P(k)=(p,(k),...,py(k)) denote the vector current mixed strategies of all the
players which is also the state of the learning algorithm at instant k. Our interest is
in the asymptotic behaviour of P(k). Since each p; is a probability vector, we have
P(k)eK where K is as defined by (5). The following piecewise-constant interpolation
of P(k) is required to use the weak convergence techniques

Pb(ty=P(k), te[kb,(k+ 1)b) (23)

P?(-yeD™: " *mv_ the space of all functions from R into [0,1]™ " *™ which are
continuous on the right and have limits on the left. (It may be noted that P?(t)eK, Vt).

Now consider the sequence {P’("), b > 0}. We are interested in the limit of this sequence
as b—0. :

Define a function &:K—[0,1]™+ " *mv by

¢(P)= E[G(P(k), a(k),r(k))| P(k) = P] (24)

Theorem 4.1. The sequence of interpolated processes {P*(-)} converges weakly, as b—0,
to X () which is the solution of the ODE,

L, xO=p, 25)

Proof. The following conditions are satisfied by the learning algorithm given by (22)

1. {P(k), (a(k — 1), r(k— 1)), k >0} is a Markov process. (a(k), r(k)) take values in a
compact metric space.

2. The function G(.,.,.) is bounded and continuous and independent of b.

3. If P(k)=P, then {(a(k),r(k)),k >0} is an iid. sequence. Let M denote the
(invariant) distribution of this process. :

4. The ODE (25) has a unique solution for each initial condition.

Hence by [8, Thm. 3.2], the sequence {P”()} converges weakly as b— 0 to the solution
of the ODE,

o

£



Algorithms for learning Nash equilibria 289

X |
I =-G(X), X(0)=P,

where G(P) = EF G(P(k),a(k),r(k)) and EP denotes the expectation with respect to the
invariant measure M".

Since for P(k)= P, (a(k),r(k)) is ii.d. whose distribution depends only on P and
the payoff matrices, :

G(P) = E[G(P(k),a(k),r(k))| P(k)=P]=¢&(P), by (24)
Hence the theorem. u

Remark 4.1. The convergence of functionals implied by weak convergence, along with
the knowledge of the nature of the solutions of the ODE (25), enables one to
understand the long-term behaviour of P(k). It can be shown that P(k) follows the
trajectory X (t) of the ODE within a prespecified error and for as long as prespecified
with probability increasingly close to 1 as b decreases. (See [3, Chapter 2, Theorem 1]
and the discussion therein).

The following lemma gives an explicit characterisation of £.

Lemma 4.1
éij(P) = Z‘l.pis(aisj + ﬁisj)(h’ij - his) (26)

where h, are as defined by ().
Proof. Let G;; denote the (i,j)th component of G.
¢,(P) = E[G,(P(4), a(,r(k)| P(k) = P]
= ZE [G,,(P(k), a(k), r(k)|P(K) = P, a,(k) = a, 1p;,

= Z E[ri(k)“ijs(pi(k)) - (1 - r,(k))ﬁus(l),(k))lp(k) =P, ai(k) = aij] p;'j

s#]

+ ¥ E[— 100 (py(K)) + (1 — 7, () By (0, () P LK)

s¥EJ
= P,ak)=a,]p;
= s;j{pijaijs(pi)_E[rilP’ aij] - pijﬁ[js(pi)E[l — 1| P, aij}p,-j}

+ 2, {— D% (P)E [r,|P,a,] —pisﬁisj(pi)E[l‘— rilP, )

s¥j v

= s;jpij(“ijshij — B (1= h;;)) + s;j — Pyl — B;(1 — h))

= Y iy Bigy)(hy;— i) bY the Aso-Kimura conditions (19)

s#jJ

completing the proof. - | [ ]
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Using (26), the ODE (25) can be written as

dp,; - .
—5_;1 = g_pis(aisj(pi) + ﬁ;s](pl))[hu(P) — hls(P)] 1 <]J < m;, 1<i<N.
s#j

(27)

The following theorem characterises the solutions of the ODE and hence the long-
term behaviour of the algorithm.

Theorem 4.2 The following are true of the ODE (and hence of the learning algorithm
if the parameter b in (18) is sufficiently small).

1. All corners of K (i.e. points in K*) are stationary points.
2. All Nash equilibria are stationary points. '

3. If conditions (13) and (17) are satisfied, all stationary points that are not Nash
equilibria are unstable.

4. All corners of K that are strict Nash equilibria are locally asymptotically stable.

Proof. 1. Let P°eK*. Thus p{,=0or p) = Oforallj, s such that j # sand 1 <j, s <m,.
By Lemma 3.1, p{(e,; + B,,;) = 0 for all s. Thus,

dp..
:%l - ;.pis(aisj(p?) + ﬂisj(p?))[his(PO) - his(Po)] =0

2. Let P° be a Nash equilibrium. Define
A, = {s:p? >0}

For j¢A,, pj;=0. Thus, pj (e, + B,,) =0 for all 5],

LetjeA;, implying p{; > 0. Itis trivially seen that p{) (e, + B, )(h;; — h, ) = 01if pf, = 0.
Therefore let pj;>0. But then as P° is a Nash equilibrium, h,(P°)= h,(P°) by
Lemma 2.1 Thus

p?s(“isj + Bisj)(hij" h)=0 Vijs (s#j)

Thus P° is a stationary point.

3. Let P° be a zero of £() which is not a Nash equilibrium. It is assumed that

conditions (13) and (17) are satisfied by the algorithm. By Lemma 2.1, there is an i
and an s such that

h (PO) > g (P%) (28)

In general, there will be more than one s such that h, (P°) > g*(P°). Without loss of
generality let

hil(P0)=hi2(Po)= =hiL(PO)>hiL+1(P0)2hiL+2(Po) =

wbere hl.s(POk)‘ > g'(P®), 1 <s< L. Then, for all §, ¢ sufficiently small, there exists a
neighbourhood % ; around P° such that for all P, h,(P) — h, (P) > ¢ for all j < L,
s> L and h;;(P) — h, (P)> — d¢ for all s,j < L. Then

w3
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dp,
"d—ll = Z Pis(0y + Bigy )y — hy)
t s#1
=p,, ¥ (@, + Biys)(hy; —hy) as (13) is satisfied
s#1

=P ) (@15 + By )iy — b)) + by > L(‘xns + By )1y — hy)

s>L 25s<

> 8pi1< ZL(ai1s+Bi1s)_5 ) Z (aus +ﬁi13)) if PE%M

s> <s<L

There is at least one s> L such that p?s >0, as P? is not a Nash equilibrium. Thus,
o, (P°)+ B, s(P%)>0, by (17). Thus the linearised version of the last line in the above
equation is strictly positive and thus P° is not stable.

It should be possible to relax condition (17), but the analysis would then involve
higher order terms instead of just linear terms. But the same result should go through.
4. Let P°=(e,,,...,e,; ) be a corner of K that is a Nash equilibrium. Without loss of

generality, let i; =i, = --- = iy = 1. Use the transformation P —¢, defined by
&, =P if q#1
&y =1— Py

Define a Lyapunov function V() as

It is easy to see that ¥ >0 and that V=0 iff ¢=0. Also, as PP is a strict Nash
equilibrium, h, (P°)> h, (P°) for all 5. Thus,

V_ < dey
dt =1 dt

dp;

t

s

]
—

i

d
N
- X is (@1 + Bty — Byy)

i=1s#1

— 3T b0, (80 + By (0, (PO) — B (P%))

i=1 s#1

I

+ higher order terms in &
<0 as h, (P°)> h,(P°) Vs#1
This proves P° is asymptotically stabie. |

Remark 42. Because of the above theorem, we can conclude that our learning
algorithm will never converge to a point in K which is not a Nash equilibrium and
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strict Nash equilibria in pure strategies are locally asymptotically stable. This still
leaves two questions unanswered. (1) Do Nash equilibria in mixed strategies form
stable attractors for the algorithm, and (ii) is it possible that P(k) does not converge
to a point in K which would be the case, for example, if the algorithm exhibits limit
cycle behaviour. At present we have no results concerning the first question. Regarding
the second question we provide a sufficient condition for P(k) to converge to some
point in K. This is proved in Theorem 4.3 below.

Theorem 4.3. Suppose there is a bounded differentiable function
FiRm+=m R
such that for some constants c¢;> 0,

??(P) = ¢;hiy(P), Vi, q and all PeK. (29)

iq

Further, the « and f§ functions satisfy condition (13) and (17). Then the learning algorithm,
Jor any initial condition in K — K*, always converges to a Nash equilibrium.

Proof. Consider the variation of F aldng the trajectories of the ODE. We have

dF _ OF dp,

dt i,qapiq dt
< OF
= 2o (P 1Py Big) (P =k (P)], by (26)
Lq iq s .

=260 Pis(disq + Bis) [y (P))* — b, (P)h, (P)], by (29)

= zci Z Z pis(a.'sq + ﬁlsq)[h;q(P) - hu(P)]z .

i q s>q
>0 (30)
Thus F is nondecreasing along the trajectories of the ODE. Also, due to the nature

of the learning algorithm given by (18), all solutions of the ODE (25), for initial
conditions in K, will be confined to K which is a compact subset of R™ **™_Hence

by [12, Theorem 2.7], asymptotically all the trajectories will be in the set K, =
{Pe[0,1]m* " *mn: gF/dt(P) = 0}.
From (30), (25) and (26) it is easy to see that

dF
=&, (P)=0 Vig
=P is a stationary point of the ODE.

Thus all solutions have to converge to some stationary point. Since by Theorem 4.2
all stationary points that are not Nash equilibria are unstable, the theorem follows. W

.
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Theorem 4.2, and Theorem 4.3 together characterise the long-term behaviour of
the learning algorithm. For any general N-person game, all strict Nash equilibria in
pure strategies are asymptotically stable in the small. Further the algorithm cannot
converge to any point in K which is not a Nash equilibrium. If the game satisfies the
sufficiency condition needed for Theorem 4.3 then the algorithm will converge to a
Nash equilibrium. (If the game does not satisfy this condition we cannot be sure that
the algorithm will converge rather than, e.g., exhibit a limit cycle behaviour). We
have not been able to establish that, in a general game, all mixed strategy equilbria
are stable attractors.

5. Discussion

In this paper we have considered an N-person stochastic game with incomplete
information. We presented a method based on Learning Automata for the players
to learn equilibrium strategies in a decentralised fashion. In our framework, each
player can choose his own learning algorithm. However, the algorithm of each player
should satisfy the so called absolute expediency property. In the context of a learning
automation, an algorithm is absolutely expedient if the expected reinforcement will
increase monotonically with time in all stationary random environments. In the
context of the Game, since all the players are updating their strategies, the effective
environment as seen by a player will be nonstationary. Here, the restriction of absolute
expediency will mean that the algorithm used by a player should ensure the expected
payoff to the player increases monotonically when all other players are using fixed
strategies. Thus, this is a mild requirement because rational behaviour on the part
of the player demands that, at the minimum, he should strive to improve his payoff
when everyone else is playing to a fixed strategy. The analysis presented in §4 tells
us that if all players are using absolutely expedient algorithms, they can converge to
Nash equilibria without needing any information exchange.

In a truly competitive game situation, we may require that the learning algorithm
employed by a player should also help to confuse the opponent. The framework
presented in this paper does not address this aspect. The analysis presented here also
does not address the question of how a player, using an absolutely expedient algorithm,
will perform if other players are using arbitrary learning algorithms that are not
absolutely expedient. However, in many cases, game models are employed as
techniques for solving certain type of optimisation problems. Examples include
learning optimal discriminant functions in Pattern Recognition and the Consistent
Labelling problem in Computer Vision [17,18]. (See [14] for a discussion on the
application of the Game model considered here in such problems. In such applications
the sufficiency condition of Theorem 4.3 also holds). In all such situations, the
requirement that the players use absolutely expedient learning algorithms is not
restrictive. '

Our algorithm can be used for learning the Nash equilibrium even if the game is
deterministic and the game matrix is known. We then simply make r;, payoff to the
ith player, equal to (suitably normalised) di(a, ay) which is the game matrix entry
corresponding to the actions played. Whether this is an efficient algorithm for
obtaining Nash equilibria for general deterministic games with known payoff functions
needs to be investigated.
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Our analysis does not establish the stability or otherwise of Nash equilibria in
mixed strategies for the general N-person game. In the context of a single Learning
Automaton, it is known that in any stationary random environment absolutely
expedient algorithms always converge to a unit vector [13] and hence it might be
the case that even the decentralised team cannot converge to an interior point. This
aspect needs further investigation.
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