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Abstract. In many instances we find it advantageous to display a quantum optical
density matrix as a generalized statistical ensemble of coherent wave fields. The
weight functions involved in these constructions turn out to belong to a family of distri-
butions, not always smooth functions. In this paper we investigate this question
anew and show how it is related to the problem of expanding an arbitrary state in terms
. of an overcomplete subfamily of the overcomplete set of coherent states. This pro-
vides a relatively transparent derivation of the optical equivalence theorem. An
interesting by-product is the discovery of a new class of discrete diagonal representa-

tions.
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1. Imtroduction

The play of light has been of great interest in physics. The discovery that light has
an essential quantum mechanical nature does imply that we have to be careful in the
rendering of its behaviour in familiar classical terms. For the most part the pheno-
mena of optics dealt with photometry and other methods of the study of intensity of
light. In wave optical processes, the intensity of light on one surface is not fully
determined by the intensity of light on an  earlier > surface: the two-slit interference
pattern is the most familiar example in this context. Within the context of wave
optics, one is led to introduce the notion of degree of coherence which is then sub-
sumed under the notion of the two-point correlation function. This function is
additive for incoherent beams and thus provides a generalization of the notion of
intensity; yet in terms of the two-point correlation function, the general propagation
can be described. As far as conventional optics is concerned, a field of illumination
may be described as a statistical ensemble of wavefields; but how general is such
a description of a field of illumination when the full quantum nature of light is
included? Remarkably enough a general field of jllumination may be described by
a classical statistical ensemble as far as the two-point correlation functionis concerned
(Sudarshan 1969).

There are, however, measurements that can be carried out in an optical field which
reflect the full quantum character of light. Photocounting, intensity interferometry,
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and non-linear optics are examples of such measurements. The question naturally
arises as to the extent to which an ensemble description in terms of statistical wave
fields appropriate to this general context is possible. The diagonal coherent state
representation of quantum mechanical density operators (Sudarshan 1963) addresses
itself to this question.

The essential characteristic difference of quantum physics from classical statistical
physics is the existence of off-diagonal correlation terms which reflect the phase-
definite superposition of quantum states. The success of any attempt to produce a
classical ensemble picture of a quantum optical field would depend upon the method
of eliminating or transforming away such © off-diagonal ’ terms. This is not to be
confused with classical limits and classical approximations; on the contrary, the effort
is to produce an exact picture. This paper is concerned with the study of this problem
and the discovery of a new family of representations.

The diagonal coherent state representation of quantum mechanical density operators
is of great heuristic as well as practical value in the quantum description of optical
phenomena (Sudarshan 1963). It enables one to express the correlation functions
of quantum optics in a form remarkably similar to classical correlation functions de-
fined as averages over classical statistical ensembles. This happens because of two
reasons. First, the former correlation functions are defined as expectation values of
normal-ordered operator functions of the quantized electromagnetic field. Second,
the diagonal representation asserts that any density operator p for a system with one
degree of freedom is expressible in the form

p———-;rqu(z) |z (z]| d%.

Here the vectors |z ) are eigenvectors of the annihilation operator for complex
eigenvalues z, the coherent states, ¢ is a c-number weight function, and the integration
is over the entire complex plane. The application to quantum optics involves generalis-
ing this representation to systems with several degrees of freedom, but for simplicity
we restrict ourselves to the case of one degree of freedom.

The two related problems of understanding the nature of the weights ¢ that occur
in the diagonal representation, and of computing ¢ for a given p, have been
extensively discussed in the literature (Mehta and Sudarshan 1965; Klauder et al
1965; Kano 1965; Klauder 1966; Rocca 1966). It is known that ¢ is, in general,
a distribution. The Fourier transform of ¢ is always a distribution on the test
function space D, (space of functions of two real variables which are infinitely
often differentiable and have compact support), so that ¢ itself is a distribution on
the space Z, obtained by applying the Fourier transformation to D,. Furthermore,
it has been shown that a given p can be approximated to arbitrary accuracy in the
trace-class norm by a sequence of density operators whose associated weight functions
are infinitely often differentiable and vanish at infinity faster than any inverse powers
of their arguments. (See for instance Klauder and Sudarshan 1968). As for comput-
ing ¢ for a given p, two methods have generally been adopted. The first uses the
diagonal coherent state matrix elements of p, { z| p|z’y for all z, for the construction
of ¢, since it is known that these matrix elements do specify p uniquely. In the second
method, one uses instead the antidiagonal coherent state matrix elements {(—z|p|z),
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since that leads to a simpler equation for the determination of ¢ (Mehta 1967, Agarwal
and Wolf 1970).

It is clear that the use of coherent states and the diagonal representation involves
analysis at two distinct levels, one at the level of vectors in the Hilbert space to which
the coherent states themselves belong, and another at the level of operators on this
Hilbert space. The existence and essential properties of the coherent states are
directly related to one’s having a solution of the canonical Heisenberg commutation
relation at hand. One of the aims of this paper is to show that the discussion relating
to operators has exactly the same underlying mathematical structure as the discussion
relating to state vectors, because the operators can be viewed as a linear space support-
ing a solution of Heisenberg commutation relations for two degrees of freedom. As
a result, many of the questions that come up at the operator level have exact parallels
at a simpler level. This is in particular true of the attempt to set up the diagonal
representation, and of the two common ways of determining ¢ for a given p. The
second aim of this paper is to exploit this relationship and show that any density
operator p can be approximated arbitrarily closely by discrete diagonal coherent
state representations in which, essentially, the weight ¢ is concentrated on certain
countable infinite sets in the complex plane. This remarkable possibility occurs
because while the coherent states form an overcomplete set, certain countable subsets
of them form complete sets in Hilbert space.

The material of this paper is arranged as follows. In section 2 we recall briefly
those essential properties of coherent states that will be needed later. Section 3 sets
up the Weyl representation of operators on a Hilbert space and the two alternative
methods of calculating the weight ¢ in the diagonal representation. These two sections
are intended mainly to settle notation and make this paper self-contained. In section
4 we analyze the mathematical structure underlying the diagonal representation and
show its complete equivalence to the structure used in the description of state vectors
in terms of coherent states. This equivalence is then used in section 5 to prove the
existence of new, discrete forms of the diagonal representation. Concluding remarks
and questions comprise section 6.

2. Basic properties of coherent states

The canonical Heisenberg commutation relation, which underlies the construction of
coherent states, involves two hermitian operators ¢, p obeying

lq, p]==i. M

The unitary Weyl form of this relation is expressed in terms of two one-parameter
families of operators U(o), V(7) defined by

Uloy—exp (iog), V(x)=exp (irp), —00<0, < O, 7
They obey A
(o) Uy =U(o-+a), VDV (e )=V(a+7),
Vo)V (D) =V@) U(e)exp (—io). 3)
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The annihilation operator @ and its adjoint af are defined as

a=(g+ip) V2, at=(g—ip)|VZ, @
and then eq. (1) be’comes

[a, a']=1. %)

Coherent states are eigenvectors of the annihilation operator. There is one
eigenvector | z) corresponding to each complex number z as eigenvalue:

a|zd=z|z). | (6)
The Schrédinger wavefunctions of these eigenvectors are
(¢|zy=ntexp [—§(¢' —2v2)—}2(z*—2)]. ™)

Here ¢’ is a general eigenvalue of the operator g and the corresponding eigenvectors

lg") are subject to the usual delta function normalization. Coherent states form
a non-orthonormal set since

(2']z)=exp (—}|2' P—1| 2> +2"*2). ®

A general vector [z,[:) is describable by its Schrodinger wave function z/;(q') which is

a square integrable function of g’. It can also be described by its projections on all
coherent states. If one writes

(2* ) =exp (—3 [z f (D), ®
then f(z) is entire analytic and obeys a growth condition at infinity:

7@ <UD I exp G2]2). (10)

Using eq. (7) we can relate £(2) to #(g’):

f@=mtexp (=32 [ y(@) exp (—h a2+ gz D) dg. (1)

The coherent states |z) taken for all z form an overcomplete set. One has a

resolution of the identity expressed by the following equation valid for any | >
(Klauder 1960):

> =1 [12) Lz|¢) dx. | (12

Certain subsets of the coherent states form complete sets in Hilbert space; the precise
meaning of this and some examples will be given in section 5, though some cases will
be used in section 4 as well. The complete equivalence of the Schrodinger description
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of the Hilbert space using square integrable wave functions ¢(q") and the description

using entire analytic functions f'(z), based on eq. (9), has been established by Bargmann
(Bargmann 1961).

3. The diagonal representation

As stated in the introduction, the properties of the diagonal representation have been
studied in the literature in the context of the trace-class norm for operators. Our
discussion however will be based on the Hilbert-Schmidt norm. Let J£ denote the
Hilbert space to which the discussion of the previous section refers. A linear operator
A on Jf is of Hilbert-Schmidt (H-S) class if

Tr (41 4) < oo. | (13)

The collection of all such operators forms a linear set and in fact a Hilbert space, "
say, if we define the inner product of two operators by

(4, B) =Tr (4" B). (14)

The density operators not only belong to the trace-class but also to the Hilbert-
Schmidt class. So the density operators and their representations are automatically
included in the present study. Analogous to the Schrodinger wave function descrip-
tion of vectors in J£, one has a Weyl representation for the elements of " (Weyl

1931). The basic operators used here are the so-called displacement operators
D(a):

D(a) =12 exp (a a'—a* a). (15)

o is a complex number, and apart from the factor #-1/2, D(a) is unitary. These
operators are improper elements of ", like eigenvectors of ¢ in Ft, and they obey

(D(a"), D(a)) = &(o'—a) = d(Re «'—Re ) 8(Im o'—Im a). (16)

The Weyl representation expands a general H-S operator T in terms of the displace-
ment operators:

T = [ t(a) D(a) d%a, t(a) = (D(a), T),
(T, T) = [ |t(a)|? d®a. an

Thus elements of 3" correspond one-to-one to square-integrable functions of two real
variables, their Weyl weights. (For a rigorous discussion, see Pool 1966). The
diagonal coherent state matrix elements of D(a) are needed later and are

(z| D(a)|2y == 1% exp (—} |a|2+ az* —a*2). | (18)
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Let ¢ be the weight function appearing in the diagonal representation of an element
Tin % : ' :

T=1[4@)|2)(z] d. (19)

One way to find 4 is to take the diagonal coherent state matrix element of this relation.
It turns out that then the Fourier transform of ¢ gets determined in terms of the Weyl
weight of . From eqs (8), (17), (18) and (19) we get:
[t(a)exp (—}|a \ 2+ az'* — o*z') d%a
= a-172 [ §(2) exp (— | z—2' | ?) d2. (20)

If ;f; is the Fourier transform of ¢:
62 =" [ $(a) exp (az* — a*z) d%%, 1)
T

then from eq. (20) we get the result

é () =m2 t(a) exp (3] a| . (22)

Since #(a) is square-integrable, it is the exponential factor here that forces one to

interpret ¢, and so ¢ as well, as a distribution.
The alternative method of finding ¢ uses the antidiagonal coherent state matrix
elements of eq. (19). When eq. (8) is used, this reads:

(—2'|T|Z) =
;1rf¢(z)exp(—|z\2——]z']2+z*z’—zz’*)d2z. ‘ (23)

The right hand side has the form of a Fourier transformation which can be inverted
to yield ¢:

$()=(/mexp(|2z|?) [ {—Z|T[)
exp (|z'|? 4+ zz'* — 2*7) d?2', : 249

An alternative derivation of eq. (22) is obtained by taking the expectation value of
both sides of eq. (17) using eq. (18) to obtain

712 [ t(a)exp (— }|a|® + az* — o*2) dPa={z|T|z ).
Taking Fourier inverse we get

t(@=71exp (3| a|® [ z|T|z) exp (a*z — az*) d2z.
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Since the Fourier transform of ¢(z) is exp (|« |2) times the Fourier transform of
{z|T|z) (Mehta and Sudarshan 1965), eq. (22) follows.

4. Reinterpretation of the diagonal representation

In this section we intend to show that the mathematical structure underlying the
diagonal representation is identical in essential respects to the structure present at the
level of the state vector space Jf. To do this we first show that, using the Weyl
system of operators U(o), ¥V(7) of eq. (2) acting on I, we can in a natural way set up
two commuting Weyl systems acting on %". With 4 denoting a general element of
o, we define operators 9 :(c), ¥',(7), j=1, 2, on " thus:

Ui()A=U (6/V2) AU (—o/V'2), Uy(c) A=V (o/V2AV (—o|V2),
YV \(DA=V (x[V2) AV (z|V2), ¥o(1)A=U (—=[V2) AU (—rVD). 25)
It is straightforward to check first that these linear operators on " do preserve the

inner product (14), and to verify next using eq. (3) that 9, (o), ¥ () and %y(o),
y/y(7) form two mutually commuting Weyl systems. That is, one has

U@ UL () =U(c+ ), v (DY) =¥1(7 + ),
U, (0) ¥y (1) = ¥'1(7) Uy (o) exp (—io7), (26)
and exactly similar equations for %,(c), ¥5(7); and operators with subscript 1 commute

with those with subscript 2. The infinitesimal generators of the one-parameter
families defined in eq. (25) are found to be

01 4 =[0 AIV2, 0,4 =Ip, 4] |V,
Py A={p, A}V2 Pyd=—{q, A}IV2. @7

The operators @, P, are hermitian with respect to the inner product on 2", and obey
Heisenberg commutation relations

[Q), @ =[Py, P =0, [Qy, Pi] = 1By (28)

It is now natural to ask for a Schrédinger type description of the space o, which
diagonalises Q; while the P; are operators of partial differentiation. One finds that
the Weyl representation (17) does exactly this. The displacement operators D(a)
of eq (15) are in fact simultaneous  eigenvectors * of Oy and Q,. Writing a=r-is
with r and s real, one finds

0, D(a) = rD(a), @y D(a) =15 D(a),

P, D(a) = i—aa-rD(a), P, D(a)::z'gs D (). | (29)
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Therefore, the association of the Weyl weight #(«) with an element T'in 37" is exactly
similar to the association of a Schrédinger wave function ¥(g") with a vector |¢> in .
The next natural step is to carry over the description of Jf using coherent states, to
the level of . We now have two independent annihilation operators .;, &, and
their adjoints, defined in terms of @; and P, in the manner of eq (4): '

Ay A = (ad — AaD) V2, spd = — i(ad + Aa®) [V2,
A4 = (a4 — AD)|V2, gyfd = i(a'd + da) | V2. (30)

The simultaneous ‘eigenvectors’ of 4, and 4, are those elements of ¢ that are
formed from coherent states in J£ and their adjoints as outer products:

ﬂ1‘21><zzl=(zi_/‘_ziﬁlzl><zzl’

1+-z *)

Az ) {z|=— EDXEL (31)

One finds that these elements of 5" have inner products with one another that are
a direct generalization of eq. (8) to two degrees of freedom:

(iz3><z4=[,[zl> (Zzl),’=—<23\21><zzlz4>
=exp (— 1|z —2z*fF— %lzs‘“zq‘* ? + 3§ (z5* — 2) (21 — 25%)
— =z b2 P G ) (6 ). (D)

The result that /' (z) in eq. (9) is entire analytic, and the resolution of the identity in eq.
(12), both generalise easily to 2°. (For the former, see Mehta and Sudarshan 1965).

In the light of the above construction, the diagonal coherent state representation,
(19) finds a new interpretation. The elements of 3 used in it are © eigenvectors * of
A and 4, with pure imaginary eigenvalues for both: -

A z)(z|=@V2Im2) |z (z],

dy|z>{z|=(—iV2Rez) |2 (z]. (33)
Therefore the problem of setting up the diagonal representation for operators on J
is exactly the same as that of replacing the expansion (12) for a vector | s > in Ff with

one in which only coherent states with pure imaginary eigenvalues of a are used.
Such an expansion for | ¢ ) has the form

|4 )= W‘%f‘fmv | ivV2r > dr. (34)

One can hope that this representation for any |4  is possible because the subset of
coherent states appearing here is complete (actually overcomplete—see the next
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section). The need to permit the occurrence of distributions as weight functions ¢
in eq. (19) arises from a corresponding need to permit distributions to appear as
< wave functions * o(r) in the simpler situation presented by eq. (34).

The analogue, at the vector level, of the first method of obtaining ¢ (z) is the
following. We take the inner product of both sides of eq. (34) with a coherent
state |i4/2 s where s is real, and then use eqs (7) and (8):

f ® o U (@) exp (—3q"* + 2isq) dg’
— 3t [© o) exp [-(—s)Pldr 39)

This corresponds to eq. (20); we then follow eq. (21) and set up a Fourier
representation for o(r)

o(r) =m-12 Jf o 7 (q") exp Qirg’) dg'. (36)
On combining eqs (35) and (36) we get

T(@)y="" (¢") exp (34 | €0

which corresponds exactly to eq. (22) since the Schrodinger wave function and the
Weyl weight are analogous quantities. In view of thelast factor in eq. (37), the inverse
Fourier transform o (r) and hence the representation (34) may involve distributions
rather than functions. Unlike the overcomplete family of states | z) with z complex,
the family \ i 4/2 r> with r real requires possibly more singular combinations.

As for the second method for finding ¢ (z), we realize that the left hand side of eq.
(23) can be written as

(2| T] 2y = (| =25 (2. T e

and that the eigenvector of &; and &, occurring here corresponds to real eigenvalues
for both. The analogous procedure to determine v () at the state vector level is then
to take the inner product of both sides of eq. (34) with a coherent state | 4/2 s where
s is real:

VS| gy = a1 j ® 0 (¢) exp (—st—r® + 2irs) dr. (39)

This corresponds to eq. (23). Inversion of the Fourier transform then gives the
analogue to eq. (24):

v (F)=m=-1% exp (%) Jo_ooo {VZs| éxp (s2—2irs) ds. - (40)

This discussion shows that, at least for H-S operators, the diagonal representation
and questions connected with it are two-dimensional versions of simpler questions at
a one-dimensional level.




236 N Mukunda and E C G Sudarshan
5, Discrete diagonal representations

The fact that the coherent states, and even the subsets of states | 4/2 ) or | /2 s)
with r, s real are overcomplete implies that not every value of the weight function in
expanding or approximating an arbitrary state | 4> contains ‘information’. It
would be interesting to know what ‘information’ is contained in arbitrary statistical
states. To evaluate the information content we should get the state in a classical
like ensemble with no non-diagonal terms and, that, in terms of the fewest number
of states. Clearly the state should be overcomplete: otherwise we could not get a
diagonal form for every statistical state expanded with the same set of states.
We should thus reconcile two opposing tendencies.

We now use the results of the last Section to exhibit new forms of the diagonal
representation. For this, recall from section 2 that every vector |y stands in
one-one correspondence with an entire analytic function f(z) according to eq. (9).
We now say a subset S of the complex plane is a characteristic set if the vanishing
of f at all points of S implies the identical vanishing of f. Equivalently, S is a
characteristic set if

(2| $y=0, all z € S= [$)=0. (41)

(Bargmann 1961). Examples of such sets that do not specifically refer to the large z
behaviour of £, eq (10), are: (1) any set of points in the complex plane with a finite
limit point; (ii) the set of all real numbers; (iii) the set of all imaginary numbers, etc.
(Sets (i) and (ii) were used in the previous section in reconstructing| 4> from
% 2 s |4y or (V2 s|¢) for all real 5). Examples of characteristic sets that do

reflect the large z behaviour of f(z) are (Bargmann 1961): any sequence {a,} of
distinct nonzero complex numbers such that

> ] =00 42)

for some 7>0.
For simplicity, we consider only countable characteristic sets. Let the points of §
be z;,n=1,2, .... Then the set of (distinct) coherent states | z¢) has the property

(zn | $)y=0, all n==3 | > =0, (43)

This implies that the set of states { \ Zny} is complete in the following precise sense:

(i) every finite subset of this set is linearly independent; (ii) the linear manifold of all
finite linear combinations of vectors drawn from { | z,)} is dense in F£. In detail,
(if) means: a given vector | /) in Jf can be approximated to any desired accuracy by a
suitable finite linear combination of vectors |z,). So, given any >0, one can
find an integer N(e) <o and coefficients a,(€) such that

19— 21 aa) |z | <e. (44)

However, because the | z,) do not form an orthonormal set, their completeness does
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not imply the existence of a definite set of expansion coefficients a, for a given | ¢
such that the finite sums

PRIED

converge to | ¢y in the norm as N->co. In other words, with a nonorthonormal
complete set, it is in general not possible to actually > write a given vector [4)asa
linear combination of the vectors in the set, though with finite linear combinations one
can get as close to | ) as one wishes. Essentially this same problem occurs in the
subject of nonharmonic Fourier series (Paley and Wiener 1934, Levinson 1940).

The discrete diagonal representations now arise as follows. Take two characteri-
stic sets Sy and S, both countable and both consisting of points on the imaginary axis
only. Let them consist of the points {iv2y,} and {-—i\/ 2 x,} respectively, with
x, and y, real. It follows that the set of simultaneous ‘eigenvectors’ of #; and s
corresponding to the respective eigenvalues iV’ 2y, and —iV 2 x,, is complete in " in
the precise sense defined above. Here m and n go independently from 1 to co.
Comparison with eq (33) shows immediately that this set of elements in X’ is

l Zmn> <Zmn l Zmn:xm+iyn: m,n,=1,2,... » (45)

This again is countable. We conclude therefore that any density operator p can be
approximated to arbitrary accuracy in the H-S norm by finite discrete diagonal
coherent state expressions of the form

z bon | Zyn) {Zonn ‘ (46)

m, n

where {zm,,} is a preassigned countable set of complex numbers built up as described
above. Such approximations to p share with the usual diagonal representation (19)
the property that when quantum correlation functions are calculated using them, one
gets classical-looking forms. But the main difference is that in general there is no
definite sequence of expansion coefficients {</>m,,} associated with a given p, whereas
there is a definite weight function ¢(z), albeit a distribution.

5, Concluding remarks

In this paper we have presented a new way of understanding the structure of the
diagonal representation in quantum optics. When the state vector space corresponds
to a system with one degree of freedom, the representation of operators is most
naturally discussed in the language appropriate to a system with two degrees of free-
dom. This makes the form of the diagonal representation as well as its explicit
determination very transparent.

We have also seen some of the subtle consequences of the overcompleteness property
of coherent states. The most striking is that one can replace the usual continuous
form of the diagonal representation (19) by the discrete form (46). At first sight this
seems to present a paradox because the weight function ¢(z) of eq. (19) does appear to
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be unambiguously determined by the given operator 7. One sees no room for all the
freedom present in representations of the form (46), which naively speaking arise
from a ¢(z) which is a sum of delta functions concentrated at a given sequence of
points {z,,} in the complex plane. But the paradox is avoided by the subtle distinct-
tion between the completeness of a given sequence of coherent states, and the possibil-
ity of actually expanding a general vector in terms of these states. It is of interest to
examine this question more closely and find out which characteristic sets produce
complete sets of coherent states that also possess the expansion possibility.

The algebraic approach of this paper led naturally to the Hilbert-Schmidt norm for
operators on the Hilbert space F, and the convergence of various operator repre-
sentations is understood to be in the sense of this norm. However, for applications
one would prefer that any sequence of operators converging to a given, density opera-
tor p do so in the trace-class norm, so that the sequence can be used for calculating
expectation values. The existing proofs of the diagonal representation, with $(2)
a distribution, do work with the trace-class norm (Klauder and Sudarshan 1968).
It would be interesting to extend the methods of this paper in that direction. We
hope to examine these questions elsewhere.
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