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Abstract

We point out the curious phenomenon of order by projection in a class of lat-

tice Fermi systems near half filling. Enhanced pairing correlations of extended

s-wave Cooper pairs result from the process of projecting out s-wave Cooper

pairs, with negligible effect on the ground state energy. The Hubbard model is

a particularly nice example of the above phenomenon, which is revealed with

the use of rigorous inequalities including the Uncertainty Principle Inequality

In addition, we present numerical evidence that at half filling, a related but

simplified model shows ODLRO of extended s-wave Cooper pairs.
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There is considerable current interest in the possibility of purely electronic interactions

driven superconductivity as a mechanism to explain the High Tc superconductors. While

it is well known for the uniform electron gas that purely Coulomb repulsion terms lead to

superconductivity in higher angular momentum channels [1], albeit with very low transition

temperatures, here the search, guided by experiments, is predominantly for single band mod-

els that display such behavior in the proximity of half filling on a lattice. The prototypical

example is that of the Hubbard model [2] [3], although its tendency (or otherwise) towards

superconductivity remains an unsettled issue.

In this work, we study a class of many body Fermi systems on a lattice, under the

influence of a projection of s-wave Cooper pairs. Recall that one has an inhibition of s-wave

ordering within weak coupling BCS theory for models for on-site repulsion in addition to

the usual phononic coupling. In contrast, we project out s-wave Cooper pairs in the present

work. The study of most projected models, generally justified by their status as “fixed

point” Hamiltonians in some underlying scaling theory, has been a rich source of new and

interesting models in the field of correlated fermi systems. A prototype is the Gutzwiller

wavefunction, wherein upon removing double occupancy, effects such as enchanced effective

masses follow near half filling, and these are crucial in our understanding of almost localized

fermi liquids [4]. At half filling we find insulating wave functions with enhanced spin-spin

correlations [5], that are regarded as typical of Quantum Spin Systems in low dimensions

with S = 1/2. At the level of the Hamiltonian, projection leads to interesting new models,

such as the various limits of the Hubbard model, e.g. large U giving the t−J model, U = ∞

giving the Nagaoka limit, and several examples in single impurity models. It seems worth

remarking that projection is a theoretical device that is genuinely strong coupling and non

perturbative, making it difficult to treat with conventional methods. In the present work

the consequences of s-wave projection are found by combining a set of known inequalities in

a novel fashion, and lead to surprising insights detailed below.

We consider the model defined on a d-dimensional hyper cubic lattice with a Hamiltonian
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H = T + U
∑

i

ni↑ni↓ + UsB
†B (1)

where T is the kinetic energy term
∑

k,σ ǫ(k)c†σ(k)cσ(k). The second term is the Hubbard

repulsion term (i.e. U ≥ 0). We will consider other forms of interaction below, but the

argument is simplest for the Hubbard interaction written above. We will take the number of

sites as L and denote the density of particles by ρ = N/L. We will also denote H̃ = H−µN̂ ,

where µ is the chemical potential and N̂ the number operator. The third term is new, with

the operator B =
∑

i exp{iφj} bj and bj ≡ cj↓cj↑. If we take Us to be O(1/L), and negative

then this term would, in a weak coupling BCS like theory, inhibit the formation of s-wave

Cooper pairs. The coupling constant Us is taken of O(1) and positive in the present work

and corresponds to projecting out the appropriate Cooper pairs, at general fillings. Precisely

at half filling, the influence of the new term is more subtle as noted later in the paper.

Although various choices of the phase angle φi generate different examples, two of the

interesting ones are (α) φi = 0 leads to a suppression of pure s-wave superconductivity,

and (β) φi = ~ri · {π, π, ..} suppresses the so called eta pairing [6]. We will also consider

a third possibility (γ) obtained by setting B =
∑

k exp{iφ(k)} b(k) where b(k) ≡ c−k↓ck↑

and with an arbitrary function φ(k) which can be used to vary the relative phases between

different momenta. This last class of operators, however forces us to the case of U = 0, in

order to obtain any results. The case (α) appears to be the most interesting physically,

the others are included for completeness.

We first note that for lattices that are bipartite, and where the electronic hopping only

connects unlike sublattices, we can make a particle hole transformation ci↑ → (−1)θi c†i↑, with

θi = 0, 1 for the two sublattices, whereby the energy satisfies E[U,Us, ρ] = E[U,Us, 1 − ρ] −

L(1− ρ)(U +Us). At half filling (ρ = 1) the chemical potentials for adding and subtracting

a particle add up as: µ+ + µ− = U + Us. At this filling, the new term Us plays a crucial

role in allowing doubly occupied sites and holes to wander away from each other, and infact

encourages charge fluctuations, whereby the usual Mott insulating state of the Hubbard

model at half filling is heavily discouraged.
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We now use a simple but useful inequality [7]

< ψ0|M † [H̃,M ] |ψ0 > ≥ 0 (2)

where |ψ0 > is the ground state of H̃, and M is an arbitrary operator. Using M = B we

find on using the important commutator [B,B†] = L − N̂ , valid in all cases (α), (β) and

(γ), that

< B†A >≥ {Us(L −N + 2) − 2µ+ U} < B†B > . (3)

In the case of (γ), the above Inequality holds only with U = 0. Note that the LHS of above

is forced to be real and to be positive from the Inequality. We denote ground state averages

by angular brackets as above, and the operator A is given by A = [T,B]. For the two cases

of the phase φi in Eq(1) , (α) A = −2
∑

k ǫ(k)b(k), and (β) A = −∑{ǫ(~k) + ǫ(~k + ~Π)} b(k)

with ~Π = {π, π, ..}. In the popular case of nearest neighbour hopping on the hypercubic

lattice, (α) corresponds to the extended s-wave pairing operator, whereas (β) gives zero.

A non zero result is obtained in the latter case only when the hopping connects sites on

the same sublattice. In two dimensions, for example, with ǫ(k) = −2t(cos(kx) + cos(ky)) −

2t′ cos(kx) cos(ky), we find A = 4t′
∑

(cos(kx) cos(ky)) b(k).

We now use the Cauchy-Schwartz inequality to bound the LHS of Inequality(3) as

< A†A > < B†B > ≥ < B†A >2 . (4)

Combining Ineqs(3 ,4 ) we find

< A†A > ≥ {Us(L −N + 2) − 2µ+ U}2 < B†B > . (5)

Again note that in case of (γ), Ineq(5) is valid only with U = 0. We note that in the RHS

of Ineq(5) the prefactor is of the O(L2) provided we are at a thermodynamic filling ρ < 1.

Exactly at half filling the inequality is less useful. At any filling ρ < 1, we can deduce that

< B†B > is very small. In fact we will show that it is o(L) rather than O(L). If it were of

the O(L), ( as indeed it is in the ground state of the free fermi gas), then < A†A > has to
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exceed a trivial upper bound of the O(L2) [8]. If < B†B > is of the O(1) then we have two

consequences that are mutually incompatible (at least when U = 0). To see this, assume

that < B†B > is of the O(1) and so we find from the Feynman Hellman Theorem

E[U,Us, ρ] = E[U, 0, ρ] +
∫ Us

0

dU ′
s < B†B >U ′

s
(6)

= E[U, 0, ρ] + o(L). (7)

The other consequence of Ineq(5) is that < A†A >∼ O(L2), i.e. we have Long Ranged

Order (ODLRO) in the operator A [9]. This is possible only if the energy increases by

terms of the O(L), at least in the case when U = 0 as is seen from a diagonalization of a

bilinear Hamiltonian adding the kinetic energy T and A with coefficients of the O(1) [10].

A consistent possibility [11] is

< B†B >= O(1/L) and < A†A >= O(L), (8)

along with Eq(7). One immediate consequence of this result is that the energy per site of

the model in Eq(1) LimL→∞E[U,Us, ρ]/L is identical to that of the pure Hubbard model (

i.e. Us = 0) at all U or filling ρ 6= 1.

Another important consequence is that the chemical potential is unchanged by Us until

we reach half filling (µ = ∂E/∂N) and therefore the compressibility is unchanged by Us

(since 1/κ = Nρ(∂µ/∂N)L). At precisely half filling, the chemical potential jumps and the

compressibility vanishes. The value of µ at half filling for the case of bipartite symmetry

was given above as (U + Us)/2.

We see that the suppression of a correlation of the type < B†B > occurs with remarkable

efficiency through Ineq(8). When we recall that < [B,B†] >= L(1 − ρ), it is seen that

the fluctuations of B + B† in the ground state diminish on approaching half filling, i.e.

< (B+B†)2/L >= 1−ρ. This immediately suggests that “conjugate variables” in the sense

of the Uncertainty Principle, should exhibit enhancements by similar factors. The following

form of the Uncertainty Principle is most useful, for any two operators a and b ( such that

< a2 >= 0 =< b2 > and [a, b] = 0) we have [12]
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< a†a+ aa† > < b†b+ bb† > ≥ | < [a†, b] > |2. (9)

We now use this with a → A and b → B, and also the results [A,B†] = 2T and [A,A†] ≡

χA = 4
∑

k ǫ(k)2(1 − ∑
σ c

†
σ(k)cσ(k)) to find

< A†A > ≥ 2| < T > |2
L(1 − ρ)

− < χA >

2
. (10)

Both terms of the RHS of the above Inequality are of the O(L), and the second term

remains bounded as we approach half filling, infact vanishing for the case of a symmetric

band around zero energy. This implies that the first term dominates and hence we conclude

that the correlation function < A†A > grows without limit as half filling is approached. We

should remark that any operator of the type [T, [T, ..[T,B]..] in the place of A would end up

having similar enhancements in its correlations, since it would be a bilinear in the c† and

have similar commutation with B

We next consider other kinds of interactions, different from the Hubbard model [13]. In

this case, we can still use Ineq(2) and also Ineq(4) to find in place of Ineq(5),

< F †F >≥ {Us(L −N + 2) − 2µ}2 < B†B >, (11)

where F = A+C with C = −[B, Vint], so that F = [H,B]. The norm on the LHS of Ineq(11)

can be bounded by the triangle inequality as < F †F >≤ [
√
< A†A > +

√
< C†C >]2 and

hence we need, in addition to the previous estimates, one of < C†C >. This of course

depends upon the nature of the two particle interaction, and has to be examined for each

model separately. However, for “generic” repulsive short ranged models, it seems clear that

this object, like < A†A > should be bounded from above by a number of O(L2). With this

assumption, the remaining argument goes exactly as in the case of the Hubbard model, and

we again conclude that < B†B > is at least as small as o(L), and in fact probably O(1/L),

and that the ground state energy is as in Eq(7). The uncertainty relation Ineq(10) needs

only the fairœkly weak first condition < B†B >∼ o(L), and hence we conclude that the

mechanism of order by projection works for generic short ranged repulsive models near half

filling.
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We have thus found enhanced correlations as we approach half filling, and by continuity,

we may expect ODLRO in the operator A. The inequalities given above do not constrain

correlations sufficiently, and we turn to other methods. Before doing that, we introduce a

simpler version of the models above, namely

H̃s =
L∑

n=1

(ǫn − µ)(σz
n + 1) + Us

L∑
n,m=1

σ+

n σ
−
m, (12)

where σz etc are the usual Pauli matrices, and ǫn are an ascending set of energies. This

model is intimately related to the U = 0 version of our starting problem Eq(1), using the

pseudo spin representation σz
j + 1 =

∑
σ nσ(kj) and σ+

j = c†↑(kj)c
†
↓(−kj), in the subspace

where both (k, ↑) and (−k, ↓) are simultaneously present or absent. The Hamiltonian Eq(1)

commutes with the operator ν =
∑

k n↑(k)n↓(−k), and its operation is identical to that of Hs

provided we specialize to various sectors labeled by the eigenvalues of ν (0 ≤ < ν > ≤ N/2),

and further choose appropriate degeneracies for the energies. We simplify by choosing our

energies in Hs above to be non degenerate, and pick them to be ǫn = {n−(L+1)/2}/(L−1) so

that the band is symmetric about zero and the bandwidth is unity. Each up spin corresponds

to two ( fermi) particles of the original problem. The filling in this problem is clearly

ρ = N/L with N̂ =
∑

j(σ
z(j) + 1) . The chemical potential at half filling is Us/2 by particle

hole symmetry.

The model can also be viewed as a lattice of N/2 hard core particles sitting in a constant

electric field that tries to localize them in regions of low potential, and an infinite ranged

hopping that tries to delocalize them. The results proved for the starting Eq(1) namely

Ineqs(5,10,8), are equally true in this one dimensional spin model, provided we identify

B =
∑

j σ
−
j and A = −2

∑
j ǫjσ

−
j . Away from half filling, i.e. when σz

tot 6= 0, we see that even

in the limit of large Us, there is a large number of states, infact states with Stot = L(1−ρ)/2

and Sz
tot = −L(1 − ρ)/2 i.e. highest weight states of the rotation group, which have a

null eigenvalue of the hopping term Us
∑
σ+

n σ
−
m. The Zeeman energy term has non zero

matrix elements within this manifold. In the case of half filling ρ = 1, the Zeeman term

necessarily connects singlet states with triplets and hence the energy is unable to escape
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the influence of Us. At half filling and for large Us, we can use degenerate perturbation

theory to find an effective Hamiltonian to lowest order in 1/Us. To do this we consider

the action of Hs in Eq(12) on the space of LCL/2/(L/2 + 1) singlets spanned, for example

by the Non Crossing Rumer Diagrams [14]. A typical non orthogonal state is given by

ψP = [P1, P2]− . . . [PL−1, PL]− where P is one of the permutations of the set {1, 2, . . . , L}

giving a Non Crossing Rumer Diagram, and [i, j]∓ = (αiβj ∓ βiαj)/
√

2 is a singlet (triplet)

with sz = 0. The action of the operator Eq(12) can be projected into this subspace, by

using the relation [1, 2]+[3, 4]+ = 1

3
(1−2Π13)[1, 2]−[3, 4]− +ψquintet with Πij the permutation

operator, and leads to the following Quantum Dimer problem:

HqdψP =
−1

2Us

∑
j

(ǫPj
− ǫPj+1

)2 ψP −

1

3Us

∑
j+1<k

(ǫPj
− ǫPj+1

)(ǫPk
− ǫPk+1

){2ΠPjPk
− 1} ψP . (13)

This model is quite non trivial to work with, but does reveal that the diagonal terms favour

singlet bonds that connect the largest energy separations, and the mixing terms oblige us

to take non trivial linear combinations in this space.

We study the interesting half filled limit by studying the sector σz
total = 0 of Eq(12)

directly. We diagonalized the problem numerically for chains of length up to 14, and studied

the ground state energy as well as the correlation function < A†A >. It is clear that a non

zero extrapolation of Γ to a number of the O(1) would imply ODLRO in the A field. In the

figure we plot the parameter Γ = 1

 L < A†A > / < A†A >non for three values of Us (= 2, 4, 8).

The data seems to be consistent with this hypothesis, and fits well to Γ = Γ∞+|a|/L±|b|/L2

, with non zero Γ∞. In the inset of the figure, the ground state energy per site is plotted

for the same three values of Us against 1/L, showing that the energy does depend on the

coupling at half filling, implying that the Us term cannot be viewed as a projection at

this particular filling. The dependence is consistent with finite sized scaling with a form

E/L = e∞ + |a|/L− |b|/L2 +O(1/L3).

At half filling, the new model Eq(1) is almost certainly non-insulating, and likely to

be superconducting in a complementary pairing state. The presence of hopping terms for
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the doubly occupied sites makes their number density nonzero, unlike in the pure Hubbard

model. By continuity in filling, we expect the pairing correlations to be divergent for any U .

Our numerical results for the reduced model, the spin model of Eq(12) are consistent with

ODLRO at half filling. It is not, however, straightforward to write down a mean field theory

that captures the correct ordering in the model, since the Hamiltonian does not contain

explicit terms that favour any kind of ordering, these are generated by the dynamics rather

indirectly.

In summary we have seen that the effect of projecting out s-wave Cooper pairs in a class

of Fermi systems leads to surprising results. The ground state of the projected model may be

viewed as being essentially degenerate with that of the original model and yet the extended

s-wave pairing correlations are hugely enhanced near half filling. This effect, namely order

by projection requires a lattice Fermi system near half filling to occur, and has no natural

counterpart in continuum Fermi systems. In this regard, as well as in the form of the

enhancements 1/(1 − ρ), it resembles the results of the almost localized fermi systems [4].
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Figure Captions

• Long Ranged Order parameter Γ ≡ 1

L
< A†A >/< A†A >non versus 1/L for Us = 2, 4, 8

(bottom to top) chains of length 4, 6, .., 14 at ρ = 1. The inset shows the Ground State

Energy per site for the same values of Us versus 1/L. (bottom to top).
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