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Quantizing the Toda lattice

Rahul Siddharthan* and B. Sriram Shastry†
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In this work we study the quantum Toda lattice, developing the asymptotic Bethe ansatz method first used
by Sutherland. Despite its known limitations we find, on comparing with Gutzwiller’s exact method, that it
works well in this particular problem and in fact becomes exact as\ grows large. We calculate ground state
and excitation energies for finite-sized lattices, identify excitations as phonons and solitons on the basis of their
quantum numbers, and find their dispersions. These are similar to the classical dispersions for small\, and
remain similar all the way up to\51, but then deviate substantially as we go farther into the quantum regime.
On comparing the sound velocities for various\ obtained thus with that predicted by conformal theory we
conclude that the Bethe ansatz gives the energies per particle accurate toO(1/N2). On that assumption we can
find correlation functions. Thus the Bethe ansatz method can be used to yield much more than the thermody-
namic properties which previous authors have calculated.@S0163-1829~97!14817-2#
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I. INTRODUCTION

The Toda lattice,1 introduced by Toda in 1967,2 is a chain
of particles which interact with nearest neighbors with
exponential potential. The quantum mechanical Hamilton
for a periodic Toda system of lengthN ~i.e., n1N[n) is

H52 (
n51

N
]2

]un
2 1h (

n51

N

e2~un112un!, ~1!

where theun are displacements from equilibrium sites. W
have chosen appropriate units to remove\, m ~the mass of
the particle!, and the length scale of the potential. The in
nite system also has a linear term in the potential~to cancel
the one in the exponential!, but with periodic boundary con
ditions this vanishes.h is a measure of the anharmonici
and also of the scale of the quantum effects. The largerh is,
the more ‘‘classical’’ the system and the more harmonic
low-energy excitations. In the classical limit the parame
h can be scaled out but in the quantum case this can onl
done by introducing an\Þ1 in the above equation. We sha
occasionally write

\5A2

h
, ~2!

so that the Hamiltonian can be rescaled and rewritten as

\2

2
H52

\2

2 (
n51

N
]2

]un
2 1 (

n51

N

e2~un112un!. ~3!

The Toda lattice is interesting, classically and quant
mechanically, because it is the one example of a nonlin
lattice which can be solved exactly. Elementary excitatio
are cnoidal waves, which are periodic waves analogou
the normal modes of a harmonic lattice, and solitons, wh
are traveling-pulse-like solutions which retain their sha
even after interaction with other excitations. The perio
system does not support solitons of the infinite-chain ty
since these involve a net compression, but a cnoidal w
550163-1829/97/55~18!/12196~14!/$10.00
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with large amplitude behaves very much like a soliton~Fig.
1!. The classical periodic system was studied by Kac and
Moerbeke3 and Date and Tanaka.3,4 It is completely solved:1

Given any initial condition of the system its future time ev
lution can be written down exactly.

In quantum mechanics, there have been several treatm
based on various approximations and assumptions. O
nally, Sutherland8 treated the problem using the~asymptotic!
Bethe ansatz. On the other hand, Gutzwiller5 has given an
exact treatment of the three- and four-particle lattices, a
his quantization algorithm is capable of generalization
largerN as well. His results were rederived in ther -matrix
formalism by Sklyanin6 and by Pasquier and Gaudin.7 The
method makes a transparent connection with the class
formulation of the problem. However, calculating with th
algorithm is a formidable task. The method is summarized
Sec. IV. Sutherland8 originally recovered the classical resul
~highh) in the thermodynamic limit (N→`). Later authors9

have remained in this thermodynamic limit, but have look
at arbitraryh, and have calculated various thermodynam
functions.

FIG. 1. How a classical cnoidal wave continuously goes fro
nearly harmonic to solitonic with increasing amplitude. Above, t
first ‘‘normal mode’’ which goes into a one-soliton state. Belo
the second mode which goes into a two-soliton state. The s
thing happens in our quantum description when we put more
more phonons into a particular phonon mode~not to scale!.
12 196 © 1997 The American Physical Society
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55 12 197QUANTIZING THE TODA LATTICE
In this paper, we use the Bethe ansatz to look at the c
of finite N, which in some ways is more illuminating whe
one tries to classify excitations as phonons or solitons. S
tion II obtains the Toda lattice as a limiting case of t
1/sinh2 model, an idea due to Sutherland, and Sec. III sets
the Bethe ansatz equations for the latter model and perfo
the same limit to obtain equations describing the Toda
tice. Though the asymptotic Bethe ansatz is in general in
curate for finiteN, we find in this model that it is much bette
than it has been given credit for, and in particular becom
exact not only forN→` but also forh→0 with finiteN. In
Sec. IV we demonstrate this by setting up exact equati
using Gutzwiller’s method and seeing what approximatio
are involved in going from these to the Bethe equations. T
claim10 that the Bethe ansatz misses a fixed fraction of sta
does not stand scrutiny. One need only glance at the
monic limit ~Sec. V! where every one of the states is a
counted for accurately.

Having done this, we examine the opposite, highly qu
tum limit in Sec. VI, which makes clearer how the low-lyin
phononlike modes go over to solitonlike states as their oc
pation number is increased. Section VII calculates dispers
relations for phonons and solitons, and compares the cla
cal and quantum results. We find that the results are es
tially the same, apart from the quantization of energy lev
for h*2 (\,1), but as one decreasesh further the quantum
results deviate more and more from the classical, tho
they remain qualitatively similar down toh→0. In this re-
gime we get phononlike excitations whose energies can
be derived from harmonic approximations~why we think of
them as phonons is discussed in Sec. VII! and solitonlike
excitations which can be thought of as authentic example
the much discussed ‘‘quantum soliton.’’

Section VIII considers finite-size effects and makes c
tact with conformal theory to find correlation functions. W
offer evidence that the asymptotic Bethe ansatz, in this pr
lem, gives the energy per particle accurately to order 1/N2,
though on general grounds it is guaranteed only to give
sults accurate to order 1. Finally, we consider in Sec. IX h
all this relates to the classical lattice, and the Appen
gives, for completeness, a brief discussion of the other c
served quantities~Hénon’s integrals! and why they are con
served in the classical and quantum cases.

II. SCALING THE 1/sinh 2 MODEL TO THE TODA MODEL

Sutherland was the first to treat the quantum Toda latt
as a limiting case of the 1/sinh2 model, by pioneering the us
of the asymptotic Bethe ansatz. He contented himself w
recovering the classical results, and showed that the clas
solitons are recovered by taking the classical limit of p
ticlelike excitations of the Bethe equations. He did not e
plore regimes other than the classical, thermodynamic lim
Later authors like Mertens9 have directly treated the Tod
lattice by Bethe’s ansatz, using the phase shifts obtai
from the Toda potential, but the validity of the Bethe ans
~which involves summing over phase shifts a given parti
suffers in collisions with all other particles! is unclear in a
model where only nearest-neighbor interactions appear.
therefore use Sutherland’s approach and scale the 1/s2

model. Our scaling procedure is somewhat more explicit
se

c-

p
s
t-
c-

s

s
s
e
s
r-

-

u-
n
si-
n-
,

h

ot

of

-

b-

-

x
n-

e,

h
cal
-
-
t.

d
z
e

e
h
d

displays the fact that the limiting process leaves us with
one-parameter model, the Toda lattice with a general c
pling constanth ~see below!, from which the classical, the
harmonic, and the extreme anharmonic limits follow.

Our starting point is the Hamiltonian

HS52 (
n51

N
]2

]xn
2 1g (

m,n51
m,n

N
1

sinh2@~xm2xn!/2a#
. ~4!

Herea is a length scale giving the range of the potential,g is
a coupling constant, and the particles are on a ring of len
L ~so that the densityd5N/L). In the dilute limit when the
particles are far apart, the sinh2 becomes an exponential; w
achieve this limit by making the substitution

xn5n/d1una, ~5!

where un are displacements from lattice sites spacedd
apart. We letad go to zero, and assume that theu’s are
bounded~that is, the wave function vanishes asu→`). Then
we have form,n andda!1,

sinh2S xm2xn
2a D5sinh2Sm2n

2ad
1
um2un

2 D
5~1/4!expS n2m

ad
1un2umD

and the potential in the Hamiltonian becomes

4g(
m,n

expF2
n2m

ad
2~un2um!G . ~6!

So on putting

g5
h

4a2
e1/ad ~7!

and then allowingad to go to zero, all terms in the interac
tion except the nearest-neighbor terms~i.e., n5m11) are
destroyed, and we finally arrive at the Hamiltonian

a2HS52 (
n51

N
]2

]un
2 1h (

n51

N

e2~un112un!,

which is the Toda Hamiltonian, Eq.~1!.

III. SOLUTION BY THE ASYMPTOTIC BETHE ANSATZ

The 1/sinh2 system, being integrable, is characterized
N commuting integrals of motion. If we suppose that t
particles are moved far away from one another, they do
interact except during short-range collisions, and for the r
of the time they have well-defined momenta which can
taken to be the conserved quantities. During two-body co
sions the most that can happen is an exchange of mome
and one can show thatn-particle collisions can be com
pletely described in terms of successive two-particle co
sions and their phase shifts, so that the momenta are r
dered but not changed. The Bethe ansatz wave function
sum of plane-wave product states, characterized by a se
single-particle momenta$pn% and an amplitude for each
plane-wave state which features a different permutation
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12 198 55RAHUL SIDDHARTHAN AND B. SRIRAM SHASTRY
these momenta. All that is required for calculation is t
two-body phase shiftu(p2p8) for two particles with mo-
mentap and p8;8 then equations for thepn can be written
down and solved. These equations are

pn5
2p

L
I n1

1

L (
m51
mÞn

N

u~pn2pm!. ~8!

Here I n are integers for oddN or half-odd-integers for even
N, no two of which are equal. The energy~eigenvalue of
HS) is then given by(pn

2 , so that the energy of the corre
sponding Toda problem would be(a2pn

2 .
This solution is derived in the limit when the particles a

far apart, weakly interacting, and in approximately plan
wave states, so naı¨vely one would not expect the results
hold at higher densities. It is known, however, that th
‘‘asymptotic Bethe ansatz’’ holds at all densities in the lim
N→` ~the thermodynamic limit! provided the virial expan-
sion has no singularities as a function ofd.11 For this par-
ticular problem, it turns out that the solution is also exact
arbitraryN in the limit h→0. Otherwise, though not exact,
is often a very good approximation.

The total momentum is

ptot5
2pd

N (
n51

N

I n . ~9!

Owing to the Galilean invariance of the 1/sinh2 model, a
state with zero total momentum can always be boosted
have a total momentumptot by adding an appropriate intege
to all the quantum numbers, at a net energy costptot

2 /N,
independent of the coupling constant. We can take the
pression for the two-body phase shift in the 1/sinh2 system
from Sutherland:

u~p!52@argG~11S1 ipa!2argG~11 ipa!#, ~10!

whereS(S11)52ga25(h/2)e1/ad. Since we are taking the
dilute limit, S→` for any value ofh, and we can write

S5Ah

2
e1/2ad. ~11!

In the limit S→`, the phase shift~10! becomes

u~p!52pa ln S22 Im ln G~11 ipa! ~12!

@we can show this by using Stirling’s expansion for largeS
in the firstG function in Eq.~10!#. We substitute forS from
Eq. ~11!, put the resulting phase shift into the Bethe equ
tions ~8!, noting that(m(pn2pm)5Npn2ptot whereptot is
given by Eq.~9!, and rearrange@thepn on the left of Eq.~8!
cancels with a term from the phase shift, leaving on
O(1/L) and smaller terms#. Defining dimensionless ‘‘mo-
menta’’ bykn5pna, dividing out the commond, and taking
ad→0 we end up with the equations to be solved:

akn52
p

N S I n2 SI n
N D1

1

N (
m51
mÞn

N

Im ln G@11 i ~kn2km!#,

~13!

where for convenience we have written
-

r

to

x-

-

a5
1

2
lnS h

2 D ~52 ln \!. ~14!

Note that the total momentum of the system,ktot
5(ad)(2p/N)( j I j , goes to zero asad goes to zero, so tha
we are working in a zero-momentum frame. This is a con
quence of the length of the underlying 1/sinh2 model going
to infinity ~on the scale of the range of the potential!, the
momentum being inversely proportional to the syste
length. However, our simultaneous scaling up of the inter
tion by an exponential factor~7! ensures that the individua
particle momenta remain finite. Thus we have gone from
1/sinh2 ‘‘gas’’ with particles described by actual position co
ordinates, to a lattice with particle positions described
displacements from lattice sites, and no net moment
which is what we wanted. The energy of this Toda proble
is (kn

2 . Since the problem continues to be Galilean invaria
a finite momentumktot can always be introduced into th
above equations by addingaktot /N to the right-hand side, a
a total energy cost ofktot

2 /N. This ktot need not be quantized
since as the length of the underlying 1/sinh2 model expands
the quanta of momentum become infinitesimal.

The I n in Eqs. ~8! and ~13! are the quantum numbers o
the system, and uniquely specify the state of the system.
momentakn are ordered in the same way asI n @despite the
apparently opposite sign forh.2 in Eq. ~13!# and we as-
sume that the order is ascending inn. In the ground state the
I n are successive integers~or half integers!, generally taken
to be centered about zero@though it does not matter here
since one subtracts their average value in Eq.~13!# and in the
excited states one or more of them are increased by var
integer values, always making sure no two of them have
same value.

Although we took the dilute limit in arriving at thes
equations, the Toda Hamiltonian~1! which they describe
contains no reference to the lattice constant, and there
they are valid at all densities, or at least at all densities s
ficiently low that the particles do not cross each other.~The
wave function will give the typical ‘‘spread’’ inun and we
must assume, for physical reasons, that the interparticle s
ration is much larger than this.! Mertens’ treatment,9 if fol-
lowed through, gives the same equations as the above
with an extra term on the right-hand side equal
(2pad/N)(I n ~which is the abovektot ; he does not conside
a limiting case of the 1/sinh2 model and does not tak
d→0). This term has no significance and, in particular, m
not be confused with the phonon or soliton momenta~Sec.
VII !. In fact, it may be subtracted out, since it is independ
of n, to recover our equations. We prefer this, the rest fram
because it is the frame in which one normally discus
phonons and also because it is convenient in making con
with Gutzwiller’s work.

Since one can add a constant quantity to theI n without
effect on the equations, they contain some redundan
N21 quantum numbers are enough to characterize the
tem. We could define new quantum numbers by

nn5I N2n112I N2n21, n51, 2, . . . ,N21, ~15!
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55 12 199QUANTIZING THE TODA LATTICE
so that thenn may take any integer value from 0 upward
~These are the number of ‘‘holes’’ between successive in
gersI n , starting from the right.! These are, in the harmoni
limit, the phonon occupation numbers~Sec. V!.

Equations~13! can be solved numerically, for instance, b
the Newton-Raphson method, for moderate values ofN with-
out much difficulty if one has a good starting guess. If n
the numerical methods tend to converge to spurious solut
where the ordering of thek’s is not the same as that of th
I ’s.

Alternatively, one could pass to the thermodynamic lim
and write down integral equations from which various th
modynamic quantities could be calculated, as in Yang
Yang’s treatment of thed-function Bose gas. This has bee
done by Mertens and by Hader and Mertens.9 We define
(N/2p)j(k)dk as the number ofk’s betweenk andk1dk.
Then Eq.~13! yields the integral equation for the density
the k’s in the ground state which is, in agreement w
Mertens,

j~k!522a1
1

pE2B

B

j~k8! Rec„11 i ~k2k8!…dk8 ~16!

(c is the digamma function!. For reasons given in the nex
section, Matsuyama12 gets the same equation for the dist
bution of the zeros of Hill’s determinant in the Gutzwille
method~but without the inhomogeneous part since he ta
\51 or h52).

IV. COMPARISON WITH GUTZWILLER’S
FORMULATION

The Bethe equations for the Toda lattice can also be
rived from Gutzwiller’s solution of the problem, if some ap
proximations are made. This helps clarify what thek’s mean
in the nondilute limit, in particular, their corresponden
with the classical variables, and also tells us when our
proximations are valid. We briefly describe Gutzwiller
method and the resulting quantization conditions.

Gutzwiller, following the classical ideas of Kac and va
Moerbeke,3 tries to write the wave function of theN-body
lattice as a series involving the wave functions of t
(N21)-body open lattice obtained by removing one partic
Suppose these (N21)-body wave functions are
Ck1k2•••kN21

; the indicesk correspond to the classical var

ables m i @the eigenvalues of the truncated (N21)-
dimensional Lax matrix#. For the open chain they are pure
imaginary but when using them as a basis in the closed c
Gutzwiller shows that one must extend them to have a
integer part; in other words,k i5 ir i1ki , where ki is an
integer. One aims to find the spectrum of ther ’s. It turns out
that if one writes the wave function a
C5(Ck1k2•••kN21

Ck1k2•••kN21
, where the sum is over th

integers ki , one can get a solution of the form
Ck1k2•••kN21

5(k12k2)(k22k3)•••r k1
sk2

tk3••• provided

the coefficientsr , s, . . . satisfy identical recursion relation

i Nr k111 i2Nr k215D~k!r k , ~17!
.
-

,
ns

t
-
d

s

e-

p-

.

in
al

whereD(k) is basically the characteristic polynomial of th
Lax matrix ~see the Appendix!:

D~k!5\NkN1E\N22kN221 iA3\
N23kN231•••

1~2 i !N21AN21\k1~2 i !NAN , ~18!

and \ is defined in Eq.~2!. Suppose that its zeroes a
i e1 ,i e2 , . . . ,i eN ; thenD(k) can also be written as

D~k!5)
n

~\k2 i en!. ~19!

The same recursion relations are derived by Sklyan6

and by Pasquier and Gaudin,7 from different points of view.
They have two independent solutions, differing in their b
havior at1` and2`. Gutzwiller sets

r k
~1!5

~21!kr 8

\NkP iG~11k2 i e i !
r k8 ,

r k
~2!5

~21!kr 9

\2NkP iG~12k1 i e i !
r k9 , ~20!

where r 8 and r 9 are coefficients to be matched later wh
‘‘joining’’ the two solutions, andr k8 and r k9 are two new
variables which~it turns out! are complex conjugate. The
have solutions

r k85U 1
61

D~k11!
0

1

D~k12!
1

61

D~k12!

1

D~k13!
1

0 �

U ,
r k95U� 0

1
61

D~k23!

1

D~k22!
1

61

D~k22!

0
1

D~k21!
1

U . ~21!

The former approaches a constant ask→1`, and the latter
approaches a constant ask→2`.

If one tries to join these solutions, one gets the cons
tency condition
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D~k!5U� 0

1

D~k21!
1

61

D~k21!

1

D~k!
1

61

D~k!

1

D~k11!
1

61

D~k11!

1

D~k12!
1

61

D~k12!

0 �

U50. ~22!
ll

-

i-

e
e
n
gl

s

q.

r

er

ed
-

l
this

ich
pt

Eq.
Here the1 signs are for evenN, the2 signs for oddN. This
determinant hasN purely imaginary zeros, which we ca
ir1 , ir2 , . . . , irN ~in ascending order!. ~If N is odd and
all odd integralsA3 , A5 , . . . vanish—this happens, for in
stance, in the ground state—then there are onlyN21 zeros
but in that casek50 also satisfies the quantization cond
tions below, and so we include it among ther ’s.! It is clear
that in addition to these,irn1 l , wherel is an arbitrary inte-
ger, are also zeros of the determinant.

The determinant is part of what we need to find the sp
trum of r, but it is not enough since we do not know th
constants of motion inD(k). We need more quantizatio
conditions; to supply these Gutzwiller defines an an
f5(1/2)arg(r 8/r 9)5arg(r 8) since r 8 and r 9 are complex
conjugate. If one normalizes the solutions byr ir

(1)5r ir
(2)51,

one finds

f5arg~r 8!5 Im lnS \ iNrPmG~11 i @r2em# !

r ir8
D . ~23!

Thenf is a monotonically increasing function ofr. Abbre-
viating f(rn) as fn , Gutzwiller’s quantization condition
reads

f15f25•••5fN ~modulop!. ~24!

In addition he assumes that

f11f21•••1fN50. ~25!

If both of these conditions are satisfied, the allowed value
fn are very limited; they can only be of the form
I np1mp/N, wherem is the same integer for alln andI n is
an arbitrary integer, different for differentn. But fn is an
increasing function ofrn ; hence, if thern are ordered, we
must have theI n also in increasing order. Then, from E
~25!, we get

(
n

pI n1mp50, ~26!

which yieldsm52(I n . So we have, finally, expressions fo
Gutzwiller’s phase angles:
c-

e

of

fn5pS I n2 (I m
N D 5arg r 8

5argS \ iNrnPmG~11 i @rn2em# !

r irn8 D
52aNrn1(

m
Im ln G~11 i @rn2em# !

2 Im ln r irn8 , ~27!

or

arn52
p

N S I n2 (I m
N D1

1

N(
m
Im ln G~11 i @rn2em# !

2
Im ln r irn8

N
~28!

@a5 1
2 ln(h/2)52 ln \#. These, then, are the exact Gutzwill

equations which can be combined with Eq.~22! to calculate
the rn anden ; once the latter are known, all the conserv
quantities can be found. TheI n in this equation are the quan
tum numbers of the system, and are the same as theI n in the
earlier, very similar Bethe ansatz equations~13!— to which
these equations in fact reduce provided~1! the last term can
be ignored and~2! rn is very close toen for all n. These
things can happen under two circumstances.

There is an argument in Ref. 12 showing that thern
should approachen as N→` ~and one knows on genera
grounds that the asymptotic Bethe ansatz is correct in
limit !. This also happens as\→`, for finite N. We can
understand the latter fact intuitively as follows: As\→`,
the polynomialsD(k) tend to infinity.~This is not obvious—
for example, they do not vanish as\→0 —but it will be
demonstrated in Sec. VI!. Then they will be small only in a
small region close to their zeros, and so the matrix of wh
Eq. ~22! is the determinant tends to the unit matrix exce
whenrn lie in some small regions surroundingen . Thus the
determinant can only vanish when ther ’s approach the
e ’s; otherwise it is close to unity. For the same reason,
~21! tends to unity~its zeros will be close toirn1 l50,
l>1, and fork5 i en all theD ’s in the denominators will be
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55 12 201QUANTIZING THE TODA LATTICE
very large!. Then the last term in Eq.~28! will vanish, and all
the r ’s can be substituted withe ’s, and we recover exactly
the Bethe ansatz equations.

Thus the Bethe ansatz is actually more accurate in
quantum limit than in the classical limit. Indeed, even f
\51 andN 5 4–6, the agreement with Matsuyama’s exa
diagonalization results13 is excellent~one gets exactly his
answers, to his reported accuracy!, and this looks neither like
a thermodynamic limit nor like an extreme quantum limit

One might imagine that the Bethe ansatz equations co
be improved by subtracting the term (1/N)Im ln rikn8 , but it

turns out that this term is always small compared to
others and does not greatly improve the results, while i
computationally expensive to include; therefore we ignor
in all cases.

Finally, we observe that Eq.~28! does not remain the
same if ther ’s ande ’s are increased by a constant quanti
because of the last term which does not appear in the B
ansatz equations. We cannot therefore transform these e
to a nonzero-momentum frame.

V. HARMONIC LIMIT „HIGH h…

For largeh ~the classical limit! the lattice is harmonic, a
least for sufficiently small quantum numbers. The largerh is,
the larger the energies and the quantum numbers require
anharmonicity to show up. Treating this case makes clear
mapping between the phononic quantum numbers and
I n .

First, the exact solution. There areN21 normal modes in
the system, characterized by ‘‘phonon momenta’’ or wa
numbersqn52pn/N, wheren51, . . . ,N21. In our nota-
tion the coefficient of theu2 terms in ~1! is h/2. Then the
frequencyvn of thenth mode is

vn52A2h sinS qn2 D . ~29!

An arbitrary state of the system is then characterized b
set of nonnegative integers$nn% ~phonon occupation num
bers!. The energy of such a state is

E5Nh1 (
n51

N21

~nn1
1
2 !vn

5Nh12A2h (
n51

N21

~nn1
1
2 !sinS pn

N D . ~30!

The first term arises from the constant term in the Tay
expansion of the exponential potential. For the ground st
we setnn50 and find

E5Nh1A2h cotS p

2ND , ~31!

which for largeN has an expansion

E5Nh1A2hF 2p N2
p

6N
1O~1/N3!G . ~32!

This expression agrees toO(1/N) with the result of solv-
ing Eq. ~13! numerically for ten particles, and for variou
e
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‘‘large’’ h: 10, 100, and higher. The ground state is when
I n are contiguous, with no ‘‘holes’’; the energy calculate
from Eq. ~30! is in good agreement with the value obtain
from the Bethe ansatz. Numerical calculations show that
nn which describe a phononic state are exactly the numb
defined in Eq.~15!. In other words, the number of phonon
in a moden is given by the number of holes betweenI N2n
and I N2n11.

This prescription accounts for all the states of the h
monic lattice, and the quantitative agreement is very cl
for low phonon numbers~the higherh is, the higher the
allowed phonon numbers before anharmonic effects s
showing up!. Figure 2 gives the dispersion curve for sing
phonons; only for lowh does it differ from the harmonic-
lattice curve. Calculations show that the energies of phon
are additive~provided there are not too many of them!, and
so multiphonon states are also accurately described.

VI. STRONGLY QUANTUM ANHARMONIC LIMIT
„h˜0…

In the large-h case, increasing occupation numbers w
bring out anharmonic corrections in the energy, and mo
with very high occupation numbers will resemble solitons.
Sec. VII we demonstrate this with calculations, but ifh is
not large, anharmonicity shows up even in low-lying mod

Having looked at the harmonic limit in the last sectio
we now look at the opposite limit of the lattice,h→0; in this
case it turns out that the phase shift simplifies greatly, a
we can in fact solve Eq.~13! for kn—an uncommon phenom
enon in Bethe ansatz calculations.

Equation~12! for the phase shift is

u~k!52k lnS22 Im lnG~11 ik !,

FIG. 2. Phonon energies@for the Hamiltonian~3!, in units of
\#, plotted against wave numberq for varioush. The solid line is
the harmonic-lattice curve and the curves for all ‘‘large’’ values
h lie on top of it. The dotted line is forh52, the dashed line
h50.1, and the dot-dashed lineh50.01. The range ofq is @2p,
p#. Energies are in units ofA2h @using the Hamiltonian~1!#; or
with the Hamiltonian~3! energies are in units of\]. Here and in
later graphs, units are chosen to get anh-independent curve in the
largeh limit.
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12 202 55RAHUL SIDDHARTHAN AND B. SRIRAM SHASTRY
and ash→0, k also becomes small. In this limit the term
involving the G function becomes 2gk, where
g50.577 215 . . . isEuler’s constant. A quick way to deriv
this result is to assumeS is a large integer in Eq.~10!
and to expand the firstG function as a produc
(S1 ik)(S211 ik)•••(11 ik)G(11 ik), and if k!1, the
argument of this isk/S1k/(S21)1•••1k 1 a piece which
cancels the second term in Eq.~10!. As S→`, using the
definition g5 limn→`11(1/2)1(1/3)1•••1(1/n)2 lnn,
the phase shift becomes

u~k!52k~ lnS1g! ~33!

~this is actually correct to quadratic order ink), which when
substituted in Eq.~8! yields

kn5
2pd

N
I n1

2d

N
~g1 ln S! (

mÞn
~kn2km!,

5
2pd

N
I n1

2d

N
~g1 ln S!~Nkn2ktot!,

and on substituting forktot from Eq. ~9! and rearranging, we
find

kn52
p~ I n2SI n /N!

N~g1a!
. ~34!

~Note that for very smallh, a will be large and negative, an
so the negative sign above is deceptive; thek’s are ordered in
the same way as theI ’s.! Equation~34! thus giveskn for any
excited state specified by any integersI n , and the energy is
(kn

2 as before. Note that the system now looks like a f
Fermi gas or a hard-sphere gas, which indeed is the un
lying model behind the asymptotic Bethe ansatz~we derived
our results as a limiting case of a gas of particles interac
by a 1/sinh2 potential!. There is a continuous transition from
this system to the classical Toda lattice ash is increased. As
we show below, even in this limit the excitations retain th
qualitative features.

In the ground state, theI n are contiguous and may b
taken to be 1, 2,. . . ,N. Then a simple calculation gives th
ground state energy as

E05AN~N221!/12'AN3/12, ~35!

where

A5
p2

N2~a1g!2
. ~36!

Now we consider excitations in which the lastl I n are
excited by an amountm—we insertm holes betweenI N2 l
andI N2 l11, or in phonon language, we addm phonons in the
l th normal mode. I n are now 1, 2, 3, . . . ,N2 l ,
N2 l1m11, N2 l1m12, . . . ,N1m11. Again, one can
calculate the excitation energy; it is

E2E05A~Nl2 l 2!Sm1
m2

N D . ~37!

We consider several cases.
e
er-

g

r

~1! m small, arbitrary l. In this case, we get approxi
mately

E2E05A~Nl2 l 2!m. ~38!

This looks very much like a phonon dispersion; it rises fro
zero to a maximum at the zone boundary, where its sl
dies off. It is linear in the number of ‘‘quanta’’m, and for the
lower-energy modes~lower l ) it is also linear in mode num-
ber or wave number~i.e., the second mode has twice th
energy of the first mode, and so on!.

Moreover, for phonons we know that the zero-point e
ergy in each mode is half the energy of one phonon; we
therefore sum half the above expression overl , for m51,
and see, as a check, whether we recover the zero-poin
ergy ~35!. And indeed, we do get

(
l21

N21
1
2A~Nl2 l 2!5 1

12AN~N221!,

in agreement with Eq.~35!.
The excitations are noninteracting—if we have seve

such excitations in different modes, their combined energ
the sum of their individual energies, if there are not too ma
of them. These hole excitations are thus quite analogou
phonons, though they cannot be derived by approxima
the lattice to a harmonic lattice.

~2! l51, m large.These are the excitations which on
would expect to be solitonlike. In this limit, we get

E2E05A~N21!Sm1
m2

N D . ~39!

For largem the energy is thus quadratic inm. This energy,
however, is measured in the zero-momentum frame whic
not the frame in which one normally discusses solitons. T
question of what is the correct frame is discussed in the n
section, where dispersion relations are derived.

~3! l small, m large.From Eq.~37! we note that ifl is
small, the excitation energy is proportional tol . For instance,
the energy forl52 is twice that forl51. It is tempting to
suppose that this is a two-soliton state, since the energie
solitons are additive provided that they are few in numb
and hence well separated ‘‘most of the time.’’ In that ca
there would be a continuous transition between a phono
excitation of the second normal mode and the two-soli
state, just as there is between the excitation of the first n
mal mode and the one-soliton state~cf. Fig. 1 and Sec. IX!.

If the last two integers are excited by different amoun
one would presumably have two solitons with different e
ergies. Here, too, the total excitation energy is the sum of
individual energies. Carrying this picture further, a
(N21)-soliton state ~with all solitons having equa
energies—l5N21,m large! has all the particles except on
moving in one direction like hard spheres, and is related b
Galilean transformation to a one-soliton state. AnN-soliton
state~with all solitons identical! is simply a uniform transla-
tion of the lattice as a whole. One cannot put more thanN
solitons in anN-particle lattice. The last few sentences a
speculative, but they indicate the possibility of writing a
arbitrary excited state as a kind of nonlinear superposition
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55 12 203QUANTIZING THE TODA LATTICE
solitons.~To make this more convincing, read cnoidal wav
for solitons.! Much the same thing is done in the classic
periodic system~Sec. IX!.

VII. DISPERSION RELATIONS FOR PHONONS
AND SOLITONS

We now find the dispersion relations for phonons a
solitons. First, however, we clarify the meaning of the m
mentum of these excitations.

As remarked earlier, the fact that we take the dilute lim
gives us a zero total momentum. Mertens’ treatment, on
other hand, yields a finite momentum(kn proportional to
(I n and to the densityd. This momentum is not a physicall
relevant quantity. It is not the momentum of a phon
~though it is proportional to it!, since it depends onh while
the phonon momentum is a purely geometrical quantity
pending only on the system size and lattice spacing. Nor
the momentum of a soliton~it is not even proportional! since
the soliton momentum does not depend on the lattice s
ing.

The phonon momentumq is the wave number of an os
cillatory excitation. For anN-particle latticeq hasN equally
spaced values generally taken to lie between2p andp ~the
first Brillouin zone! in units of the inverse lattice spacing
The soliton momentum is a little trickier to define in th
quantum case. We discuss it below.

First consider the small-h limit. We consider a single-
phonon, occupying normal moden; its excitation energy,
from Eq. ~38! with l5n andm51, is E2E05A(Nn2n2)
and its wave numberq, in units of inverse lattice spacing, i
2pn/N ~modulo 2p; we can choose the value to lie betwe
2p andp.! Note that(I m5n in this case, if it was taken to
be zero in the ground state, and soq is proportional to this
quantity. This givesv, the frequency~or the excitation en-
ergy of one phonon, since\51), in terms ofq as

v5
p

2~g1a!2 Fq2
q2

2p G , 0,q,2p, ~40!

and the phase velocity of sound is

vp5
p

2~g1a!2 F12
q

2p G , ~41!

while the group velocity is

vg5
p

2~g1a!2 F12
q

p G ~42!

~in units of the lattice spacing!.
In the classical limit, of course, the phonons are what o

would find from a harmonic approximation. For a mode w
wave numberq the energy is

E2E052A2h sin12q, ~43!

which yields the phase velocity~in units of lattice spacing!

v p52A2h
sin12q

q
~44!

and the group velocity
s
l

d
-

t
e

-
it

c-

e

v g5A2h cos12q. ~45!

The relations are different in the two cases, but have so
similar features, and at intermediate values ofh one obtains
interpolations between these. Dividing the energies of ex
tation byA2h one gets results independent ofh in the clas-
sical limit \→0 or h→`. The results are plotted in Figs.
and 3~for a 19-particle lattice!. One observes that forh.2
the dispersion is more or less the classical harmonic-lat
dispersion, while it begins to deviate forh,2. This is fur-
ther emphasized by Fig. 4 which shows how the lon
wavelength sound velocity varies witha52 ln\.

FIG. 3. The velocity of sound,dE/dq, plotted againstq for
varioush for a 19-particle lattice. The solid line is the curve for th
harmonic lattice, valid for largeh. The crosses representh52, the
circlesh50.1, and the asterisksh50.01. Units are as in the previ
ous graph for the phonon dispersion.

FIG. 4. Variation of long-wavelength sound velocity, in th
same units as in Fig. 3, as a function ofa@52 ln\5(1/2)ln(h/2)#.
Note thata50 seems to divide the harmonic and quantum anh
monic regimes, i.e., the region where the harmonic approxima
is valid for small excitations and the region where the zero-po
motion is so large that the harmonic approximation is not valid e
in the ground state.
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When we consider a soliton, we have to make clear w
frame to view it in to obtain an appropriate momentum.
the classical case it is usually viewed in the frame wh
‘‘most’’ of the particles are at rest and only a localized e
citation is moving. We would like to choose a frame in t
quantum case such that the dispersion agrees with the
sical formula; in particular as the energy of the excitati
increases it behaves more and more like a single hard sp
moving in a stationary background and the energy tend
k2 ~plus the ground-state energy!.

We identify a soliton with a state wherekN is greatly
excited compared to all the otherk’s. We can achieve the
k2 dispersion if we work in a frame where thek’s excluding
kN are~roughly speaking! centered around zero. In that ca
for large excitationskN@kn (n,N), the total momentum is
very nearlykN , the total energy is nearlykN

2'k2, and the
quadratic dispersion is achieved.

However, exactly how to define the frame is not cle
There are various possibilities—one could choose the a
age of allkn exceptk1 andkN to be zero~so that thek’s are
not very much displaced from the ground-state value!; one
could make the average ofkn including k1 but excepting
kN zero; one could fix one of thek’s ~say k1, kN/2 or
kN21) to its ground-state value; and so on. These possib
ties are plotted in Fig. 5, forh51000, and the dispersion fo
a classical cnoidal wave of wavelengthN plotted for com-
parison, calculated from the formula forr n5un2un21 given
in Ref. 1 ~cf. Sec. IX!. Of the possibilities listed the secon
~where thek’s exceptingkN average to zero! seems the clos
est to the classical curve, but the agreement is imperfect
the ‘‘correct’’ frame would appear to be something close b

FIG. 5. Dispersion curves for the classical and quantum cno
waves. The solid curve is the classical cnoidal wave or solit
viewed in the appropriate frame. The dotted curve is the quan
cnoidal wave in a frame in which(n51

N21kn50. This lies closest to
the classical curve among the cases considered. The dashed
corresponds to the frame in which only the ‘‘inner’’k’s are cen-
tered at zero, i.e.,(n52

N21kn50 ~as in the ground state of the system!.
The dot-dashed curve corresponds tokN21 being fixed at its
ground-state value—implausible perhaps but included here for
riety. All curves are forN510 and ~in the quantum case! for
h51000. The Hamiltonian~3! is used; in other words, energie
from the Hamiltonian~1! are plotted in units ofh.
at
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slightly different. In plotting these curves we have used
Hamiltonian~3!, whose limit as\→0 is the classical prob-
lem in the correct units. Figure 5 shows the dispersion cur
for h51000.

Figure 6 shows the particular dispersion curve obtain
by averagingkn,N to zero, for varioush. As in the case of
the phonon curves, the soliton dispersions lie on top of e
other for largeh but begin peeling apart forh'2; ash is
reduced farther they move farther and further away. Thus
find again thath52 or\51 is a boundary between classic
and quantum regimes. For higherh the dispersions are es
sentially the classical ones apart from the discreteness o
energy levels. For lowerh the results deviate significantl
from the classical ones. All the curves above have been
culated for a ten-particle lattice.

In theh→0 limit we have thekn given by Eq.~34!; for
the ground state we take theI n to be centered at zero@i.e.,
they range from2(N21)/2 to (N21)/2 for oddN or from
2N/2 toN/2 for evenN#, and for the soliton we exciteI N by
an amountm. Then(I n5m. Clearly if we want thekn ~for
n,N) to be centered at zero, we must add to Eq.~34! a
quantity to cancel the(I n /N in the numerator, and instea
subtract(n51

N21I n /(N21). In this new frame, we have

kn52
p@ I n2(m51

N21I m /~N21!#

N~g1a!
, ~46!

k5( kn52
p~m1N/2!

N~g1a!
, ~47!

E2E05( kn
22E05

p2

N2~g1a!2 Fm21Nm1
N~N11!

4 G .
~48!

The energy formula is not very different from Eq.~39!. The
details of this formula should not be taken very seriou

al
,
m

rve

a-

FIG. 6. The soliton dispersions, plotted in a frame in whi
(n51
N21kn50. Forh.2 all the curves lie on top of each other; the

are shown by the solid line. The dashed line is forh52 when they
just start peeling apart. The dash-dotted line and the dotted line
for h50.1 andh50.01, respectively. The energies are in units
h; i.e., the Hamiltonian~3!, in terms of\, is used.
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55 12 205QUANTIZING THE TODA LATTICE
since we are not clear about what the appropriate frame
which to view the soliton. But the essential idea, that
energy is quadratic in the momentum at large energies,
remain. In this frame the energy is in fact~apart from a
constant piece! purely quadratic in the momentum—there
no linear term. This can be reconciled to our picture of
low-h limit as a hard sphere gas, so that at any time
entire energy apart from the zero-point contribution com
from the kinetic energy of one particle, the other partic
being at rest.

Finally, if we wish to compare our system to the fre
Fermi gas which it resembles in one limit, we could look
the ‘‘particle-hole excitation spectrum’’ commonly plotte
for such systems. To do this we start from the ground st
with contiguousI n ; pick up one of these, say,I m , move it to
I m8 ~where I m8 .I N since all other states are occupied!, and
define the momentum of this ‘‘particle-hole excitation’’ a
Q52p(I m8 2I m)/N. ~This is basically the total phonon mo
mentum of such an excitation.! Then one gets a one
parameter range of energies for everyQ, as shown in Fig. 7.
The harmonic andh→0 limits look similar, qualitatively;
the phonon or hole branch~the lower edge forQ,2p) is a
sine curve in the former case and a parabola in the latter,
the particle branch~the upper edge and the lower edge f
Q.2p) is a straight line in the harmonic limit and a curv
~which indicates nonlinearity! otherwise. The upper edge o
the particle hole continuum has been identified with a ‘‘so
ton’’ by Sutherland, and corresponds to promotingkN from
the ground-state configuration to one with a larger value,
is thus essentially identical to our picture explained above
study of the quantum numbers of the solitons and
phonons leads to a suggestive ‘‘phonon decomposition’
the soliton: We can view the soliton creation operatorAq

schematically in terms of a phonon creation operatoraq
† as

A~2p/N!m
† ;@a2p/N

† #m, ~49!

i.e., a particular kind of highly symmetric multiphonon sta

FIG. 7. Particle-hole excitations. In between the bounding up
and lower curves lies a continuum of allowed energy values co
sponding to eachQ whereQ is as defined in Sec. VII for a single
particle-hole pair. The upper graph corresponds to the harm
limit, the lower graph to theh→0 limit ~the energy scales ar
different in the two graphs!.
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VIII. CORRELATION FUNCTIONS, FINITE-SIZE
EFFECTS, AND CONFORMAL THEORY

We now turn to the issue of correlation functions of t
Toda lattice, making contact with the theory of conform
invariance in this class of systems. Conformal invariance
given considerable insight into correlation functions of qua
tum many-body models having critical behavior, as typifi
by a vanishing of excitation energies or power law corre
tions, and useful reviews of this fast-growing field are to
found in Refs. 14 and 15.

Let us first note that the quantum Toda lattice in
ground state is not quite a lattice: The Bragg peaks
melted due to zero-point motion. In the harmonic limit this
simple to see, since we can write the displacement in te
of the phonon creation operators and the phonon disper
vq52vusin(q/2)u as

un5
1

AN(
q

exp~ iqn!
1

iAvq

~aq
†2a2q!, ~50!

whereby ^un
2&5(1/N)((1/vq);(1/pv)ln(N). The phonon

velocity v5A2h in the harmonic limit of the Toda problem
The structure function at the first reciprocal lattice vec
G5(2p/N) is

^rGrG&5(
m,n

^ei2pune2 i2pum&,

^ei2pune2 i2pum&5e22p2^~un2um!2&

>e24p/v ln~ um2nu!5
1

um2nu4/pv
, ~51!

where we have used the Gaussian cumulant theo
^exp(a)&5exp(1/2̂a2&) and the logarithmic integra
(1/N)(@12cos(qr)#/vq;(1/pv)ln(r/r0). We thus see tha
the Toda lattice may be expected to have power law co
lations for allh, since it has low-energy excitations for a
h, namely, the phonons.

A characteristic of conformally invariant theories is th
‘‘central charge’’c. One way of checking for conformal in
variance is to compute corrections to the ground-state en
for a finite-sized system, which is expected to have a beh
ior

E~L !5Le`2
cpv
6L

1O~1/L2!, ~52!

wherev is the velocity of the low-lying excitations, such tha
a tower of excited states exists with ener
v2p/L3 integer. A glance at Eq.~32! shows that in that
limit of large h we havec51, as indeed does the initia
1/sinh2 model. The case ofc51 usually leads to exponent
varying continuously with coupling constants, and hence
~51! is consistent with this possibility. In the present mod
we must, however, first establish that the asymptotic Be
ansatz gives the correct energy toO(1/N) orO(1/L). This is
not guaranteeda priori by any theoretical argument and mu
be checked for self-consistency.~Incidentally, in the Toda
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lattice we are at a fixed density, and so we will not dist
guish betweenL andN.! The internal check performed is t
compute the velocity at a fixedh and to compute the energ
for variousN and to check against Eq.~52!.

First we note that in the extreme anharmonic limit equ
tion ~35! for the ground state in the low-h limit does indeed
give the same sound velocity as Eq.~41! or ~42!, and so in
the low-h limit c51 exactly, as it is in the harmonic limit

We performed the calculation forh52, 10, 100~Table I!.
As in Figs. 2 and 3, we use the Hamiltonian~3! and units of
\ @equivalently, the Hamiltonian~1! with units ofA2h#; in
these units the sound velocity for the harmonic lattice i
exactly. From these results, we get

vc51.076460.0006 ~h52!,

1.03560.003 ~h510!,

1.0160.03 ~h5100!.

On interpolating the 19-particle results of Fig. 3 for q50, we
get the estimatesv51.08,1.04,1.01 forh52,10,100, respec
tively, with uncertainties in the second decimal place. Th
we get for the central charge

c51.0060.01 ~h52,10!,

1.0060.03 ~h5100!.

The uncertainty in the casesh52, 10 arises mainly from the
inaccuracy in our determination ofv. The results seem to
indicate thatc is equal to 1 at all values, and moreover it
reproduced correctly by the Bethe ansatz even ath5100,
which is well into the ‘‘classical’’ limit. It thus appears tha
the error in energy per particle goes, at worst, as the inv
cube of the number of particles. The error bars could
reduced by increasing the system size further.

In the anharmonic limit, in fact, the series stops the
(E/N has only a constant piece and a 1/N2 piece! while in
the harmonic limit all odd powers 1/N3, 1/N5, and so on are
missing. One might conjecture that this is the case at
values ofh. Forh52 we took the ground-state energies p
particle for variousN, subtractede` and the 1/N2 piece, and
fitted the results to power series in 1/N starting atN23. The
result was a coefficient of 0.02160.006 for theN23 term
and21.160.2 for theN24 term. Thus the coefficient of the

TABLE I. Ground-state energy as a function of system size

E/N ~energy per particle!
N h52 h510 h5100

29 1.675512397777 2.890224040772
33 1.675665073759 2.890370838890
41 1.675847391894 2.890546128059
49 1.675947956073 2.890642813964
57 1.676009234239 2.890701728785 7.713369630
65 1.676049312911 2.890740261674 7.713407380
81 7.713452036110
97 7.713476466168
113 7.713491273955
129 7.713500922044
-

-

1

s

se
e

e

ll
r

1/N3 term does seem to be very nearly zero. Forh510 and
100 the numbers we obtained did not allow us to make s
fits—the error bars turned out to be much larger than
values themselves. We conjecture that the coefficient of
1/N3 term vanishes at allh, but for highh the Bethe ansatz
may not be accurate to this order inN and may be unable to
reproduce this result. We are unable to make a statem
about higher odd powers.

Accepting that the Toda lattice is ac51 theory, we can
establish the power law of the density correlator as in E
~51!, without too much detailed calculation, on using t
Galilean invariance of the model. The theory of conform
invariance~see, e.g., Ref. 15! says that if we have an excita
tion that boosts the total momentum byktot , then the change
in energy is

dE52pvx/N, ~53!

x5S ktot2p D 2m, ~54!

a52m, ~55!

wherea is the exponent determining the decay of a prima
operator. However, Galilean invariance implies that

dE5
ktot
2

N
; ~56!

hence we find

a5
4p

v
. ~57!

Comparing with the harmonic limit result~51!, we see that
the primary operator may be identified with the density flu
tuationrG and hence the result~51! is true at allh provided
we substitute the appropriate value ofv(h). A similar result
is well known to be true for the 1/r 2 models for the density
correlation function, but unlike in that case, there is a di
culty in defining a ‘‘bosonic’’ correlator, since we are alway
working at a fixed density, and hence the compressibility
zero.

IX. COMPARISON WITH THE CLASSICAL KAC –van
MOERBEKE FORMULATION

To summarize the above, we now have a picture of h
the k’s in the Bethe ansatz~or ther ’s in Gutzwiller’s treat-
ment! behave, in the ground state and in the excited states
the ground state theI ’s and therefore thek’s are all closely
spaced. In the excited states the separations between
widen. If there is a gap ofm integers betweenI N2n and
I N2n11, the gap betweenkN2n andkN2n11 widens and one
hasm phonons in thenth normal mode. If the gap betwee
thek’s becomes very large, the excitation becomes solito
In particular, for n51 one has a one-soliton state; fo
n52, a two-soliton state~with equal amplitudes!; and so on.

We now compare this description with the description
the system in the classical variables of Kac and v
Moerbeke.3,1 Briefly they use the variables
m1 ,m2 , . . . ,mN21 which are the eigenvalues of a truncat

0
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Lax matrix obtained by striking off the first row and colum
~i.e., removing the first particle from the problem!. These
m ’s are the momenta of the particles in the remaining op
chain if the system is dilute. Kac and van Moerbeke sh
that thesem ’s are confined to theN21 closed intervals
where the characteristic polynomial of the Lax matr
ulI2Lu, is equal to or greater than 2 in magnitude. T
polynomial goes to6` for largel, while it oscillates in the
middle; for the ground state it touches the linesl562 in
N21 places so that the closed intervals referred to above
single points and all them ’s are stationary. For an excite
state the polynomial crosses the linesl562, and so the
closed intervals get a finite width and them ’s oscillate inside
these intervals as the system evolves.

The analogs of the classicalm ’s are Gutzwiller’sr ’s or,
approximately, Sutherland’sk’s. Whereas there areN21
m ’s each confined to a different interval in the classical p
ture, in Gutzwiller’s picture each of theN21 analogous
variables has a spectrum ofN valuesrn . On calculating the
classicalm ’s in the ground state, as is done in Ref. 1, we fi
that their values lie almost exactly in between the quant
r ~i.e., k) values. There is an analogy between them ’s and
the ‘‘gaps’’ in thek spectrum. In the ground state the ga
are minimum, them ’s fit into these gaps, and them ’s are
stationary. In an excited state some or all of these gaps
tween thek’s widen, and the correspondingm ’s are no
longer stationary but oscillate in intervals of finite width.
particular a pure cnoidal wave corresponds to exactly
m acquiring a width in which to oscillate or, exactly, one g
among theI n ~hence thekn) widening.

A single cnoidal wave has the formula1

e2r n511~2Kn!2$ dn2@2~n/l6nt !K#2E/K%, ~58!

wherer n5un2un21, K andE are the complete elliptic in-
tegrals of the first and second kinds,l is the wavelength
(5N for the first ‘‘normal mode’’ or one soliton,N/2 for the
second normal mode, etc.!, andn is given by

2Kn5F 1

sn2~2K/l!
211

E

KG21/2

. ~59!

For low modulusk of the elliptic functions, this is like a
sinusoidal wave, but as the modulus increases it beco
sharply peaked locally and flat elsewhere~Fig. 1!. As re-
marked in Sec. VII, the dispersion calculated from this e
pression is close to the dispersion, in an appropriate re
ence frame, of the quantum cnoidal wave.

X. CONCLUSIONS

In conclusion, we have shown that the usefulness of
asymptotic Bethe ansatz in the quantum Toda problem is
confined to finding thermodynamic properties. The meth
gives results for energy per particle accurate toO(1/N2),
n

,

re

-

e-

e

es

-
r-

e
ot
d

which is sufficient to calculate finite-size effects and ev
correlation functions using conformal theory. TheO(1/N3)
term seems to vanish in the exact solution, though the Be
ansatz solution probably does not reproduce this result.

We have demonstrated that in fact the Bethe ansatz e
tions are a simplification of Gutzwiller’s method and can
derived from them. The parameter governing the error can
taken to be the difference inrn anden in Sec. IV. According
to Matsuyama12 this difference falls exponentially withN, so
that the error goes ase2N/ f (h), where f (h) is some dimen-
sionless number. We also show that the error vanishes ah
becomes small, so thatf (h)→0 ash→0.

Thus, we can treat finite-sized systems, account for lo
lying states~phonons! and higher excitations~solitons!, and
find their dispersions and velocities. Comparison with co
formal theory gives the ‘‘central charge’’c51, which means
that the coefficient of the 1/N2 term in theE/N expansion is
essentially the sound velocity.

We find that the properties of excitations are very simi
to the classical properties forh.2 (\,1), apart from the
underlying discreteness of the energy levels. The quant
tion is then analogous to the quantization of a harmonic
tice. The soliton, which is an effect of large occupation
one mode, is no different from the classical object describ
by Toda; even its energy is effectively not quantized sin
the occupation number is so large.

For smallh ~large\) things are different: The phonon
no longer derive from a harmonic approximation, and t
soliton dispersions no longer match the classical on
though qualitatively the dispersion curves retain some si
lar features, both for solitons~high-amplitude cnoidal waves!
and for phonons. For both excitations the dispersions dep
on h, and moreover the energy of a mode deviates rap
from linearity with increasing occupation numbern, so that
n need not be macroscopic~at least for finite lattice size
N) for the mode to become solitonlike—the soliton’s ener
is indeed quantized. Thus if the large-h soliton is essentially
the soliton of Toda’s classical lattice, the correspond
small-h object deserves to be called the quantum soliton

APPENDIX: HÉ NON’S INTEGRALS, CLASSICAL
AND QUANTUM

In this appendix we discuss the integrability of the To
lattice classically and quantum mechanically; while much
the discussion is not new it seems difficult to find it in o
place elsewhere. Following Pasquier and Gaudin,7 who give
a proof of quantum integrability, we show that their co
served quantities are the same as He´non’s integrals, whose
conservation is necessary for Gutzwiller’s treatment to
through.

The equations of motion for the classical lattice can
written in the Lax form

dL

dt
5LM2ML, ~A1!

where
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L5S b1 a1 aN

a1 b2 a2

a2 b3

� aN21

aN aN21 bN

D ,

M5S 0 a1 2aN

2a1 0 a2

2a2 0

� aN21

aN 2aN21 0

D ~A2!

and

aj5e2~qj 1
2qj !/2, bj5pj . ~A3!

From this one can show that the eigenvalues of the
matrix L or, equivalently, the coefficientsI n of the charac-
teristic polynomial of the Lax matrix are conserve
quantities.1 These are He´non’s integrals, and are given by

I m5 (
i1 ,i2 , . . . ,i k , j 1 , j 2 , . . . ,j l

pi1pi2•••pik~2Xj 1
!

3~2Xj 2
!•••~2Xj l

!, ~A4!

where

Xj5e2~qj112qj !, ~A5!

there are no repeated indices in thep’s or theq’s in a given
term (i 1, i 2, . . . , j 1, j 111, j 2, j 211, . . . are all different!,
the total number of such indices in each term ism ~i.e.,
k12l5m), and the sum is over all distinct terms satisfyin
these conditions~i.e., terms not differing merely in the orde
of factors!.

In quantum mechanics, the coefficients of the Lax ma
are the same, and have no ordering problems, but now
equations of motion~A1! are no longer valid~each term in
the matrix product has to be ordered! and the proof that the
coefficients are conserved fails. Gutzwiller5 assumes tha
they are conserved nonetheless~he only takes the case
N53,4 where it can be verified easily!. Their conservation
can be shown as a consequence of the work of Pasquier
Gaudin,7 who prove that the coefficients ofu in the trace of
the ‘‘monodromy matrix’’TN are in involution, where

TN~u!5L1L2•••LN , ~A6!

Ln~u!5S u2pn eqn

2e2qn 0 D . ~A7!
x

x
he

nd

The definitions hold in both the classical and the quant
cases. Classically their conservation follows from the clas
cal equations of motion

dLn
dt

5Mn21Ln2LnMn

where

Mn5S u eqn

2e2qn11 0 D . ~A8!

Quantum mechanically these satisfy the Yang-Baxter eq
tions: We may rewriteLn→Ln,g(u)5(u2pn)(11sg

z)/2
2exp(2qn)sg

21exp(qn)sg
1 and show that the monodrom

matrix TN(u)→Tg(u) satisfies the Yang-Baxter conditio
Tg(u)Tg8(v)Rg,g8(u2v)5Rg,g8(u2v)Tg8(u)Tg(v) with
Rg,g85a(u2v)1b(u2v)sg

W .sg8
W . Taking a trace over the

auxiliary spacessg ,sg8 the integrability is established. W
now show that these coefficients are in fact He´non’s inte-
grals. Consider a polynomial inu, FN(u), defined by

FN~u!5 (
k12l5N

~u2pi1!~u2pi2!•••~u2pik!•••

3~2Xj 1
!~2Xj 2

!•••~2Xj l
!, ~A9!

where the indices satisfy the same restrictions as in the d
nition of Hénon’s integrals. It is easily seen that

FN~u!5 (
n50

N

~21!nI nu
N2n. ~A10!

We can show by induction that this polynomial is the trace
TN(u). Defining

FN8 ~u!5 all the terms inFN~u! which do

not include a factoreqN, ~A11!

FN9 ~u!5FN~u!2FN8 ~u!

5 all the terms inFN~u! which include a factoreqN,

~A12!

we claim that

TN5S FN8 ~u! eqNFN218 ~u!

e2qN11FN119 ~u! FN9 ~u!
D . ~A13!

The claim is easily verified forN51,2, etc. Suppose it is true
for N; then,
TN115TNLN115S ~u2pn11!FN8 ~u!2eqN2qN11FN218 ~u! eqN11FN8 ~u!

~u2pN11!e
2qN11FN119 ~u!2e2qN11FN9 ~u! FN119 ~u!

D , ~A14!
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which one can check is the same as

TN115S FN118 ~u! eqN11FN8 ~u!

e2qN12FN129 ~u! FN119 ~u!
D . ~A15!

Thus our claim is true for allN, and in particular the trace ofTN is FN(u).
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