Sadhana, Vol. 15, Parts 4 & 5, December 1990, pp. 263-281. © Printed in India.

Stochastic automata and learning systems

M A L THATHACHAR

Department of Electrical Engineering, Indian Institute of Science, Bangalore
560012, India

Abstract. We consider stochastic automata models of learning systems
in this article. Such learning automata select the best action out of a finite
number of actions by repeated interaction with the unknown random
environment in which they operate. The selection of an action at each
instant is done on the basis of a probability distribution which is updated
according to a learning algorithm. Convergence theorems for the learning
algorithms are available. Moreover the automata can be arranged in the
form of teams and hierarchies to handle complex learning problems
such as pattern recognition. These interconnections of learning automata
could be regarded as artificial neural networks.

Keywords. Stochastic automata; learning systems; artificial neural net-
works.

1. Introduction

Stochastic automata operating in unknown random environments form general
models for learning systems. Such models are based on some early studies made by
American psychologists (Bush & Mosteller 1958) and also on automata studies
introduced into engineering literature by Soviet researchers (Tsetlin 1973). Stochastic
automata interact with the environment, gain more information about it and improve
their own performance in some specified sense. In this context, they are referred to
as learning automata (Narendra & Thathachar 1989).

The need for learning exists in identification or control problems when high levels
of uncertainty are present. For instance, the pole balancing problem can be regarded
as a deterministic control problem when the relevant parameters of the system such
as the mass of the cart and mass and length of the pole are given. When some of the
parameters are unknown, it can be treated as an adaptive control problem. When
even the dynamic description of the system is not used to determine the control,
learning becomes necessary. In the latter approach, the input to the system is generated
by experience through a learning algorithm which builds up associations between
the input and output.

Learning is very much relevant in tasks such as pattern recognition where detailed
mathematical descriptions are usually not available and feature measurements are
noisy. Similar is the situation with regard to computer vision problems such as
stereopsis.

263

264 M A L Thathachar

In recent years there has been a great deal of interest in artificial neural networks.
The main aim here is to use a dense interconnection of simple elements to build
systems which provide good performance in perceptual tasks. The learning automata
described here appear to be well-suited as building blocks of stochastic neural networks
as they can operate in highly noisy environments.

2. The random environment

The learning model that we consider involves the determination of the optimal action
out of a finite set of allowable actions. These actions are performed on a random
environment. The environment responds to the input action by an output which is
probabilistically related to the input action.

Mathematically the random environment can be defined by a triple {a, d, §} where

a={0y,d,,...,a,} represents the input set,
d={d,,d,,...,d,}, the set of reward probabilities, and
B={0,1}, a binary set of outputs.

The input a(n) to the environment is applied at discrete time n=0,1,2,... etc. and
belongs to the set . The output B(n) is instantaneously related to the input a(n) and
is binary in the simplest case. An output f(n)=1 is called a reward or favourable
response and f(n)=0 is called a penalty or unfavourable response. The reward
probabilities relate «(n) and B(n) as follows,

d;i=P{m)=1lom)=a;}, (i=1,...,r). (1)

Consequently d; represents the probability that the application of an action «; results
in a reward output. An equivalent set of penalty probabilities ¢;=1—d; can also be
defined.

c,-=P{ﬂ(n)_-—-0|oc(n)=oci}, (i=1,..rn. 2

Models in which the output of the environment is binary are called P-models. A
generalization of this model is the Q-model where the output belongs to a finite set
in the interval [0,1]. A further generalization is the S-model where the output is a
continuous random variable which assumes values in [0,1]. Q and S models provide
improved discrimination of the nature of response of the environment. The penalty
probabilities are usually regarded as constants. In such a case the environment is
called stationary. When c; vary with time n directly or indirectly, the environment is
nonstationary. Many practical problems involve nonstationary environments.

The problem of learning in an unknown random environment involves the
determination of the optimal action from the input-output behaviour of the
environment. The optimal action is the action most effective in producing the reward

output or the favourable response.
Let

dy,= max {d;})

Then a,, is the optimal action and could be easily identified if each d, is known. Hence

Stochastic automata and learning systems 265

a meaningful learning problem exists only when the reward probabilities are unknown.
In some problems the set of reward probabilities {d;} may be known but the action
with which each reward probability is associated may not be identified. Learning the
optimal action is a relevant problem even here.

Learning involves experimentation on the environment by choosing input actions
and correlating them with outputs in developing a strategy for picking new actions.
A stochastic automaton is very helpful in carrying out such operations in an effective
manner.

3. The learning model

The stochastic automata that we consider in the learning model can be represented
by the triple {«, §, A}. o = {a;,05,...,,} is the finite set of outputs or actions; f = {0, 1}
is the binary set of inputs; A is the algorithm for updating the action probability
vector p(n).

p(n) = [pl(n)’pz(n)"--,pr(n)]:r’ ' 4)

where
pi(n)= P{“(”) = “i},

and T denotes transpose. Thus the stochastic automaton selects an output action
a(n) at time n randomly based on p(n). It updates p(n) to p(n + 1) according to the
algorithm A and selects a new action a(n + 1).

The learning model that we study consists of the stochastic automaton in a feedback
connection with the random environment (figure 1). The action a(n) of the automaton
forms the input to the environment and the output f(n) of the environment is the
input to the automaton. An automaton acting in an unknown random environment
so as to improve its performance in some specified sense is called a learning automaton.

This learning model is closely related to the two-armed bandit problem extensively
studied in statistics. The two-armed bandit is a machine with two arms. A human
test subject is asked to pull one of the 2 arms. The subject is rewarded or punished
according to a previously determined schedule with a fixed probability of reward for
the two choices. The problem is in finding whether the subject will learn to select the
better arm associated with the higher probability of reward in successive experiments.

The above problem illustrates the classical dilemma encountered between identifi-
cation and control in such learning situations. The subject must decide which of the
2 arms must be chosen on the basis of the previous performance. The dilemma is
whether the subject should choose the arm which is known to be better so far or
whether he should select the arm about which least knowledge exists so that new
knowledge of relative effectiveness of the arms is obtained.

B(n)| Stochastic OC("L)

Automaton

Random

Environment

di}) . : .
{ ! Figure 1. Stochastic automaton in random environment.

266 M A L Thathachar

4. Norms for learning

Although learning is understood in a qualitative way, it is necessary to_ set up
quantitative norms for a proper understanding of the model. On close scrutiny it is
found that several kinds of learning can be defined. Some prominent definitions are

given below. . . .
At the outset it may be noted that the action probability vector p(n) is a random

variable and the sequence {p(n)} is a random process. A quantity of much importance
is the Average Reward W (n) defined as

W)= ELA) o)
3. PLB() = Lalr) = T PLa(r) =]

=Y dipi(n) 5)

Ifactions are selected purely randomly (i.e. p;=1/rforeach i) then W(n) = Wo=1/rZd,.
If an automaton is said to learn, it must perform better than this, in which case it is
called expedient.

DEFINITION 4.1

A learning automaton is said to be Expedient if

Lim E[W(n)]> W,. : (6)

n-co

The best behaviour we can expect from the automaton is defined as follows.
DEFINITION 4.2

A learning automaton is said to be Optimal if

LimE[W(n)]=d,, -
n—a

where
d,, =max{d;}.

An equivalent definition is,

Limp, (n) = 1 (with probability 1) (w.p.1). (8)

DEFINITION 4.3
A learning automaton is said to be g-optimal if

rIiT E[fWn)]>d,—¢)
can be obtained for any arbitrary ¢>0 by a proper choice of the parameters

of the automaton.
Another definition closely related to ¢-optimality is the following.

Stochastic automata and learning systems 267
DEFINITION 4.4

A learning aﬁtomaton is said to be Absolutely Expedient if
E[W(n+1)Ipm)]> W(n) (10)

for all n, all p;(n)e(0, 1) and for all possible sets {d}(i=1,....r except those in which
all reward probabilities are equal. :

It can be seen that absolute expediency implies that W(n) is a submartingale and
consequently E[W(n)] monotonically increases in arbitrary environments. Furthermore
with some additional conditions it ensures g-optimality.

5. Learning algorithms

The basic operation in a learning automaton is the updating of action probabilities.
The algorithm used for this operation is known as the learning algorithm or the
reinforcement scheme (Lakshmivarahan 1981). In general terms, the learning algorithm
can be represented by,

p(n+1)= T[p(n),a(n), f(m], (11)

where T is an operator. The algorithm generates a Markov process {p(n)}. If p(n + 1)
is a linear function of p(n), the reinforcement scheme is said to be linear. Sometimes
the scheme may be characterized by the asymptotic behaviour of the learning
automaton using it i.e. expedient, optimal etc.

Let S, be the unit simplex defined by

r

S, ={plp=L[p1p2.-...0,]", 0<p,< L2 pi=1} (12)
Then S, is the state space of the Markov process {p(n)}. The interior of S, is represented
as §7. Let e;=[0,0,...,1,0, 07" where the ith element is unity, be an r-vector. Then
the set of all e;(i=1,...,r) is the set of vertices V. of the simplex §,.

If the learning algorithm is chosen so that {p(n)} has absorbing states, then it is
called an absorbing algorithm. Otherwise it is a nonabsorbing algorithm. The two
types of algorithms have different types of behaviour.

We shall first consider a few linear algorithms which are simple to implement and
analyse.

5.1 Linear reward-penalty (Lg—-p) scheme

This scheme has been extensively treated in the psychology literature (Bush &
Mosteller 1958). It can be described as follows. ‘
If ou(n) = o,

pin+1)=p;(n)+ a[1—p,(m)], ifp(n)=1,

pj(n+1)=(1—a)py(n),

pin+1)=(1-b)p;(n), ifp(n)=0,

pin+1)=b/r— 1)+ (1 —b)p;(n), (13)

268 M A L Thathachar

where 0 <a< 1 énd b = a. Computing the conditional expectation E[p;(n + 1)|p(n)]
and rearranging,

E[p(n+1)=ATE[p(m)], (14)
where A4 is an (r x r) stochastic matrix with elements,
a; =(1 —ac;) and a;; = ac;/(r — 1).

A has one eigenvalue at unity and the rest in the interior of the unit circle. The
asymptotic solution of (14) can be computed as the elgenvector of A corresponding
to unity eigenvalue and is given by

n—o0

Lim E[p,(n)] = (1/c,) /[Z l/c):| G=1,...7.

It follows that

srcmoner- | [g])= (£) -

and hence Ly _; is expedient in all stationary random environments.
5.2 The linear reward—inaction (Lg_;) scheme

This algorithm (Shapiro & Nagendra 1969) can be obtained by setting b =0 in (13).
It is sometimes called a ‘benevolent’ scheme as there is no updating under a penalty

input.
Let
Ap;(n)=E[p,(n + 1) — p;(n)| p(n)]
= ap;(n) Y p;(n)(d; — d)). (15)
Hence, ’
Ap(n) = ap,(n) Y. p;(M)(d,—d;) >0 (16)

for all peSy, since (d,, —d;)> 0 for all j # m.

It follows that E[p,(n)] is monotonically increasing in any stationary random
environment and this is certainly a desirable feature. It can also be checked that each
vertex e; of S, is an absorbing state of the Markov process {p(n)}. Furthermore one
can show that {p(n } converges to an element of the set of vertices V, w.p.1 and also
that P{Lim,.,p,(n) =1} can be made arbitrarily close to unity by selecting
sufficiently small ‘a’. Thls implies that the Ly _; scheme is ¢-optimal in all stationary
random environments.

5.3 The linear reward — e-penalty (Lg _,p) scheme
The Ly _; scheme has the drawback of being associated with several absorbing states.

If the process {p(n)} starts at an absorbing state it continues in that state and this
may not be desirable. However the scheme is e-optimal. One can continue to enjoy

Stochastic automata and learning systems 269

e-optimality without the disadvantage of absorbing states by setting the parameter
b in (13) to a small positive number (b« a < 1). This choice gives the Ly _,, scheme
(Lakshmivarahan 1981). '

5.4 Absolutely expedient schemes

Early studies of reinforcement schemes were made in a heuristic fashion. A synthesis
approach led to the concept of absolutely expedient schemes (Lakshmivarahan &
Thathachar 1973). The concept arose as a result of the following question: What are
the conditions on the functions appearing in the reinforcement scheme that ensure
desired behaviour?

The importance of absolutely expedient schemes arises partly from the fact that they
represent the only class of schemes for which necessary and sufficient conditions of
design are available. They can be considered as a generalization of the Ly - scheme.
They are also g-optimal in all stationary random environments.

Consider a general reinforcement scheme of the following form.

If a(n) = a;,

pin+1)=p;i(n)—g;(p(n)), whenp(n) =1,

pin+ 1) =pi(m)+ Y g;(pm), (#1),

. j#i
pi(n+1)=p,(n) + hy(p(n)), when B(n)=0,
pi(n+1)=py(n) = I h(p(n)). | (17)
J#i

In the above g, h; are continuous nonnegative functions mapping S, — [0, 1] further
satisfying (for all peS?)

0< [p;+hipl<l, (18)

Ji

so that p(n + 1)eS? whenever p(n)eS°.
The following theorem gives conditions on g; h; for absolute expediency.

Theorem 5.1 A learning automaton using the general algorithm (17) is absolutely
expedient if and only if '

9:(0)/py = 92(0)/p2 = - = g,(p)/p, -

hy()/py = hy(D)/ps = -+ = h,(D)/p, (19)
for all peS?.

and

Comments: (1) The theorem says that an absolutely expedient scheme is determined
by 2 functions only. These could be designated as A(p) = g:(p)/p; and u(p) = h;(p)/p;,
(i=1,...,r). Reward—-inaction schemes can be obtained by setting u(p) =0. The Ly _,
scheme results when A(p) = a, u(p) = 0.

(2) When d,, is unique, it can be shown that absolute expediency is equivalent to the

270 M A L Thathachar

condition Ap,,(n) > 0 for all n, all peS? and in all stationary random environments®.
(3) Absolute expediency implies that E [p.(n)] is monotonically increasing in all
stationary random environments*.

(4) Other classes of absolutely expedient schemes can be obtained by choosing
different forms of reinforcement schemes. The most general scheme at present is due
to Aso and Kimura (Narendra & Thathachar 1973).

5.5 Estimator algorithms

Estimator algorithms (Thathachar & Sastry 1985) arose from the idea that as the
automaton is operating in the random environment, it is gaining information about
the environment. This information can profitably be used in the updating of p(n); for
instance, to speed up the learning process. One such algorithm called the pursuit
algorithm is given below.

Let

d;(n) = R(n)/Z,(n), | (20)

where R,(n) = number of times reward input was obtained during the instants at which
action o; was selected up to the instant n.

Z,(n) = number of times action o; was selected up to the instant n.
d,(n) = estimate of d; at n.
Let

Gy () = Max [d(m)].

Then,
p(n+1)=p(n) + alegm —pM)], (21)

where 0 <a < 1 and ey, is the unit vector with unity in position H (n) and zeros in
the rest. '

Comments: (1) The pursuit algorithm computes the ‘optimal’ vector eg, at each n
on the basis of the measurements up to n and moves p(n) towards it by a small distance
determined by the parameter a.

(2) It can be shown that the pursuit algorithm is e-optimal in all stationary random
environments. Furthermore it is an order of magnitude faster than Lg_; and other
nonestimator algorithms.

6. Convergence and c-optimality

The basic theoretical question in the operation of a learning automaton is the
asymptotic behaviour of {p(n)} with respect to n. It refers to the convergence of a
sequence of dependent random variables.

There are two approaches to the analysis of the problem. One is based on stochastic
contraction mapping principles leading to distance-diminishing operators. The other
approach is through the martingale convergence theorem.

* Omit environments with all d; equal.

Stochastic automata and learning systems 271

In the study of learning algorithms two distinct types of convergence can be
identified. In the first type, information on the initial state p(0) is eventually lost as
p(n) evolves in time. An algorithm with such behaviour is said to be ergodic. Here
p(n) converges in distribution to a random variable (r.v.) p whose distribution is
independent of p(0). This is characteristic of algorithms such as Ly _; and Ly _ ;.

In the second type of convergence, the process {p(n)} has a finite number of
absorbing states. It can be shown that p(n) converges w.p.1 to one of the absorbing
states. This type of convergence is associated with Ly _; and other absolutely expedient
schemes which are also called absorbing algorithms.

In order to show e-optimality, one has to consider the effect of small values of the
learning parameter. In ergodic algorithms, the problem can be reduced to the study
of an associated ordinary differential equation which is shown to have a stable
equilibrium point near the optimum value of p(n). In absorbing algorithms, bounds
on the probability of convergence to the optimum value of p(n) are derived and it is
shown that these bounds converge to 1 as the learning parameter goes to zero.

7. QO and S models

The development so far has been concerned with P models where the environment
has only a binary response. Most of these results can be extended to Q and S model
environments. Actually it is enough to consider S models as 0 models could be
regarded as particular cases of S models.

In § models the output of the environment for each action o; is a random variable
with a distribution F; over the interval [0, 1]. The mean value of this distribution S;
plays the same role as the reward probability 4, in the P model,

Let

s; = E[B(n)|a(n) = o;] (22)

This s; is usually called the reward strength.
Each reinforcement scheme in the P model has its counterpart in the S model. For
instance, the Ly _; scheme can be extended as follows.

The SLg_; scheme

pi(n+1)=p;(n)— af(n)p,(n), ifa(n)+«;,
pi(n+1)=pi(n)+ ap(m)(1 — p,(n)), ifa(n)=a, (23)

The scheme reduces to the Ly _; scheme when f(n) =0 or 1.

Comment: When the output of the environment is a continuous variable such as the
performance index of a controlled process, an $ model has to be used. If Y(n) is the
output whose upper and lower bounds are 4 and B, it can be transformed to lie in
the interval [0, 1] by defining

B(m)=L[Y(m) - Bl/[A~- B].

However, A and B are not always known in practice and may have to be estimated.
The S model version of the pursuit algorithm avoids this problem as it needs only
the average output due to each action up to the present instant n.

272 M A L Thathachar
8. Hierarchical systems

When the number of actions is large, a single automaton becomes ineffective. It
becomes slow as a large number of action probabilities are to be updated. One way
of overcoming this complexity is to arrange a number of automata in a hierarchical
system (Ramakrishnan 1982).

Figure 2 shows a number of automata arranged in 2 levels of a tree hierarchy.
The first level automaton has r actions and chooses an action (say «;) based on its
action probability distribution. This action triggers the automaton 4, of the second
level which in turn chooses action a;; based on its own distribution. The action a;;
interacts with the environment and elicits a response B(n). The reward probability is
d;;. The action probabilities of both 4 and A4, are now updated and the cycle is repeated.

The basic problem here is to find reinforcement schemes for the automata at different
levels which ensure the convergence of the hierarchy to the optimal action. We shall
outline an approach which results in absolute expediency.

Let the following notation be used.

B(n) = response of the environment at n.
pi(n) = ith action probability of automaton 4 at n.
p;;(n) = jth action probability of automaton 4; at n.
d;; =reward probability associated with action «;; at the second level
and «a; at the first level
= P[Bn) = 1lo;, o
r; = number of actions of A4;.

Let the first level automaton A4 use a reward—inaction absolutely expedient scheme
as follows.

a; = action selected at n.

pi(n+ 1) = pi(n) + Ap(m)[1 — py(n)] }if b= 1

p;(n+1)=p;m[1—A(p(n)]

pn+1)=pm), (=1....n, ifp(n)=0. (24)
Similarly let the second level updating be as follows.

a;; = action selected at n.

‘ {n)
A <t P
o
1 o(.z ola
1
B
A A2 A3
X/ e o3 o 23 X3y o33
Environment

IB(nl Figure 2. A 2-level hierarchical system.

Stochastic automata and learning systems . 273

Automaton A;

pij(n+ 1) =pi;(n) + L(p(n))(1 — p;;(n)), ifB(m)=1,
Pac(n+ 1) = pu(m[1 — A,(p(n))], (k #J). \ (25)

Automaton A, (k #1i)

No updating ‘

In terms of the above quantities there is a simple relationship which ensures absolute
expediency of the hierarchy, i.e. the hierarchy is equivalent to a single automaton
which is absolutely expedient.

Theorem 8.1. The hierarchical system described by (24), (25) is absolutely expedient,
if and only if

Ai(p(m) = [A(p(n))]/[pi(n + 1)] h (26)
for all n, all p(n)eS% and all i=1,...,r.

Comments: (1) The results stated in theorem 8.1 can be extended to any number of
levels. Basically one has to divide the 4 of each automaton by the connecting action
probability of the previous level at (n + 1).

(2) The division operation need not cause concern as it will not lead to division by
zero w.p.l. ‘
(3)- Number of updatings is reduced from r? to 2r in a 2-level hierarchy and r" to Nr
in an N-level hierarchy.

9. Team of learning automata

An alternative manner in which a complex learning problem can be handled is through
a number of learning automata arranged to form a team. Each member of the team
has the same goal. An example of such a team is in a game with identical payoffs.
Here each automaton of the team A,, A4,,..., Ay has a finite number of actions to
choose from. At an instant n, each automaton chooses one action following which
the environment gives out the same payoff to each member of the team. The automata
update their action probabilities and choose new actions again. The process repeats.
The objective of all the automata is to maximize the common payoff. The set up is
shown in figure 3 (Ramakrishnan 1982).

The automata can operate in total ignorance of other automata, in which case it
is a decentralized game. Alternatively some kind of information transfer can take
place among the automata so as to improve the speed of operation or other
characteristics of the game.

Let the action set of automaton 4, be «* and the action probability vector at instant
nbe p(k,n)(k =1,2,...,N). Also let each automaton operate according to a generalized
nonlinear reward—inaction scheme described below.

Let the action chosen by A4, at n be ai-‘k. Then for each k=1,2,...,N,

plk,n+ 1) = p(k,n) +(G*)Te; (k), for B(n)=1,
plk,n + 1) = p(k, n). 27

274 M A L Thathachar

1
l n
Btm Aq oln)

Environment

P . 2
{d'l"z""N} Bin A (et

“— N
Binl | A [ectn)

Figure 3. Automata game with common pay-off.

where
(i) ex (k) is the (r, x 1) unit vector having unity for the i th element and the rest of
the elements are zero.
(i) G* stands for G* (p(k,n)) and G*(p) is an r, x ry matrix with its (i,j)th element
gi;(p) (j # 1) and (;, i)t element g&(p) = — =, , g% (p).

The environment is described by a hypermatrix of reward probabilities defined by

di;,...=PLB(m)=1]|af chosen by 4, atn, k=1,...,N]. (28)

For optimality, each automaton A4, should converge to the action af, w.p.1, where
Qs -+ My = MaAX [di,iz,...,i,,]‘ (29)

A notion related to absolute expediency can be defined as follows.

DEFINITION 9.1
A learning algorithm for the game of N automata with identical payoffs is said to be
absolutely monotonic if

Wn)=E[W(@n+1)— W(n)|pk,n,k=1,...,N]>0 (30)
for all n, all p(k,n)eS;,_ and all possible game envirenments.
Comment: Absolute monotonicity ensures monotonic increase of E [W(n)]in arbitrary
game environments.

The class of absolutely monotonic learning algorithms can be characterized as
follows.

Theorem 9.1. Necessdry and sufficient conditions for the learning algorithm (27) to
be absolutely monotonic are given by

pT(k,n)G*(p(k,n)) =0 (31)
for allk=1,...,N, all n and all p(k,n)eS2. |

s

Stochastic automata and learning systems 275

Comment: It can be checked that absolutely expedient algorithms of the reward—
inaction type are also absolutely monotonic. Thus the Ly_; scheme is absolutely
monotonic. It appears difficult to include general penalty terms.

A team using an absolutely monotonic learning algorithm may not be g-optimal.
To appreciate the difficulty consider a 2-player game where each automaton player
has 2-actions. The game environment can be represented by the matrix of reward
probabilities D.

08 01
b=ldy]= [0-3 0-6}
Here the rows correspond to actions of automaton A4, and columns to those of 4,.
If both the automata choose the first action, the probability of getting a reward is 0-8.

Looking at the matrix D, one can identify 0-8 and 0-6 as local maxima as they are
the maximum elements of their row and column. However, 0-8 is the global maximum
and we would like the automata 4, and A4, to converge to their first actions as this
leads to the highest expected payoff.

The problem with absolutely monotonic schemes is that they could converge to
any of the local maxima. Only in the case of a single local maximum do they lead
to e-optimality.

In spite of the above limitation, the above result is of fundamental importance in
the decentralized control of large systems. It indicates that simple policies used
independently by an individual decision maker could lead to desirable group
behaviour.

Estimator algorithms could be used to overcome the difficulty associated with a
team converging to a local maximum. It can be shown that these algorithms converge
to the global maximum in the sense of ¢-optimality. The pursuit algorithm applied
to the game with common payoff can be stated as follows (Thathachar & Sastry 1985;

- Mukhopadhyay & Thathachar 1989).

1. 4,,4,,...,4;,..., Ay are the N automata players;

2. the kth player A, has r, strategies (actions), k= 1,2,..., N;

3. {of,ak,...,ak } is the set of actions of 4,;

4. p(k,n)=[p,(k,n), p,(k,n),...,p,(k,n)]" is the action probability vector of 4, at
instant n;

5. «*(n) = action selected by 4, at n.

6. B(n) = payoff at n(0 or 1) common to all players;

7. D is the N-dimensional hypermatrix with elements

d, i, 5 =PBm)=1lo*(m =k, k=1,...,N];
8. dml My,ye.esy = max Lolaae (dll Bayeees z,,).
9. each Ak maintains an estimate of D in D(n) as indicated in the next algorithm;
10. E*=[E%, E%,...,E*]7, k=1,...,N,
and

ch = Inax {dn i2yeeeslic= 1 ikt 13000y iN}

is, 1<s<N
s#*k

Ef(n)= max d(n), ;.
is,i<s<N
s#k

slie= 1l +100ens il\}

is an estimate of Ef at n;

276 M A L Thathachar

11. H, is a random index such that
B4 ()= mgx{Eﬂ-‘(n)}.

9.1 The pursuit algorithm
Let o*(n) =of (k=1,...,N). The updating of p(k,n) is as follows,

p(k,n+1)=p(k,n) + aley, — p(k,n)]. (32)

In the above, ey, is the unit vector with unity in the H,th position and zero in the
rest. The parameter a satisfies 0 < a < 1. The reward probability estimates are updated
as follows.

Riliz-"i,,,(n +1)= -y (n) + B(n),

lejz"'fN(n + 1) j Jain ()’ (]k # lk)>

Ziliz"" (n+ 1) 1 iy (n) +1
m+1)=2Z,), i)

’1‘1

JxJz “In

In the above Z,, , (n) represents the count of the number of times the action set
{of 02, .. ,ocN } has been selected up to the instant n. R;; .. (n) is the number of
times the reward was obtained at the instants the same actlon set was selected up to
instant n. Thus the estimates of the reward probabilities can be computed as

by g0+)=[R;, , WIZ,; ., ()] (33)

The convergence result for the team using this algorithm can be stated as follows.

Theorem 9.2 In every stationary randon game environment, a team of learning
automata playing a game with identical payoffs using the pursuit algorithm is e-optimal.
That is, given any ¢ >0, § >0, there exist a* >0, n, < o0 such that

Pllpm ki) —1|<e]>1-96 (34)

foralln>n,,0<a<a*and k=1,2,...,N.

Outline of Proof. The proof of the theorem depends on 3 main ideas.

(1) If the learning parameter a is chosen to be sufficiently small, all action N tuples
are selected any specified number of times with _probability close to unity.

(2) Under the above conditions, D(n)— D and E (n)—E.

(3) For each of the automata A, the game playing algorithm is equivalent to a single
pursuit algorithm with E" taking the role of the estimate of the reward probability.
Hence each automaton converges to the optimal action «*, in the sense 1ndlcated

Comment: In a practical learning problem the parameter a has to be chosen carefully.
Too small a value will make learning too slow to be useful. Too large a value may
.speed up convergence but may also lead to convergence to the wrong actions.

i
e

Stochastic automata and learning systems 2717
10. Application to pattern recognition

Let patterns represented by m-dimensional vectors from a feature space X belong to
one of two classes w; and w,. The class conditional densities f(x/w;) and the prior
probabilities P(w;) (i = 1,2) are assumed to be unknown. Only a set of sample patterns

with known classification is available for training the pattern recognizer (Thathachar
& Sastry 1987).

To classify new patterns, a discriminant function g(x):R™— R is defined such that
the following rule can be used.

Ifg(x) >0, decide xew,,
ifg(x) <0, decide xew,. (35)

The task is to determine g(x) which minimizes the probability of misclassification.
It 1s known that the Bayes’ decision rule,

xew,,if P(w,/x) = P(w,/x), (36)

minimizes the probability of misclassification. Thus the optimum discriminant
function is given by

Gopi(X) = P(wy/x) — P(w,/x), (37)
and must be determined using the training samples.
Let a known form of discriminant function with N parameters 0:,0,,...,0y be
assumed.
g(x)=h(b,,0,,...,0y,x). (38)

Then with the decision rule (35), the probability of correct classification for a given
0=(0,,...,0y) is given by

J(0) = P(w;)P(g(x) = 0|xew,) + P(w,) P(g(x) < O] x ew,). 39)
For a sample pattern x, let
L(x)=1, if x is properly classified,

=0, otherwise. ' (40)
Then,

J(0) = E[L(x)], (41)

and hence maximizing E[L(x)] maximizes the probability of correct classification.

The pattern classification problem can now be posed as a game of N automata
Ay, Ay,..., Ay each of which chooses a parameter 6; (i=1,..., N) to maximize the
identical payoff J(6). Hence the results of §9 can be applied provided each
parameter §; is discretized and consequently belongs to the finite action set of A,.
Further, since complete communication between the automata can be assumed,
estimator algorithms can be used to speed up convergence rates.

The training of the classifier proceeds as follows. Let 0,ea’ where o is the finite
action set of A; defined by

o' = {o},o,... 0k}

In the game, each automaton A; chooses a particular action (and hence a value of
6;), and this results in a classifier with a discriminant function g(x). Any sample pattern

278 M A L Thathachar

is classified according to rule (35) and L(x) is determined according to (36). This L(x)
forms the payoff for all the automata that update their action probabilities fol]owilr\}g
an estimator algorithm. If the set of actions selected at any stage is {od, 0, a0}
the corresponding reward probability is d, ..., For using estimator algorithms it is
necessary to estimate d; , . and update the estimate with each pattern. As estimator
algorithms are e-optimal, the parameter converges to its optimal value with arbitrary
accuracy when a proper selection of the learning parameter is made in the algorithm.

Although Lg_, and other absolutely monotonic algorithms can also be used for
updating action probabilities, estimator algorithms are preferred for two reasons. The
estimator algorithms invariably converge to the global optimum whereas the former
converge only to local maxima. Furthermore the nonestimator algorithms are very
slow and need substantially larger training sets.

In conclusion, the automata team learns the optimal classifier under the following
assumptions:

(1) The form of the optimal discriminant function is contained in the functional form
of g(x) chosen.
(2) The optimal values of the parameters are clements of the sets o'(i=1,2,...,N).

Even when these assumptions are not satisfied, the team of automata would learn
the best classifier among the set of classifiers being considered. By choosing finer
parameter sets, successively better approximations to the optimal classifier can be
obtained.

Example: Let X =[x,,x,]7 be the feature vector with independent features. The
class conditional densities

S(xi|wy) and f(x,|w,) are uniform over [1,3],
f(x;1lw,) and f(x,|w,) are uniform over [2,4].

A discriminant function of the form

9(X)=1—(x1/6,) — (x/8,),

is assumed with a range of parameters [0, 10]. This interval is discretized into 5 values.
The discriminant function learned by a 2-automaton team is

9(X)=1—(x;/5)~(x,/5),

which is optimal.

The average number of iterations for the optimum action probabilities to converge
to 095 is 930. The team converged to the optimal discriminant function in 8 out of
10 runs. In the other two runs it converges to a line on the x,-x, plane close to the
optimal.

11. Other applications
There are several areas of computer and communication engineering where learning

automata have been found to be significantly useful. A few of these are outlined below.
There has been a great deal of interest in applying adaptive routing to communication

Stochastic automata and learning systems 279

networks. Since these networks generally involve large investments, even a small
improvement in their working efficiency results in appreciable savings in operational
expenses. Inherently, communication networks are such that the volume as well as
the pattern of traffic vary over wide ranges. Unusual conditions arise because of
component failures and natural disasters. These considerations lead to the necessity
of using learning control algorithms to achieve improved performance under uncertain
conditions. _

In circuit switched networks (such as telephone networks), a learning automaton
is used at a node to route the incoming calls to other nodes (Narendra & Mars 1983).
Typically if a call from a source node i, destined for node j is at node k, an automaton
A}; is used to route the calls at node k. The actions of the automaton are either the
links connected to node k or the sequence in which the connecting links are to be
tried. The environmental response is the information whether the call reached the
destination or not. Typically Ly _,p and L;_p schemes have been used in adaptive
routing. It has been observed that when Lg._, schemes are used, the blocking
probabilities along the route at each node are equalized. Similarly blocking rates are
equalized when Ly _, schemes are used for routing.

It has been generally concluded that automata at the various nodes act in such a
manner as to equalize the quality of service at the different nodes as measured by
blocking probabilities corresponding to different loads. In the presence of abnormal
operating conditions such as link failure, the automata algorithms result in significantly
reduced blocking probabilities and node congestion provided additional capacity is
available in the network.

Similar remarks apply to the use of automata for routing messages in packet-switched
networks also (Mason & Gu 1986, pp. 213-228).

There are also some queueing problems such as task scheduling in computer networks
where automata play a useful role. Learning automata have been shown to provide
a good solution to the image data compression problem by selecting a proper code
to transmit an image over a communication channel (Narendra & Thathachar 1989).
Another prominent application is in the consistent labelling problem (Thathachar &
Sastry 1986) where a‘team of automata provide consistent labels to objects in a scene.
A consequence of this is an efficient solution of low-level vision problems such as
stereocorrespondence and shape matching (Sastry et al 1988; Banerjee 1989).

12. Generalized learning automata

Collectives of learning automata such as hierarchies and teams have been seen to be
effective in handling complex learning problems such as pattern recognition and also
in a number of other applications. These are examples of certain types of interconnection
of a number of automata and could be regarded as artificial neural networks where
the learning automaton plays the role of an artificial neuron. The terminology seems
appropriate because of the parallel and distributed nature of the interconnection and
the perceptual tasks the collectives can perform. However, the nature of interconnection
is somewhat different from that usually assumed in the literature, where the output
of each unit forms one of the inputs to several other units. The only input to the
learning automaton is the response of the environment and there is no other input
from other automata. Thus a generalization of the automaton appears necessary to
provide the type of interconnection normally envisaged.

280 M A L Thathachar

The structure of a learning automaton can be generalized in two directions
(Williams 1988). The first generalization is in parametrization of the state space of
the automaton. Instead of the simplex S,, one could have an arbitrary state space 6
and use a mapping §— S, to generate the action probabilities. For instance, in the
case of a two-action automaton whose state space 0 is the real line, one could use
the mapping

YO0)=1/1+e"’)=p,

to compute p,, the probability of selection of «,. Functions suitable for higher
dimensions are harder to identify.

The second generalization one could consider is to allow the automata to have
another input apart from the response of the environment. The idea is that the optimal
action of the automaton may differ in differing contexts. The second input is meant
for representing the context and is called the context input or context vector. When
the context input is a constant, the structure of the automaton reduces to the classical
one.

A parametrized-state learning automaton with context input is called a generalized
learning automaton (Narendra & Thathachar 1989). It has also been called an
associative stochastic learning automaton (William 1988) as it is trying to learn which
actions are to be associated with which context inputs. One could think of the decision
space divided into a number of regions where each region is associated with a context
input and the task of the automaton is to determine the best action associated with
each context input.

Generalized learning automata can be connected together to form networks which
interact with the environment. Here the actions of individual automata are treated
as outputs and these may in turn serve as context inputs to other automata or as
outputs of the network. Some automata may receive context inputs from the
environment. The environment also produces the usual response (also called reinforce-
ment signal) which is common to all the automata and is a globally available signal.
In this respect the network shares a property with the game with identical payoff. A
schematic diagram of such a network is shown in figure 4.

The following operations take place in the network over a cycle.

1. The environment picks an input pattern (i.e. set of context inputs) for the network
randomly. The distribution of the inputs is assumed to be independent of prior
events within the network or environment. ‘
2. As the input pattern to each automaton becomes available, it picks an action
randomly according to the action probability distribution corresponding to that
particular input. This ‘activation’ of automata passes through the network towards
the ‘output side’.

3. After all the automata at the output side of the network have selected their actions,
the environment picks a reinforcement signal randomly according to a distribution
corresponding to the particular network output pattern chosen and the particular
context input to the network.

4. Each automaton changes its internal state according to some specified function of
its current state, the action just chosen, its context input and the reinforcement signal.

While the above concept of a network of generalized learning automata is
conceptually simple and intuitively appealing, there are very few analytical results ;

Stochastic automata and learning systems 281

Environment

Reinforcement

Figure 4. Network of generalized learning
In put automata.

concerning it. Even the available results are not as complete as those of hierarchies
or games of learning automata. New techniques may be needed for the analysis of
such networks and for bringing out the tasks for which they are well suited.

References

Banerjee S 1989 On stochastic relaxation paradigms for computational vision, PhD thesis, Electrical
Engineering Department, Indian Institute of Science, Bangalore

Bush R R, Mosteller F 1958 Stochastic models for learning (New York: John Wiley and Sons)

Lakshmivarahan S 1981 Learning algorithms — theory and applications (New York: Springer Verlag)

Lakshmivarahan S, Thathachar M A L 1973 Absolutely expedient learning algorithms for stochastic
automata. IEEE Trans. Syst., Man Cybern. SMC-3: 281-283

Mason L G, Gu X D 1986 Learning automata models for adaptive flow control in packet-switching
networks. In Adaptive and learning systems (ed.) K S Narendra (New York: Plenum)

Mukhopadhyay S, Thathachar M A L 1989 Associative learning of Boolean functions. IEEE Trans. Syst.
Man Cybern. SMC-19: 1008-1015

Narendra K S, Mars P 1983 The use of learning algorithms in telephone traffic routing ~ A methodology,
Automatica 19: 495-502

Narendra K S, Thathachar M A L 1989 Learning automata — an introduction (Englewood Cliffs, NJ:
Prentice Hall)

Ramakrishnan K R 1982 Hierarchical systems and cooperative games of learning automata, PhD thesis,
Indian Inst. Sci. Bangalore

Sastry P S, Banerjee S, Ramakrishnan K R 1988 A local cooperative processing model for low level vision.
Indo-US Workshop on Systems and Signal Processing (ed.) N Viswanadham (New Delhi: Oxford & IBH)

Shapiro I J, Narendra K S 1969 Use of stochastic automata for parameter self-optimization with mult1moda1
performance criteria. IEEE Trans. Syst. Sci. Cybern. SSC-5: 352—360

Thathachar M A L, Sastry P S 1985 A new approach to the design of reinforcement schemes for learmng
automata. IEEE Trans. Syst., Man Cybern. SMC-15: 168-175

Thathachar M A L, Sastry P S 1986 Relaxation labeling with learning automata. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-8: 256-268

Thathachar M A L, Sastry P S 1987 Learning optimal discriminant functions through a cooperative game
of automata. IEEE Trans. Syst., Man Cybern. SMC-17: 73-85

Tsetlin M L 1973 Automaton theory and modeling of biological systems (New York: Academic Press)

Williams R J 1988 Toward a theory of reinforcement — learning connectionist systems, Technical Report,
NU-CCS-88-3, College of Computer Science, Northeastern University, Boston, MA

