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Abstract. A general derivation of the coupling constant relations which result on
embedding a non-simple group like SU; 2) ® U() in a larger simple group (or
graded Lie group) is given. It is shown that such relations depend only on the re-
quirement (i) that the multiplet of vector fields form an irreducible representation of
the unifying algebra and (ii) the transformation properties of the fermions under
SU, (2). This point is illustrated in two ways, one by constructing two different

unification groups containing the same fermions and therefore have same Weinberg
angle; the other by putting different SU; (2) structures on the same fermions and

consequently have different Weinberg angles. In particular the value sin*6=3/8
is characteristic of the sequential doublet models or models which invoke a large
number of additional leptons like E;, while addition of extra charged fermion singlets
can reduce the value of sin® § to 1/4. We point out that at the present time the models
of grand unification are far from unique.
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1. Introduction

Ore of the deficiencies of the standard gauge-model for electroweak interactions
(Weinberg 1967; Salam 1968) is that the minimal theory based on the gauge group
SU,; (2 ® U (1), (Glashow 1961) involves two coupling constants g and g’ whose

relative magnitude is parametrised by the Weinberg angle

tan 0, = g/g’ A 1)
remains an arbitrary parameter. Current experiments (Dydak 1979) give the value
sin? 4, = 0.23 4- 0.02 2

The natural way to remove this arbitrariness is to embed this group in a higher sym-
metry group (i.e. Lie group or a graded Lie group cf. below) which involves only one
coupling constant so that the couplings g and g’ corresponding to the SU, 2 ®
U (1) subgroup of this higher symmetry, become algebraically related.

Theoretical attempts at this embedding have in the past involved the hadron
- and lepton sectors separately, while more recently, the so-called grand unified theories
(Pati and Salam 1973; Georgi and Glashow 1974) have received increasing attention.
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The chief virtue of these latter models is their prediction of the value of sin? 8,,. These
models have other predictions like the proton decay rate, baryon excessin the universe,
mass relations between quarks and leptons of different generations, etc. But these
latter predictions cannot be considered critical tests of the model, due to paucity
of experimental data as well as theoretical uncertainties. Besides, the question of the
correct gauge group for grand unification is not settled for a variety of reasons.

(i) The question of the correct gauge group for the electroweak interactions itself
is still open. For example the left-right symmetric model for the electroweak inter-
actions (Bajaj and Rajasekaran 1979 and references cited therein) is in as good
an agreement with the currently available experimental data as the minimal
SU; (2 @ U(D).

(i) At present, there are insufficient experimental grounds to discriminate between
the fractionally charged and integrally charged quark models for strong interactions.

(iii) No understanding of the generations puzzle for quarks and leptons exists at
present. There are rival models which are sensitive to questions like whether the
quark generation follow the orthodox doublet pattern (u, d); (¢, 5); (¢, b);. .. or triplets
like (p, n, A); (p’, n, A'); ... required as for example by the E, model (cf. § 3).

(iv) Even if one makes specific choices for the basic fermion multiplets, the electric
charge and the SU; (2) isospin assignments, there are several unifying algebras which
can accommodate a given fermion multiplet.

Further, during the last year, theories have been introduced (Neeman 1979; Fairlie
1979) based on the graded Lie group SU(2/1) which have the virtue (?) of not putting
quarks and leptons in the same multiplet’ but at the price of introducing gauge
fields which are more complex than the usual ones.

From the above discussion it is clear that the search for a symmetry larger than
SU; (2) ® U(1) is wide open. One is then led to ask (i) whether the unification

result for the mixing angle depends critically on the specific choice of the larger sym-
metry group, or (i) whether it depends on the colour symmetry for the quarks being
broken or unbroken and the choice of the electroweak group itself.

In this paper we shall be concerned with algebraic relations between coupling
strengths obtained by embedding a non-simple Lie group in a higher symmetry
group. Although our results are valid more generally, we shall discuss gauge theories
mainly, since these are most interesting.

In §2 we derive some simple mathematical relations and show that the unification
result for sin? 6,, depends only on the set of fermions and their classification under the
observed group. This of course applies to other coupling constant relations as well.

This point is illustrated in §3 in two different ways. We first show that the same set
of fermions, given the same SU; (2) transformation law can be embedded in different
algebraic structures yielding the same value for the Weinberg angle. This is reinforced
by considering different models which have the same set of fermions and grand
unifying group but have different SU; (2) transformation law for fermions and so

have different values of 6,. A brief discussion of SU(5), SO(10), and Eg models is

given. The question of broken versus unbroken colour symmetry is considered next
in the context of 4 quarks and 4 leptons.

tAlthough the point is extraneous to our main theme, it is worth emphasizing, that grand

uniﬁz.:ation. in the sense of putting quarks and leptons in the same multiple is not forced on us by
considerations of renormalizability as in the case of electroweak unification.
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Enlarging the SU;(2) ® U(1) group by the process of embedding, usually but not

always leads to the introduction of extra neutral current generators. Brief comments
are made in §4 on the role of these in comparing the models with experiment are
made.

An appendix provides a discussion of representation theory of graded Lie algebras.

In a recent paper Bajaj and Rajasekaran (1980a) have also derived some of
our results on algebraic consequences of Grand unification. Our present work
provides a more complete discussion, not only in the context of Lie Groups, but also
in the context of more general algebraic structures. Further we establish the non-
triviality of the observation that coupling constant relations obtained by unification,

do not necessarily depend on the unification group, by explicit illustration with
specific models (§3).

2. Smushkevich relationsT

We begin by proving the following proposition: Let i, be a unitary irreducible
representation of a group G and let I'J, be the coupling coefficients which are
needed to make the interaction Lagrangian

"Q’PI: z g 1/—1;; F:b 'lbb Va., (3)
ab

a

and invariant under G. ¥, is a set of vector fields forming an irreducible unitary

representation of G. Here and in the following we suppress space-time indices as
well as factors like, Y (1 4 7). Then

z | | oo ‘12 is independent of «, | 4)
ab

a B* . .
z I‘ab I',, Vvanishes for a # B, )
ab

Proof : Let 9, (g) be the representation matrix (g € G) with

o> = Doy (8) u

ba> 0= D% (@) Y

Vo>V, = daa' (8) Var. (6)
Construct

gof = z I‘:;(I‘fb *
ab
= zb D1y @ Ty D4y (22, @D Ty 9, @)* (D)
a’b": ab”
tMarshak and Sudarshan (1961) and Macfarlane et al (1964)
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since

272 2(g) = 2(8)21(g) = 1. ®

Now the invariance of %; under G demands
9,1, 2,,@=d . @T ©)
aa\8) Loy Ly \8) = 4,,,18) Lgyy:
Using this in (7) and making use of the unitarity of d,.(g) we find,
8, (8) = dg(2)4™. (10).

Since d(g) and therefore d*(g) is an irreducible representation this implies, by virtue
of Schur’s lemma ¢f must be a multiple of the identity matrix

8% = 12, (1) = 4%, (11)

This concludes the proof.

Comment 1: This result holds good with all the ¥, normalised uniformly so that
d_(g) is unitary, even if ¢ is not an irreducible representation as can be easily proved

by inspection. The sum over @, b now runs over all irreducible representations.
Notice however that it is essential that the vector fields Ve belong to an irreducible
representation as otherwise Schur’s lemma will not apply to equation (10).

Comment 2: The above result can also be carried over when the interaction Lagran-
gian is invariant under algebraic structures other than a Lie group which are unitarily
represented. With suitable modifications, it applies when the interaction is invariant
under a graded Lie group rather than a Lie group. We note that Schur’s lemma
itself needs modification (see for example Rittenberg (1978) as follows. ‘Let R
be an irreducible representation of a graded Lie algebra S, acting in a Z,-graded
vector space V; + V7 and K a matrix which ‘commutes’ with all the genera-
tors of S, then either K is a multiple of the unit matrix or if dim V5 =dimF3’ K can
be a non-singular matrix which permutes V5 and ¥7’. Nevertheless using a supertrace
functional we can get an equivalent result (see Appendix).

Let us now return to the Lagrangian (3) and consider the effect of symmetry break-
down. As a consequence of the latter we are interested in knowing the coupling

strength of the gauge fields which are eigenstates of the mass-matrix. Consider two
such fields.

A=73 q"Va; > |a°|2=1, (12)

a

B=3) r Ve y |r|2=1 | (13)
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with g r*=0.

which couple respectively to the following linear combination of the generators

g=>c,r* (14)

R= z D T (15)
Clearly

=C. C*, +*=D. D | (16)

where the normalisation constants C and D are given by
2 ‘ '
ct=3Ci D=3 D | a7
a
Now the interaction Lagrangian (3) implies that the fields 4 and B have the couplings

14, B) = gdT ¢"b 4 + > g4 T* 1"y B, (18)

where we have omitted the coupling of all the other gauge fields. Using Equations
(12) to (17) in (18) we find

#1(4,B)=g,4 QY A+ gz 4 RY B (19)
Now it follows from (11) and (14), (15) and (17).

Tr Q% Tr R2 = D?/C®. | 1)

which leads to the needed result

g Tr 0* = g5 Tr R2. (22)

The generators of interest in the following are (1) @ = is electric charge operator
so that gi [4 is to be identified with the fine structure constant. (2) R=T3, the gene~-
rator of the third component of the left handed weak-isospin, (3) R = T3¢ the gene-
rator of the third component of the colour-isospin so that gg is the QCD strong
éoupling constant. (4) R = T3R, the ‘generator of the third component of the right
handed weak isospin related to the coupling of the weak intermediate vector bosons.
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‘Itisclear from (22) that since Tr 02, Tr T? and Tr T;c for a given Fermion multiple

are completely determined by a specification of electric charge, and their transfor-
mation under SU, (2) and SU (3), the coupling constant relations are given by (22)

do not depend on further details of the unifying algebra and do not depend either

on the symmetry breaking mechanism or on how many stages of symmetry breaking
there are for the model under consideration.

We note in passing that in deriving our results we have made no use of the gauge
concept and therefore they can be used in contexts wider than those discussed here.

3. Models of unifying algebra
3.1 Same fermions but different unifying algebras

As an illustration, we consider the following set of Fermions er Vi, s Hp» V> Bg
and their antiparticles. The subscripts here denote the chiralities of the fields in

question. We shall follow the canonical assignment 0L, eps O pp) as SUL(2)
doublets and the rest as singlets.

Model A1. In one of the early attempts to fix the magnitude of 6, Weinberg
(1972) considered the following left-right symmetric model SU; (3)®SUpg (3) where

the states p*, v, e~ form an SU (3) triplet. The neutrino here is a four component
field with the identification.

v =y, vg = vk, (23)

where the superscript C denotes the charge conjugate field. Defining with the
help of (22)

sin® 6, =e/g; = Tr T3, | Tr Q? @4

we find using the fact that T3y is diagonal with eigenvalues -+ } for the doublets and
0 for the singlets the result

sin? 6, =1 model Al (25)

Model A2. Recently Neeman (1979) and independently Fairlie (1979) have proposed
a gauge model based on the graded Lie group SU(2/1) which contains the minimal

SUL QD®U() as a sub-group. In this model Or» €r, ep) belong to the triplet
representation of SU(2/1) while L B> rp) belong to another independent triplet
representation and similarly for every additional generation of leptons. Besides

fixing the Weinberg angle, the model also fixes the Higgs coupling; however we shall
be concerned with the former feature only. Again one has the canonical assignment

of (v7, €]) to a doublet and €p to a singlet under SU,(2). As pointed out earlier
(see also the Appendix) equation (11) is in general not valid for graded Lie groups.
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However in defining three-dimensional representation of SU(2/1) we have the
freedom to choose the relative normalisation of the isospin and hypercharge genera-
tors (the even part of the algebra) to be

Tr(r* I'®) = const 8** (a, b =1, 2, 3, 8). (26)
(valid for the defining representation only).
Using (26) it follows that the Weinberg angle is

sin?6, = 1/4 (model A2) @7

”

again as in model Al.

Digression: The SU(2/1) model has been extended to quarks also by Neeman and
Thierry-Mieg (1979). The (u, d) quarks belong to the quartet representation of
SU(2/1) with (4;, d;) as doublets and up, dp as singlets under SU(2). It is worth
noting that for the quartet representation (26) is not valid.

For the graded Lie algebra the Smushkevich relations (7) and (11) are replaced
by the supertrace relations (see Appendix)

$9f = Str (I'e F) (28)
4= -4 | @9)

where ¢ is a constant characteristic of the representation chosen and q&fﬁ 1s equation

(28) for the adjoint representation. (We cannot normalise the supertraces since they

are not necessarily positive definite). Equation (29) guarantees that the electric
charge operator

Q =Ty +cot b, T,

where T, is the generator of the U (1) subgroup, has the same value of cot 0,, in every
representation.

Table 1.

( g}/fct’g;:) Particles }zfng SU, @ sin? 8, Type+ Ugggﬂglg
Al evp —1,0,+1  Twodoublets 14 2 SUL(3) x SU,(3)
A2 vpepeg 0,—1,—1 One doublet 1/4 1 SU@)/1
B1 evE -1,0, +1 2 leptons doublets 5/16 4 SU(24)

nd X +2/3, —1/3, —1/3 3 quark doublets 1/4
B2 evE -1,0, +1 1 lepton doublet 1/4 4 SURH
u, d, X +2/3, —1/3, —1/3 3 quark doublets
C1 eve Yy -1,0, —1,0 2 lepton doublets 3/8 4 S010)
u, d,s,c 2/3, —1/3, 6 quark doublets
—1/3,2/3
C2 evep Yy -1,0,—1,0 2 lepton doublets 3/8 4 [SU@)E

u,d, s, c integrally charged 6 quark doublets

+As defined in § 4.
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3.2 Same fermions with different SUr, (2) properties

In this subsection we shall consider the model variations built with essentially 12
Fermi fields which we shall denote by u, d, X (each of which comes in three colours)
and leptons v, e~, E*. The quarks (u, d) belong to a doublet while the additional

quark X carrying charge ~1/3 belongs to the trivial representation. For the leptons
we have the following two options.

Model B1. (Fritzsch and Minkowski 1975)f Here the components of the neu--
trino field are identified as in model Al.

=+ ) 60

vﬁc = (1 — y) v @31

Clearly the 12 right handed and 12 left handed states can be embedded in SU(24) or
any suitable subgroup which is also simple. To calculate the Weinberg angle we
note that there are five left handed doublets (three u, d) quark doublets, (v, €)
and (vg, £-) so that

sin? 6,, = Tr T /Tr Q? = 5/16 Model Bl. (32)

Model B2. Consider on the other hand the following assignment (Bajaj and
Rajasekaran 1980a). The quarks have the same transformation as in Bl i.e. (4, d) L

form a doublet and X, 7 & singlet but now the lepton E- is strictly a singlet with no
associated neutrino. The left handed antineutrino 7} can be assigned to the trivial

representation. Such schemes having extra leptons and quarks have been considered
in literature in various other contents e.g. Khare et a/ 1979; Pandit 1976; Gupta
‘and Mani 1974; Schecter and Ueda 1973) and it is possible to arrange these models

in a way such that the interaction of the usual quarks and leptons remains largely
unaltered.

To calculate the Weinberg angle we note that we have four SU; (2) doublets, three
from the (u, d) colour triplet and one from (v, e”);, so that

sin® 6, = Tr T3, /Tr 0% = (4 X })/8 = 1/4 Model B2 (33)

It is clear that model B2 can be embedded in SU(24) as model B1, however the
SU; (2) ® U (1) subgroups which are identified to be the observed physical subgroups
are obviously different in models B1 and B2 and hence lead to different values of 6,,.

The above discussion also suggests simple ways of inventing models with different
values of 8,,. For example to increase the value of f,, one should either decrease the
.denominator Tr Q2 or increase the numerator Tr T%; in equation (33). The former
is achieved by not allowing any left handed charged states which transform as singlets,
in other words by deleting the quark X and lepton E in the above model. This
leads us to the SU(16) model with SO(10) or SU(5) as subgroups. We note that

TThese authors of course identify the X quark with the strange quarks and the lepton E+ with ut.
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SO(10) and SU(5) are currently the most popular ones. It is easily seen that in this
model there are four SU; (2) doublets but Tr Q2 = 16/3 so that we have

sin? 6, = 3/8 SO (10) model. (34

Of course since the SO(10) model contains the SU(5) subgroup this result is already
available at the SU(5) level for the 5 and the 10 representations separately. The
other alternative of increasing the numerator is achieved in the E; model (Giirsey

1978). The quarks and leptons are assigned to two generations of the 27-plet re-
presentation of E; as follows:

E; D SU; (3) x SUR (3) X SU (3)

A~ - > ’ -
D=\ —e v | T @ )+ |
£ ""NL Ly X}{

, , -é'r - ’ A
@M =| —p, v, —Np (P AL (O, ApD +| ng

4 7 N

ny, (0) = ny cos 6 + Ay sin 6; Ay (0) = Ar cos § — ny sin §
6 = Cabibbo angle.

The subgroup SUy (3) acts on horizontal vectors while SU 1 (3) acts on vertical vectors.

The notation is 521{ =@W); SZ\L = (). The leptons e, u, E, M carry charge-1
while L, v, N, L', ', N’ are neutral. It is easy to see that the quark structure is the
same in models B1 and B2. However the number of SUz (2) doublets have been

increased by introducing neutral four component leptons L and N, with the result

Tr T3
sin? 6, — —3L_12X%¥_3 6 Model (35
QP — 16 8

Of course equation (35) follows also trivially from E(6) o SO (10) D SUS). We
now turn to a comparison of fractionally and integrally-charged quark models.

3.3 Broken versus unbroken colour symmetry

Consider now the following models with four leptons (v,, e, vu, p~) and four quarks
(u, d, s, c) where the variation lies in the charge assignments to the quarks. In both

CEATY
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form doublets under SUL (2). In the fractionally charged quark model we have the

charge assignments (u, ds s, ¢) = (2/3, —1/3, —1/3, 2/3) while in tht? integrally charged
Pati-Salam model (cf. Pati 1979, for a recent review) the assignments are more

complex. However the isospin assignments remain the same. For the fractionally
charged case it is easily seen

sin? 6,, = 3/8 (Model C1). (36)-

For the integrally charged model, the definition of the mixing angle is different from
(33). Bajaj and Rajasekaran (19802) show that in the integrally charged case

Tl'TgL

sin? 4, = -
YT Ty 4+ Tr T,

= 3/8 (model C2). NED)

where Ty, is now the hypercharge generator. Note that with fractionally charged

quarks we can use the group SU(5) and SO(10) for unification, while the integrally
charged quark model can be embedded in [SU(4)]* with reflection symmetry demafld-
ing all SU(4) couplings to be equal. However from a mathematical point of view

both can be embedded in an SU(16) structure, with the physical content of the SU(16)
groups being quite different in the two cases.

4. Discussion

When confronting the models considered in the previous section with neutral cu?rent
experiments two questions are to be considered: (1) At what energies is the unifica-
tion value for sin? 6, valid ? (i) How many neutral current generators or how many
Z bosons are there in the theory? Accordingly we may divide the models into four
types: .

Type 1. In these there is only one Z boson. Besides quarks and leptons are in
different multiplets. Such models do not relate the strong coupling constant with
gpore. Clearly the SU(2/1) (Model A2) is of this type. One may expect renormali-

sation corrections to be negligible and experimental consequence for the neutral
current is practically the same as the minimal model with sin? 6,, = 0-25.

Type 2. In these models quarks and leptons again belong to different representa-
tions of the unifying group. These models have several Z bosons. For example in
the model Al there are three Z bosons. The experimental consequences can be

expected to be slightly different from the prediction at the symmetry limit both due to

renormalisation effects as well as mixing between the Z bosons. However by careful

planning one may be able to arrange things such that many of the currently known

neutral current data are in agreement with the model (Georgi and Weinberg 1978;
Bajaj and Rajasekaran 1979, 1980c). '

Type 3. The SU(5) model is an exam
leptons are put in the same m
value sin? @, = 3/8 is expect
10" GeV. The

ple of the type of models where quarks and
ultiplet, but there is only one Z boson. The symmetry
ed to be valid only at enormous energies M = 104 to
renormalisation corrections bring down the value of sin? 8, close to
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the experimental value of equation (2). (For a discussion with references to earlier
literature see Bajaj and Rajasekaran 1980b).

Type 4. The Eg, SO(10), [SU(4)]4, etc. are all models which not only put quarks
and leptons in the same multiplet but also have a large number of Z-bosons. As in
type 3 the symmetry value is expected to be valid only at enormous energies. However
interestingly enough in the [SU(4)]4 model, the broken SU, (3) colour group can be
chosen in such a way that unification can be achieved at energies of the order of
10° GeV itself (Pati 1979). The problems raised by the existence of several Z bosons
can be handled as in type 2 models.

In summary, we have shown that, some of the consequences of the various unifica-
tion schemes depend only on the SU; (2) transformation property of the observed

leptons and quarks. There exists several models yielding for example the same
value of sin? 6,. Critical experiments on the proton life-time, the various neutral
current experiments to test the existence of more than one Z boson would soon be
able narrow down the available choices and to select if at all one of these as the
model for grand unification.
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Appendix—Lie superalgebras’

A superalgebra 4 is a direct sum of two homogeneous algebras Ay and 45 with
their degrees being respectively 0 and 1 and the algebraic operations preserve the
degree modulo 2. We write

A=A+ A; (A. 1)
_ (0ifaec d;
deg 2 = {1 ifac A; | (A-2)

Any element of unique degree is said to be homogenéous. For two homogeneous
elements a, b we define the bracket

la, b] = ab — (—1)@eg @)-(degd) p, (A. 3)

and extend it to the whole algebra by linearity.
A Lie superalgebra G'= G- G is a superalgebra with a bracket operation [ , ]
which satisfies the relation

[a,b] = — (— 1)deg @)-[deg b) 1 g (A. 4)
[a, [b, c]] = [ [a, B], c] + (— 1)@ D-@e& B) 15 147 (7. (A. 5)

tV G Kac (1977) contains a good discussion of the subject.
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- Representations of G are subsets of endomorphisms of a graded vector space

V =V5 -+ V1 onto itself with (i) the grading of ¥V being preserved under all
homogeneous transformation of degree 0, i.e. :

G Vs Vs - (A.6)
Gy Vi S Vg A. 7

and (i) the two subspaces ¥ and V' are intertwined under homogeneous transfor-
mations of degree 1, i.e.

Gy Vg S Vy (A. 8)
Gy Vi S Vs (A.9)

For a general element a which has the matrix representation g — (; ‘g) with

o a square matrix with the dimension of ¥, 8 a square matrix with the dimension
of V1 and B, y in general rectangular we define the supertrace of a by

Stra=trea—trd (A. 10)

The supertrace is invariant under a change from one homogeneous base to another.
‘We note the following properties of the bilinear form

$(a, b) = Str (ab)

(1) Consistency str (@b)=0 if a € Gy, b € Gt and vice versa.
(2) Super symmetry—str (ab) = (—)(4°89); (deg &) g4, (ba).
This property is obvious if both a b, € Gy5; if one is in G and the other in Gy

both sides vanish. If both a, b, € Gy with @ = (g g), b= (g g)
then

Str (ab) = tr (a8—Py), while
Str (ba) = tr (By—ad)
Consequently Str ([a, b])=0 in all cases

(3) Invariance Str ([a, b]c) = Str (@b, c])
Proof. we have

[5, ac] = [b, a]c + (— 1)eg - Wegd) yp .
Take the supertrace of this e
and Eq. (A. 4).

Irreducibility of a representation: In case of a Lie super algebra G, irreducibility
of the representation ¥ means that there are no nontrivial (Z,-graded!) submodules.

quation and use the result in (2) above i.e. Str ([b, ac]=0
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In detail this means that there is no invariant proper subspace Wc V with
W = W5 + Wy which transforms under G as in (A. 8) and (A. 9).

Schur’s lemma: Let V=V5+Vy be Z,-graded vector space. The algebra End V
bas a natural Z, grading; more over is associative. Therefore defining a bracket
operation (A. 4) converts it into a Lie superalgebra 1(V). Now let M be an irre-
ducible set of operators of 1(V') and define the centre C(M) =The set of elements of
M such that [a, m] =0 a€ 1(V), me M
Then either

(1) C(M) = identity or (2) dim V5 = dim V7 and

C(M) = (1, 4) where A is a non singular operator
in ¥ which permutes V5 and V3. For details see Kac (1977).

Thus Schur’s lemma is modified as mentioned in the text.

In the case of invariance under a Lie superalgebra, the Smushkevich relations have
to be modified. 1If @, b, ¢ are elements of a superalgebra G=G5+G; acting on a
Z,-graded space V=V-+V; the bilinear form

Str (ab) = ¢(a, b)
is invariant in the sense
¢([a, b]c) = é(alb, c])

Hence in every representation of a Lie superalgebra the generators T'¢ satisfy the
relations that the two-index symbol,

¢of = Str (e TB) (38)
is invariant; and is therefore proportional to the Killing form
g% = Str (ad a ad p)

where ada, adf refer to the matrices in the adjoint representation of the Lie
superalgebra.

More generally if T, are the coupling matrices for any three representations
A, B,, C* invariant under a superalgebra then the two-index symbols,

¢of = Str (= T4),

a . a deg a
¢ab = z Pa’ n P:b (-') °8 ’
a, h

I

+a __a deg a
Xmn z Fma Pan (— & ’

a,a

are all invariant; and hence proportional to their values for any such fixed choice of
generators. In particular

$o8 = ggof (39)
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