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It is shown very simply that for any two observables represented by Hermitian operators that do
not commute, there is a state for which there is no joint probability distribution for the two

observables.

I. INTRODUCTION

Does quantum mechanics not allow hidden variables? If
50, it is not easy to see why from the classic proofs.'* They
are too complicated. They assume as little as possible and
prove as much as possible. To do so, they avoid full use of
quantum mechanics’? and/or use unfamiliar language in-
volving a lattice of propositions® or partial algebra.’ They
left an impression that questions about hidden variables are
only for specialists.

That has changed. Hidden variables are used to derive
Bell inequalities.* We see the absence of these hidden vari-
ables as a basic property of nature which quantum mechan-
ics accommodates and describes. It was tested when experi-
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ments® showed Bell inequalities are false. Still, arguments
for these hidden variables, involving separated subsystems,
are the most difficult to dismiss.

Recently, Sudarshan and Rothman® pointed out that
calculations of correlations in quantum mechanics can be
done in a way that is similar in structure to derivations of
Bell inequalities. It highlights the key difference. In deriva-
tions of Bell inequalities, the distributions used to calculate
correlations are supposed to be actual nonnegative proba-
bilities. They are joint probability distributions for observa-
bles that in quantum mechanics are represented by opera-
tors that do not commute.” Fine® showed that existence of
these joint probability distributions is equivalent to the Bell
inequalities and equivalent to the assumptions about hid-
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den variables used to derive the Bell inequalities. He con-
cludes® that his “investigations suggest that what the dif-
ferent hidden variables programs have in common, and the
common source of their difficulties, is the provision of joint
distributions in those cases where quantum mechanics de-
nies them.” Fine also formulated a criterion for existence of
joint probabilities, in terms of operator functions of the
observables, and showed it implies that the observables are
represented by commuting operators.“

Here, we show very simply that for any two observables
represented by Hermitian operators that do not commute
there is a state for which there is no joint probability distri-
bution for the two observables. We regard these imagined
joint probabilities as the characteristic features that define
hidden variables. Thus we offer our proof as a simple way
to see why there can be no hidden variables in quantum
mechanics. We do not hesitate to use quantum mechanics
in the proof. In fact, all we do is bring out this feature of
quantum mechanics and put it in focus.

II. STATEMENT

Consider two observables represented by Hermitian op-
erators 4 and B that do not commute. There must be pro-
jection operators £ in the spectral decomposition of A and
Fin the spectral decomposition of B such that £ and F do
not commute. This means £ projects onto a subspace for
states where the quantity represented by 4 has a particular
value, or is in a particular interval of possible values. We
can think of £ as representing the proposition that the ob-
servable has that value, or has a value in that interval; it is |
if the observable has a value in the interval and O if it has a
value outside. Similarly, F represents a proposition about
the values of the observable represented by 5.

Consider the idea, drawn from theories with hidden vari-
ables, that for each state there is a joint probability distribu-
tion for the values of the two quantities represented by A
and B. It gives a probability for each possible pair of values
or intervals. The probability distribution for the values of
the quantity represented by A, for this state, is obtained
from the joint probability distribution by integrating over
the values of the quantity represented by B. Similarly, the
probabilities for B are obtained by integrating over the val-
ues for A4.° The joint probability distribution might be ob-
tained from a probability distribution for many variables
by integrating over all the others, some of which may be
“hidden.”

In particular, this means there are joint probabilities,

p(L1), p(1,0),
p(0,1), p(0,0),

for the four pairs of possible values 1 or O for the proposi-
tions represented by £ and F. For the proposition repre-
sented by £, the probabilities for the values 1 and O are

Pe(1) =p(L1) +p(1,0) (1)
and
pe(0) =p(0,1) + p(0,0), (2)

and for the proposition represented by F, the probabilities
for the values 1 and O are

pr(1) =p(1,1) 4+ p(0,1) (3)
and
pr(0) =p(1,0) + p(0,0). (4)
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Because E and F do not commu‘e, there are states for
which this is not true. That is what we now show.

ITII. PROOF

Since £ and F do not commute, there must be a state
represented by a vector ¢ such that

Ey =0, (5)

0, (6)

EFy+0. (7)
If not, EF1 would be O for every

v=(1—-E)g, (8)
which means

EF(1 —E)¢=0 (9)

for every vector ¢, which implies £ and F' commute, be-
cause if

EF(1 —E)=0, (10)
then
EF = EFE = (EFE)" = FE. (11}

For the state represented by ¥, we can see from (5) that
pg(1)is0. Then (1) implies p(1,1) and p(1,0) are both 0.
But for this state it is not correct to say that p(1,1) is 0.
Suppose we measure the observable represented by B.
The state is represented by ¢. The probability that we find 1
for the proposition represented by F is | F||*. After the
measurement, the state is represented by the vector

(/|| Fg|) Fib. (12)
Suppose, then, we measure the observable represented by
A. The probability that we find the value 1 for the proposi-
tion represented by £ is

ICI/IlF)D EFg|* = || EFy||*/|| F|* (13)
The probability that we find the pair of values 1,1 in this
way is || EFy||*, which is not 0. This could not happen if it

were true that p(1,1) is 0. We conclude that for this state
there are no joint probabilities satisfying the conditions

(1)-(4).
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