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Abstract. We develop a basis-free approach to time-reversal for the quantal angular momentum
group, SU2, and apply these methods to the physical symmetry SU2. SU3 SU3
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and the nuclear collective symmetry group SL(3, R) of Gell-Mann and Tomonaga.
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1. Introduction and summary

Of all the transformations on a quantum system those transformations relating to
time reversal are the most natural; whenever there is time evolution one can ask:
What is the time reversed description? However since the energy is always bounded
from below a purely geometric unitary time reversal is not possible. Rather time
reversal must be Bewegungsumkehr (reversal of all motions) and must therefore involve
reversal of momenta but preserve the sign of position and energy. Time reversal in
this sense can be required even of irreversible processes; and one can ask for tests of
time reversal invariance in particle decay phenomena. The pioneering work of Wigner
[1] for time-reversal in non-relativistic quantum mechanics, determined that alone
among all symmetries the quantal time-reversal symmetry operator T is non-linear
(or more precisely semi-linear). This result is certainly true in the context of the
physically important Newtonian and Einsteinian relativities (the Galilei and Poincaré
symmetry groups, respectively) but it does not follow that time-reversal must
necessarily be implemented for all physical symmetry groups in the same semi-linear
fashion. ‘

We were led to these considerations by the problem of defining time-reversal for
the internal symmetries of isospin and of flavor SU3, a problem which we have not,
so far, found to have been.discussed in the literature. In the course of our investigation
we were plagued by the many distinct basis conventions (often contradictory) to be
found in physical treatments of group symmetries, which for complex phases can be
most confusing. Here the mathematicians have pointed the way: work if possible in
a coordinate-free, basis-independent manner, for this way is logically, and usually
actually, simpler. ' |

To iliustrate our procedure we will first re-examine time-reversal for the quantal
angular momentum group, SU2 using basis-free methods:(§2). Having established

" the methodology, we then turn (§ 3) to the original question of time-reversal for isospin

and flavor SU3. We then turn to two other symmetry groups of interest in nuclear
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physics: the nuclear SU3 group of Elliot [2] and the collective motion nuclear
symmetry group, SL(3, R) of Gell-Mann [3] and Tomonaga [4].

We have relegated to appendices several of the more detailed topics. For example,
in Appendix A we detail difficulties of the basis-dependent approach to the results
in §2.

2. Time-reversal for angular momentum, SU2

Let us consider first the well-known case of time-reversal for SU2, the quantum
angular momentum group. Time-reversal was defined by Wigner as reversal of motion
(Bewegungsumkehr) based on the principle that for every physical motion there is an
equally physical possible motion in reverse order. It follows that linear momentum,
P, reverses under motion-reversal, that is T:P — — P. Since orbital angular momentum
is defined by L = r x P, one sees that orbital angular momentum reverses: T:L — — L.
On grounds of uniformity, one assumes that spin angular momentum also reverses,
[5] so that for the total angular momentum J =L + S, we have,

T:J> —J. | (2.1)

For quantum mechanics to obey time-reversal, one postulates that the Schrodinger
equation

d

HY =i, (2.2)

be invariant under T:t— — t. This will be true if we require (as Wigner did) that the
time-reversal operation T not only reverse time order (t— —t), but also involves
complex conjugation, denoted by K,. Thus Wigner time-reversal is, at this stage of
the discussion, the operation .

T=9K,, ' (2.3)

where  implies t — —t.

The operation of time-reversal, (2.3), is consistent with the previous results, where
T implied that P— —P and L— —L, since the operators P and L, as quantum
observables, are Hermitian and hence formally real operators. The action of (2.3) is
however problematic, since any given spin realization by matrix operators is basis
dependent (so that the action by K is not canonically-defined). The Hamiltonian is
an observable and is required to be invariant under Wigner time-reversal. If the
Hamiltonian involves electro-magnetism we see, from gauge invariance, that the
combination (kinetic momentum), p — eA/c, enters so that we must have T:A — — A.
It follows that T:E—E and B— —B.

We wish now to find in a coordinate- -free. way the consequences of Wigner
time-reversal for a general angular momentum. Consider an arbitrary unitary irrep
of SU2, say, DY(g), where D is the (unitary) i irrep labelled, as usual by the total
angular momentum j and g is a group element (a rotation).

The explicit matrix form of the irrep is given by

DY (g) = e~ ‘ 7 (2.4)
where J is a (2j + 1) x (2j + 1) Hermitian matrix realization of the abstract operator
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J, and o = 91 is explicitly real (3 = angle of rotation, 7 = unit vector denoting axis
of rotation).

It might appear at this point that the action of time-reversal, eq. (2.3) on the irrep
matrix DY, eq. (2.4), is now obvious: namely that under T both i and J reverse, so the
irrep DY is invariant. This conclusion is, however, not really warranted since the
matrix DY is basis-dependent and, to be precise, we must also examine the effect of
time-reversal on the basis, per se. (The basis could be real, or, as is generally the case,
complex, so that the basis itself could transform under T).

The difficulties caused by a choice of basis (see Appendix A) are made even worse
by the fact that in writing eq. (2.4)—in the standard (physics) form—we are guilty of
choosing a complex basis for the representations of a real Lie algebra [6] [7]. One
can avoid this choice if one represents the SU2 Lie algebra (over the real field R) by
generators which are anti-Hermitian operators. Such a choice, however, conflicts with
a basic postulate of quantum mechanics: that generators are observables to be
represented by Hermitian operators [8]. Nonetheless let us proceed in this explicitly
real way and use anti-Hermitian generators, K, defined by

K=il, ' (2.5)
so that in eq. (2.4),
D(g)=e"K, ‘ 2.6)

is a unitary representation with @ real (numbers) and K anti-Hermitian generating
a real Lie algebra (su2).

To answer the question as to how eq. (2.6) transforms under Wigner time-reversal, in
a basis-independent way, one uses the Frobenius-Schur invariant (FSI)

FSI= fdg tr DW(g?) (2.7)

and—for the general case—finds: [9] FSI= +1, — 1 or 0 for irreps A that are real,
quaternionic (“pseudo real” [10]) or complex, respectively. All irreps of SU2 are found
to be [9] either real (j=integer) or quaternionic (j = 1~integer). (The Frobenius—
Schur invariant is discussed further in Appendix B). :

The Frobenius—Schur invariant answers the question for the angular momentum
(SU2) irreps. Since there are no complex irreps, it follows that under time reversal,
the unitary SU2 irreps, labelled by j=0, 1,1,..., are invariant.

This result does not, however, answer the question about the behaviour of the
representative matrices under time-reversal. Put differently, the Frobenius—Schur
invariant being non-zero guarantees only that the complex conjugated irrep matrix
is equivalent to the original matrix (and not necessarily equal). In symbols

(FSI'= 4+ 1)=>D®¥* ~ DX, ' (2.8)
that is,
DW* = U~ 1DpWY, . (2.9)

where U is a unitary matrix. (We cannot conclude that if FSI = + 1 then U = 1, since,
even though the irrep is real, the matrix basis itself may be complex. See Appendix A).
The basis independent approach uses the fact that complex conjugation implies
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the equivalence relation, eq. (2.9), which—using eq. (2.6)—may be written in terms
of the (non-Hermitian) generators as the linear transformation

K- U"'KU. (2.10)

Since this transformation (as an equivalence transformation) preserves all irreps
(leaves j invariant) it must be an automorphism of the su2 Lie algebra. For SU2
there exist only two automorphisms (both inner):[11] the identity and the involutary
Cartan automorphism, €. To define the Cartan automorphism [12] in a basis-free
way we use a Cartan splitting of the (complexified) Lie algebra, g

g=k+p, (2.11)
where

[k.k]1 <k, [p,kl<p, [p.p] =k (2.12)
A Cartan automorphism is the transformation
@:k—k, p— —p, S @13)

which clearly leaves the commutation relation, eq. (2.12), invariant [13].
The standard, basis-dependent, choice for the (anti-Hermitian) su2 Lie algebra
generators in the (complex) Cartan basis yields for € the transformation

¢ K,»K, K, —>—K,, 2.14)

or in the Cartesian basis
%:K;»Kz, K,—»—-K,, K,»—K,. (2.15)

Let us now apply these results to the physical angular momentum operator, J.
From (2.9) we have determined that complex conjugation (K,) implies (2.10) the
automorphism U, which is precisely the Cartan involution ¥, eq. (2.13). We have
thereby determined the action of complex conjugation on the anti-Hermitian
generators K, to be

Ky K—>¥%(K), (2.16)
and hence, since K =iJ (eq. (2.5)) we obtain
Ky:J— —%(J). (2.17)

Since the action of time-reversal on J has been defined from physical principles (in
eq. (2.1)) to be

T -], (2.18)

we can conclude (from eqgs (2.3) and (2.18)) that the final basis-free form for the Wigner
time reversal operator is

T =T %K,. | ' (2.19)

(The three operators on the RHS of (2.19) can be shown to cornrnute)
Equation (2.19) is the abstract form of Wigner’s time-reversal operator, which has
now been obtained in a basis-free (coordinate independent) way.
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If we now combine the operations of complex conjugation, K, and the Cartan “
automorphism, ¥, we find that the combined action ¥K,, on any unitary irreducible
representation D(g) of SU2 is given by

%K o:D(g) > €(D*(9)) =¢(U"'D(g)U) (2.20)
=U"(UT'D()U)U=D(y), | (2.21)

since % is involutary and U? = + 1, see Appendix B. Thus the transformation %K,,
and hence time-reversal, acts as the identity transformation on every unitary SU2
representation. (It does not follow that €K, is the identity, because K, unlike &, is
not a linear transformation),

Remarks. (a) This basis-free derivation of the time-reversal operation is logically
simpler, and more general, than the original (basis-dependent) derivation. For example,
Wigner’s derivation of time-reversal was explicitly non-relativistic and moreover
restricted to spin 3, taking the form

T,

wigner = 7 Ko *(commutation with ig ). (2.22)

The basis-free derivation given above, however, is founded -on Schrédinger’s
equation—and hence is valid for relativistic as well as non-relativistic quantum
mechanics—and uses an automorphism for SU2 (which is clearly valid for all irreps).
In consequence, the basis-free result, eq. (2.18), is valid for relativistic quantum
mechanics and all spins. This result for relativistic time reversal was first given by
Biedenharn [14] (for the Dirac equation) correcting previous incorrect results by
Racah [15] and by Pauli [16]. For completeness, we should discuss time-reversal,
in a basis-free way, for the Poincaré group (and Galilei group as well), but we forego
this here.

(b) An advantage of the basis-free derivation is that eq. (2.18) implies the proper
behaviour of the basis vectors of angular momentum irreps under time-reversal, [9]
and correspondingly the correct time-reversal behaviour of the WCG coefficients.
(c) The basis-independent form of time-reversal shows that the Hamiltonian (for a
time-reversal invariant theory) is invariant under T This has the consequence that,
in the Fermi theory of weak interactions, the five interaction constants S, V. TTA P
are real in a time-reversal adapted basis [17]. Expressed in terms of the standard
model for weak interactions, the Kobayashi-Maskawa mass matrix [18] in the
Cartan-Weyl basis diagonalizing the observable quantum numbers must be real if
time-reversal is to be obeyed. ) -

(d) As Wigner remarked [8], the fact that T is a non-linear operation prevents its
(direct) use to define quantum numbers. However, T2 is linear and, in fact, T? —(— 1)%/
is a quantum number, namely the FSI invariant. '

() The fact that for fermionic systems (FSI = — 1 = (— 1)%/) the time reversal operator
obeys T* =1 means that the Hilbert space of such systems is quaternionic and not
just complex. One consequence is Kramer’s theorem (namely, energy levels for FSI =
— 1 are at least doubly degenerate in electric fields) but there are other more subtle
purely topological consequences [19].
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3. Time-reversal for SU(3)q, o

With these results for SU?2 in hand, let us now examine the extension of time reversal
to unitary symmetry, SU(3);,..,» [20]. What does Bewegungsumkehr do to, say, a
baryon in the octet representation? Clearly a baryon reversing its motion is still a
baryon, in the same state of the same SU3 irrep, with the same charge, (where the
charge operator Q_, is defined by the SU3 generators Q , =1, + 3Y).

Accordingly, we see that

T(D¥W) =DW, (3.1)
where A denotes an SU3 irrep, and moreover the charge operator Q must obey

T(Qch) = Qch’ (32)

which implies that both the isospin I and the hypercharge Y are invariant under T.
The Frobenius—Schur invariant for SU3 has only two values: + 1 and 0 corresponding
to real and complex irreps [11]. Unlike SU2, complex conjugation is no longer an
inner automorphism, but an outer automorphism for SU3 [11]. (This can be seen
from the fact that D¥* is inequivalent to D for irreps, such as the decimet 10, with
FSI=0). '

In particular, eq. (3.1) implies, for unitary irreps, defined by

D“’(g)sexp(— i a)“X“>, (3.3)
u=1

(where w, are real parameters and X, are anti-Hermitian generators for irrep A), that
the time-reversal operation for SU3, . cannot involve complex conjugation.
Equation (3.2) shows that at least four of the eight-anti-Hermitian generators are
invariant under time-reversal. Thus the simplest realization of time reversal for flavor
SU3 is the identity transformation, not only for the irreps (as was the case also for
SU2) but also for the individual basis-vectors (since the gemerators would be
unchanged, again unlike SU2).

Remark. This is simplest realization but are there other possibilities? To answer this
consider again the SU2 case. There we learned that T was also the identity trans-
formation on all irreps, but only because conjugation was an inner automorphism.
It was this property that allowed the identity transformation for representations, and
allowed compatibility with J— —J (achieved by combining conjugation with the
Cartan automorphism). From this we conclude that the only other possibility available
for time-reversal in (flavor) SU3 is a Cartan involutary inner automorphism. For
SU3 there exist, besides the identity, only two distinct automorphisms

(a) g=k+pak={)‘2’}'5’)"7}’

P={A,h3, 000608}, (3.4)
with .

€, k—=kp—o—p g : (3.5)

(Here the {X;} are representations of the eight Gell-Mann matrices).
Clearly the automorphism %, is not acceptable for time reversal since the charge
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operator would not be invariant under %,. (The charge operator involves A, and g
which belong to the set p). Moreover %, is outer.

) g=k+pa'k={)"1a)\-za)~3;)v8} (3.6)
and . '

P={ A5, 06,07},
This automorphism, %,, is quite acceptable for time reversal since
%,[DW)=DYW, and %,(Q) =(Q), (3.7

Moreover, all of the state vectors of every irrep are preserved under %,. (%, isinner).
[To see this last point, let us observe that the ket vector |[M], (m)) is defined (to
within a complex constant) by the relations:

X-X|[M],(m)) = I,(IM1] | [M], (m)),

X-XoX|[M], (m)) =1,([M]) |[M], (m)>,
3

2 BIIM],(m)> = I,(m, ,m,,)|[M], (m),

n=1
m,,+m
Iz[[Ml (m)> = <m11 - "—1'2_2—'2'2>H:M]! (m)),
and |
M ,
Yo|[M], (m)) = ("’“ T M > 23)|[M], my. (38
M13M23O
Here the states are defined by Gel'fand patterns: |[M], (m))> = M12Ma2 , and
mll ‘

I,([M]) and I,([M]) are eigenvalues of the two invariant operators of SU3, with
Iy(m,,,m,,) being the eigenvalue of the Casimir invariant of SU2. The invariant
operators of SU3 are denoted by X-X for the quadratic (Casimir) invariant and
XXX for the cubic invariant (with © denoting the symmetric octet product). Clearly
the automorphism %, leaves every eigenvalue invariant, so that the irrep vectors are
themselves invariant under €, ].

The above remark shows that we have two distinct possibilities for time-reversal in
SU{aver(3): either (a) the identity automorphism, or (b) the Cartan involuntary
automorphism ¥,. It would be interesting to see whether or not there is a physical
reason for choosing between these two options. (We hope to discuss this question in
the near future). ‘

The result that we have obtained for time-reversal in SU3,,  is that the SU3
irreps, as well as the carrier space vectors, are invariant under time-reversal. This is
actually quite plausible a priori since flavor-symmetry is clearly not a space-time
symmetry and should be therefore unaffected by 'space-time transformations. The
only reason for supposing otherwise is that the lesson of Wigner time-reversal has
been over-learned, and complex conjugation is not necessarily a general feature after
all.

Such a result for non-spacetime (internal) symmetries such as SU3,, is quite
acceptable and plausible, but despite this there are grounds for worry. How is one
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to distinguish, in the operation of complex conjugation, the imaginary unit used in
describing quantal space-time states from the imaginary unit used in, say, flavor irrep
vectors? Actually there is no real problem here since the flavor symmetry group must
occur as an element in a direct product for the complete symmetry group, so that
the space-time ket vectors i are distinct (and distinguishable) from flavor symmetry
kets X in the tensor product states Yy ® X.

4. Time-reversal for nuclear SU(3)

The nuclear shell model of Mayer and Jensen has an approximate Hamiltonian
symmetry, SU3__,...» the symmetry of the isotropic three-dimensional harmonic
oscillator. This SU3 symmetry becomes more nearly exact in the limit that the
spin-orbit splitting becomes zero. Since spin 18 neglected in this limit, one sees that
the SU?2 rotational symmetry consists of the orbital angular momentum S03—a
sub-group of SU3-—and the separate spin symmetry, SU2. Thas one deals with the
symmetry (S U?.spin) x (SU3_,.,), which may be embedded in the larger symmetry SU6,
somewhat reminiscent of, but actually quite distinct from, the Radicati-Giirsey
baryonic SU6 symmetry.

Elliot [2] suggested that a feasible model for certain nuclear mass regions—the
rotational nuclei—is the nuclear rotational symmetry SU3 generated by L, the orbital
angular momentum, and Q, the mass quadrupole operator. Adding a quadrupole-
quadrupole interaction to the SU3 invariant Hamiltonian, H__ ., leads to a total
Hamiltonian with an SU3-splitting term, AH oc L?, as befits rotational nuclei.

To examine the time-reversal properties of this physical model, we begin by noting
that the generators L and Q must have the physical time-reversal properties

T:L — — L since L is an angular momentum, , (4.1)
and ' '

T:Q— +Q 4.2)

(since Q is interpreted in the Elliott model as a mass quadrupole operator).
The Frobenius—Schur invariant for SU3 has, as noted in § 3, only two values: + 1
and 0, so the only real and complex (finite-dimensional) unitary irreps occur.
Explicitly real representations of the real Lie group SU3 may be generated from
the adjoint realization using real anti-symmetric 8 x 8 generators and real parameters.
Hence

Ky:D(g)—>D*(g) =D(g). (4.3)
It follows from (4.3) that for the Hermitian generators, L and Q, we have
Koy L5 —L Q- —Q. (4.4)

In order to obtain the physical time-reversal properties, (4.1, 2), we must therefore
use, in addition to K, the Cartan automorphism €,

%, L-L Q-—0Q, . .5)

which is associated to the Cartan splitting of SU3 with k = {L} and p = {Q} exactly
as in (3.5) for the automorphism %,. .
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This automorphism %, is an outer automorphism, a symmetry of the Coxeter—
Dynkin diagram for SU3. (To see that €, is outer, note that the unimodular condition
for SU3 is det(D(g)) = 1. The transformation (4.5) however has determinant — 1, and
thus cannot belong to the SU3 group).

Explicitly real representations, eq. (4.3), of SU3 (more properly representations of
the adjoint group SU3/Z3) can be fully reduced (brought to block-diagonal form)
only for the self-conjugate irreps (FSI = 1), (since we are using the real field R). Over
the complex field any not-fully-reduced explicitly-real representation with FSI =0
can be reduced to a direct sum of pairs of conjugate irreps (each with FSI = 0).

Since quantum mechanics requires the use of the complex field, irreducible complex
representations necessarily will occur, so that this analysis of SU3 using explicitly
real structures must be extended to the complex case.

Let us consider then the defining 3 x 3 irrep of SU3 which has FSI=0. The
Hermitian generators of this irrep*are the Gell-Mann matrices, {l }, which divide
into two distinct sets under complex conjugation:

nuclear

~ (a) five real, symmetric, Hermitian generators

{}“1:)"39}'49 xe:xs} = {Q} (4.6)

(b) three purely imaginary, anti-symmetric, Hermitian generators

{A2,25,h9} = {L}. (4.7)

- This splitting is clearly basis-dependent for irreps of SU3/Z3 (since we gave eight
purely imaginary, anti-symmetric, Hermitian generators in (4.3) and (4.4)), but for
irreps of SU3 not belonging to SU3/Z3 this splitting is generic and basis-independent.

For this realization of the Hermitian SU3 generators, eqs (4.6 and 4.7), it follows
that

Ky:L->—Land Q- + Q. (4.8)

This is exactly the desired time-reversal property of the physical SU3_ ... generators.
It follows that time-reversal for SU3 is given by

nuclear
T=JK,. (4.9)

To find out what happens to the representations, we use the technique of generating
unitary representations of a real Lie algebra by anti-Hermitian generators: {L,iQ}.
The representations thus have the form:

D(g) = exp(a-L + ip-Q), ' (4.10)

where a,p are explicitly real parameters
Clearly under time-reversal, eq. (4.9), we obtain

T:D(g) =D(a, )~ D(a, — B). - @1

The representation D(a, — B) is, in general, inequivalent to the representation D(a, f).
The effect of time-reversal on a (unitary) representation can be seen from (4.11), (4.12)
and (4.5) to be the same as the action of the Cartan automorphism €,.

The automorphism, %,, can be shown from eq. (3.8) to effect on the SU3
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invariant operators the transformation
Cply—1,,15— —15. (4.12)

(This result, (4.12), is not obvious since one needs to know that the symmetric product
in I leads to an invariant form containing cubic terms with an odd number of
quadrupole generators). It follows that for unitary SU3nuc]ear irreps the operation:
%, T is equivalent to the identity transformation. (Just as in §2, the two operations
are not equal because T is non-linear).

Remarks. 1t would be of interest to see how time-reversal affects the basis vectors
carrying an SU3_ ... irrep. The SU3_ ket vectors are uniquely labelled by five
quantum numbers: I, —»1,, I;-1;, 1,(S03)- L(L+1), L,—»m and a multiplicity
index ¢ (labelling the multiple occurrences of L). This last (fifth) index is canonically
determined [21] (that is, without any arbitrary choice whatsoever.) Under time-

reversal, the labels: I, and L are unchanged, whereas both I, and m reverse (change
sign) [22]. That is '

T:Iz"‘?Iz, 13‘_)'—13, L_> L, LZ—>—-LZ' . (4.13)

From our experience with SU2 in § 2 we see that the transformation L—» L,L,—» — L
induces the SU2 transformation given by

12513 - 129~I3>
. — )M . 4.14
: >—>( . (4.1

T.
For ket vectors without multiplicity (vectors for which the label ¢ is unnecessary),
eq. (4.14) gives a unique prescription. For ket vectors requiring e-labels, the trans-
formation induced by time-reversal must be diagonal, but the appropriate sign change,
that may-occur, is not fully known.

A physically important conclusion follows from the results given above. We see
from eq. (4.12), and the discussion there, that under time-reversal, eq. (4.10), the irrep
labels, (4.13) are not invariant. Expressed differently, but equivalently, the Elliott
nuclear SU3 symmetry does not have a time-reversal invariant significance.

This -basic inadequacy, along with the failure of the SU3_ _ symmetry to
incorporate spin intrinsically, shows that the Elliott nuclear SU3 symmetry can be

neither a fundamental symmetry nor an approx1mate (time-reversal invariant)
symmetry in physics.

z

Remark. There is an interesting application of these results to the topological Skyrme-
Witten model for hadrons [23]. There is an alternative procedure for injecting the
static minimal energy soliton of this model into the SU3,,_ _ group which involves
using L (orbital angular momentum) and Q (the mass quadrupole) as SU3,,
generators [24]. This imbedding is far less satisfactory in its physical consequences
than that used by Witten, but cannot (so far) be excluded. We see from the results
above that this imbedding violates time-reversal invariance and is accordingly to be
excluded. The imbedding discussed in § 5 below would appear to be satisfactory (since

© it is time-reversal invariant) but again it is excluded since the soliton is static (and

accordingly the time-derivative Q operator, eq. (5.1), vanishes).
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5. Time-reversal for the Gell-Mann-Tomonaga nuclear collective symmetry group
SL(3, %)

At about the same time that SU3__ .. was proposed for nuclear physics, non-compact
internal symmetry groups were proposed as dynamical hadronic symmetries, generating
Regge sequences for hadrons [25].

One such non-compact group, SL(3, %), was also proposed as a nuclear symmetry
[26]. This SL(3, R) symmetry group is physically the group of rotations and volume-
preserving deformations of three-space. Since nuclear matter has, as a rough approxi-
mation, an energy independent of shape, the suggestion that SL(3, %) might be a
useful symmetry for nuclear physics is certainly,reasonable.

Gell-Mann had a very ingenious way to realize this symmetry. The group SL(3, %)
has two sets of Hermitian generators: the total angular momentum, J, and a quadru-
polar deformation generator. For the quadrupolar generator, Gell-Mann proposed
the time-derivative of the mass quadrupole operator Q. Since the Hamiltonian must
contain J, one can evaluate this time-derivative, at least approximately, as

. d - ‘
Ea;Q=i[H,Q]"=*i[J2,Q]. (5.1)

The operators J and Q have a commutator alge_brg that closes on SL(3, %), that is,
Q transforms under J as a quadrupole and [Q,Q]=4%J (with 1 a length scale,
h=c=1).

At roughly the same time, Tomonaga had been developing collective models for
diverse physical problems including a two-dimensional nuclear collective model [3].
Applied to three-dimensions his techniques would have led him to precisely the
Gell-Mann collective nuclear model [27].

This nuclear collective model has been developed further in the nuclear physics
literature and subsumed in larger non-compact groups [28] [297]. Our purpose here
is to examine the time-reversal properties of the model.

It is clear from the physical meaning of Q, as the time-derivative of a time-reversal
invariant object Q, that we must have

T:Q--Q, (52)
and moreover, from (2.1), we must have
T:J- —J. (5.3)

As observables, both J and Q are Hermitian. To obtain a unitary representation we
exponentiate the anti-Hermitian generators iJ and iQ. For the anti-Hermitian
generators we have

T:id — +iJ
Q- +i0. (5.4)

We see that, from (5.4) (since the group parameters are real), the unitary representation
D (g) must obey.

T:D(g9)-»D!(9)=D(g). (5.9)
that is to say, the irrep labels are invariant under time-reversal.
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To be more specific (and thus specify whether or not an automorphism enters in
the definition of the operator T) we must discuss the properties of SL(3, £) representa-

tions in more detail [11]. The non-compact covering group; SL(3, £) has the topology
S3 x &%, and, since the centre of this group is Z,, there are spin representations with
9(Z,) # 1.
The defining irrep is given by the 3 x 3 matrix group over R. Clearly this represen-
tation is real. The generators are L given by the three 3 x 3 anti-symmetric matrices

(L), = —ie;; and Q by five 3 x 3 real, symmetric, and traceless matrices. Under
complex conjugation we find
KyL—>—-L Q- +Q. (5.6)

Thus to achieve the correct time-reversal properties we must augment K, by the
Cartan outer automorphism

€, L—+L, Q - — Q (5.7)

It is the.unitary irreps that are of physical interest, and ail of these (except the
trivial identity irrep) are of infinite dimensionality. It is a general result of abstract
group theory [11] that all irreps of SL(3, %) are real, as was the case for the defining
non-unitary irrep given above.

Since the center of the group is Z,, there are irreps having half-integer spin, as
noted above. Such irreps were first constructed in [30], using a novel boson realization
(the quadrupole generators are of fourth degree in the bosons).

The Hermitian generators of this boson realization are found to have the propertles

compact: J, non-compact: Q
T=%¢,Kg:d—»—J,Q0--Q. (5.8)

The representation generated by these boson operators, L and Q, acting on the
space of boson polynomials (ket-vectors) is unitary and splits into three irreps

@ Jj= =235 the so-qalled “quarkel”,
(i) j=0,2,4,...,
(i) j=1,3,5,....

There is only one irrep of type (i), which is, in fact, a discrete irrep. The irreps of

type (ii) and (iii) are labelled by a continuous parameter. All three types of irrep are
real and self-conjugate.

Remark. One might expect a fourth irrep:

(iv) j=

71
2’2

N W

but this set of states does not strictly define a unitary irrep. The operators do indeed
obey the correct commutation relations on this set of states but the invariant operators
I,, I have fixed eigenvalues on all but one of the states.
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A basis-free approach to time-reversal for symmetry groups
In our view, it appears remarkable that the collective nuclear symmetry model
(SL(3#)) overcomes the two basic objections to Elliott’s SU3
;}_ (a) The SL(3,4) model contains half-integer spin intrinsically, unlike the SU (3)

nuclear

model where half-integer spin is forbidden, and

(b) time-reversal preserves all the irrep labels of the SL(3, %) irreps again unlike
SU@3)

nuclear’

The principal objection to SL(3, R) as a fundamental nuclear symmetry is that this
symmetry predicts unlimitedly large rotational excitations whereas any real composite
nucleus must surely break up eventually. For baryons the situations is quite different.
Quark confinement (as schematized in the bag model) results in a deformable
composite indecomposable system with finite volume at any energy. The symmetry

SL(3,R) could very well be fundamental for such a structure.

6. C()ncluding remarks

We have shown in the foregoing discussion that there is no universal realization of
time reversal for a generic symmetry group, but rather any time-reversal realization
is conditioned essentially by the physical properties of the system. Thus we note that
the spin and isospin symmetries behave differently under time reversal. This reflects
the different nature of spin and isospin; the first one changes sign under time reversal
and the second is invariant. In fact, all “internal” symmetries are unchanged while
space-time symmetries exhibit the expected behavior under time reversal. We have
also shown that the coordinate-free approach has the great advantages of both
simplicity and clarity.
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Appendix A

The advantages of a basis-free approach can be most easily seen by comparing the
procedure used in §2 to the complications, and vagaries, in the basis-dependent
approach that is discussed below.

Consider j= 1. We may choose to realize this irrep of the real Lie algebra of su2
by purely real, anti-Hermitian matrices, {K;}

0 00
K)p=e, with K,=|0 0 1],
0 —1 0
00 —1 010
K;=[0 0 0f, Ky=|[—-10 0], (A1)
10 0 000
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obeying the real Lie algebra,

(K. K;]=

ij

(Here e, = + 1 for positive/negative permutations of 123 and 0 otherwise).
Time reversal for the physical angular momentum J'* = iK is then simply complex
conjugation, K,

T=TKyJV - —JD, ‘ (A3)
Comparing this with the basis-free result
T=9%K,, (A4)

we see that the automorphism in (7.4) is now the identity automorphism.
Now let us consider this same j=1 representation of SU2 using this time the
standard (complex) basis of quantum physics

010

J(11)=2'1’2 1 0 1},
010 ‘
0 -1 0 1o 0

JV=p"121 1 0 —-1|, Jh=27"210 0 Of, (AS)
0 1 0 0 0 —1

obeying,
[J 3] JJ] uk (A6)

Time reversal for this j=1 realization is now glven by the product of two
(commuting) operations

J‘f’—»J‘l” , ,
K,: J‘z”—:» —J‘z” (A7)
J(31)_)J(31),
followed by:
Jl - — Jl
€. J,—J, (A8)
Jy— —Js;.

The resulting time reversal operator is
T=JT%K,, . ' | (A9)

in agreement with the basis-free result, but now the automorphism is the Cartan
automorphism with J, as’the k subset in the Cartan split.

These two realizations of the same abstract j = 1 representation show an important
point: the particularities of the choice of basis can completely change the form of the
time-reversal result, even to the point of concealing important general features (for

example, the existence of the non-trivial automorph1sm necessary in the general
case).
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The basis-free approach has a further major advantage: it avoids all arbitrary phase
conventions, and hence the frequent annoyance of inconsistent conventionsin different
places in the literature. ,

Let us illustrate this by using the (basis-dependent) WCG realization of the angular
momentum operators :

D =00+ D)2CHY (A10)

The reader may, or may not, notice that the indices (m',m) on the LHS and on
the RHS of (7.10) appear in reverse order. Let us show that this is correct using
standard techniques

Julimy = 2 |jm’ > ' | | jm, (Al1)

where the matrix element in (7.11) is given in the standard way by the WCG coefficient
) rm = T | Tpgljim> = (j(j + )2 CIY (A12)

using the convention that the three pairs of indices (jm) in the WCG coefficient are
read off from the matrix element in (7.11) from right to left. ’

This is only the beginning of the problems with angular momentum conventions!
We face now the problem that the WCG coefficients use a “spherical tensor” notation,
when we seek to obtain the usual (symmetric) cartesian realization. The problem here
i_s a built-in clash of standard conventions:

(2) The Cartan complexification (which is standard in the literature) uses the operator
choice: '

Jy=J,xiJ, Jy=J,, (A13)
whereas,
(b) The WCG coefficients are based on the standard convention that angular
momentum operators are phased (and normed) to accord with their rdle as a vector
space carrying the adjoint (j = 1) irrep:

Jo=—2"V2(J +i)),
Jo=2"V2(J —iJ),

Jo=1J,. ' _ (A14)-

(The conventions in (7.14) are the standard “time-reversal” phase conventions for the
basis vectors, |j,m), namely: '

Tljsmy =(=1Y7"|j, — m). (A15)

With this convention the WCG are explicitly real. (To see that (7.14) and (7.15) are
consistent recall that T:J — — J).

If one recognizes [31] these conventional pitfalls, then it is an easy task to verify
that the general angular momentum (2j + 1) x (2j + 1) matrix realization determined
by (7.10) and (7.14) fits the time-reversal pattern of the j=1 case, (7.7,8,9). (This
includes the j =1 (Pauli matrix) realization as originally used by Wigner [1]).
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Remark. Another clash of conventions is concealed in the above results: although
the abstract automorphism depends on the Cartan split (k = J.) in ((7.13) above) the
specific phase choices actually used for the WCG coefficients require that the auto-
morphism in (7.8) single out the k = J, Cartan split! The basis-free approach avoids
such phase and label dependent “paradoxes”.

»

Appendix B
Relation of the conjugation matrix U to the WCG coefficients

We may determine the relationship of the complex conjugation matrix transformation
U to the Wigner—Clebsch-Gordan (WCG) coefficients by analyzing the identity

DR (DM =1, - ~ (B1)
for unitary irreps where
D9 =D*@=Di™). (B2)
Inserting (A2) in (A1) and using the definition of the conjugation matrix U,
D@*(g)=U"'D (), ‘ (B3)

where A is the conjugate irrep to the irrep AR =} if, as for SU(2), the irreps are
self-conjugate). Thus we find ‘

(DPEDAg™)y= T D@V} DR@U =1, (B4

ij
k,,m

Now we use the (generalized) Wigner product law for matrix irreps of compact
groups

(4) (u) AI{;’ M};
Di,- (g)Dil"j’(g) = c vzkk' Cin Ci’j'k’Dgc)'(g)r (B5)
T
Auy

where the C;, are (generalized) WCG coefficients, with I" a multiplicity label.

Substitute (A5) in (A4), multiply both sides by the (normalized) group measure dg
and integrate over the group G. One finds then

r I
AA0 A0
(1);,- = k; C o Cimo Uj-ll Ui
T r
A40 -1 AA0
=Cip Uﬁ‘ (Z Cuio Uk“k)’
E——Nl—'d
numerical constant=4 (B6)

where the label 7 is conjugate to the label i, therefore
U= ACHD-5, | (B7)

ijo
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(Note that the multiplicity label I'.drops out for the coupling to the identity).
Using (A7) and the unitary conditions for the conjugation matrix U we find

5= ; U U= AA*-5,-(CH0)? = A4*-5,-(dim ). (BS)

Thus the constant 4 has the value
A = e"¥-(dim 1)*/?, (B9)

showing that a phase of modulus one is arbitrary. The standard choice is e =1,
with the result that
U, =(dim 2)/2-CH0, = (dim 2)!/2-CH0- 5. (B10)
The WCG coefficient in (A10) is often called the metric for the irrep A since it couples
the ket-vectors of the irrep 4 to the bra-vectors of the irrep 4 to produce an invariant.
As an example of these relations let us consider the SU2 case. Here the representations

are self-conjugate and the WCG coefficient has the value

CHO = §m(2j 4+ 1)M/2- (= 1)I~™, (B11)
Thus the conjugation matrix is ,

UD  =§-m(— 1y~ (B12)
so that

Tljm) =(—=1Y""|j, —m). (B13)

From (A13) we see that
T2|jmy = (— 1)2]j,m), | (B14)

so that for SU2 the Frobenius—Schur invariant is: FSI = (— 1)%/ as used in § 2 above.
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