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Abstract. An attempt has been made to understand the Pleistocene bottom water history
in response to the paleoclimatic changes in the northern Indian Ocean employing quantitative
analyses of deep sea benthic foraminifera at the DSDP sites 219 and 238. Among the 150
benthic foraminifera recorded a few species show dominance with changing percent
frequencies during most of the sequence. The dominant benthic foraminiferal assemblages
suggest that most of the Pleistocene bottom waters at site 219 and Early Pleistocene bottom
waters at site 238 are of North Indian Deep Water (NIDW) origin. However, Late Pleistocene
assemblage at site 238 appears to be closely associated with a water mass intermediate
between North Indian Deep Water (NIDW) and Antarctic Bottom Water (AABW).

Uvigerina proboscidea is the most dominant benthic foraminiferal species present during
the Pleistocene at both the sites. A marked increase in the relative abundance of U.
proboscidea along with less diverse and equitable fauna during Early Pleistocene suggests
a relative cooling, an intensified oceanic circulation and upwelling of nutrient rich bottom
waters resulting in high surface productivity. At the same time, low sediment accumulation
rate during Early Pleistocene reveals increased winnowing of the sediments possibly due to
more corrosive and cold bottom waters. The Late Pleistocene in general, is marked by
relatively warm and stable bottom waters as reflected by low abundance of U. proboscidea
and more diverse and equitable benthic fauna. ;

The lower depth range for the occurrence of Bulimina aculeatc in the Indian Ocean is
around 2300 m, similar to that of many other areas. B. aculeata also shows marked increase
in its abundance near the Pliocene/Pleistocene boundary while a sudden decrease in the
relative abundance of Stilostomella lepidula occurs close to the Early/Late Pleistocene
boundary.

Keywords. Pleistocene; benthic foraminifera; northern Indian Ocean; oceanography.

1. Introduction

The deep sea circulation influences the thermal structure of individual oceans, the
distribution of deep sea biota and the state of preservation of deep sea sediments. It
has now been established that the earth’s climatic history is closely linked with the
changes in the deep water circulation of the oceans (Weyl 1968; Newell 1974).

The study of benthic foraminifera is very useful in interpreting the changes in deep
sea environment. They are the largest biomass present at the .ower bathyal (> 1000 m)
and abyssal depths in‘the modern oceans (Hessler and Jumars 1974) and are the
dominant carbonate tests to be'preserv‘ed in the deep sea sediments. Many benthic
species have separate stratigraphic ranges, and their evolutionary and migratory
patterns provide significant biostratigraphic and paleoecologic information about the
deep sea environments (Douglas and Woodruff 1981; Kurihara and Kennett 1988).
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Investigations on the benthic foraminiferal assemblages in the core tops show that
different assemblages are associated with major bottom and deep water masses
(Streeter 1973; Schnitker 1974; Lohmann 1978; Corliss 1979a,b; Ingle et al 1980;
Douglas and Woodruff 1981; Kurihara and Kennett 1986; Sen Gupta 1988; Gupta
and Srinivasan 1990a, b; Gupta 1992, 1994). These associations help in reconstructing
the past distribution of the water masses and derive their physical and chemical
characteristics.

In the present investigation DSDP sites 219 and 238 in the northern Indian Ocean
were selected for quantitative benthic foraminiferal analysis to infer the Pleistocene
bottom water oceanographic history of this region.

2. General setting of the area

The DSDP site 219 (Lat. 9°01-75'N; Long. 72°52:67'E) was drilled on the crest of the
Chagos-Laccadive Ridge, a north-south trending structure extending southward from
the eastern margin of the Arabian Sea at a water depth of 1764 m. Site 238 (Lat.
11°09-21'S; Long. 70°31-56'E) is situated east of the Central Indian Ridge near the
southern end of the Chagos-Laccadive Ridge at a greater water depth of 2832m.
Locations of these two sites and prominent physiographic features of the Indian
Ocean are shown in figure 1.

Antarctic Bottom Water (AABW) mostly confined to the deep basins (> 4,000 m)
is the dominant bottom water mass in the Indian Ocean (Kolla et al 1976; Tchernia

1980). The Weddell Sea and the Ross Sea — Adelie coast are supposed to be two-

different sources for AABW in the Indian Ocean (Kolla et al 1976; Kolla and Kidd
1982). The Western Indian Ocean bottom waters are mainly of Weddell Sea origin
whereas the bottom water from the Ross Sea is mostly confined to the Eastern Indian
Ocean (Kolla and Kidd 1982). Kolla et al (1976) and Johnson and Damuth (1979)
observed that the sea floor of the western and southern regions are more influenced
by AABW than the northern regions of the Indian Ocean. Thus, at present the bottom
waters at sites 219 and 238 are predominantly influenced by AABW although, the
vigour of AABW appears to be somewhat subdued in this region compared to the
southern part of the Indian Ocean. The bottom water potential temperatures in the
Arabian basin and in the central Indian basin range from 1-00 to 1-20°C and 0-96
to 1-20°C respectively (Kolla et al 1976). The Calcium Carbonate Compensation
Depth (CCD) in the Indian Ocean is at about 5,000m (Kolla et al 1976). Both the

examined sites lie above CCD and under Equatorial Water (EQW) and are ideal for |

calcium carbonate deposition.

The presence of uninterrupted Pliocene—Pleistocene sequences at both the sites
enabled us to study the changes in the benthic foraminiferal distribution during the
Pleistocene and also across the Pliocene/Pleistocene transition. The Pleistocene
sections at sites 219 and 238 are dominated by foraminifera-rich nannofossil ooze.

3. Pliocene/Pleistocene boundary

The availability of a large number of Late Cenozoic deép sea cores of continuous
sequences from tropical to polar regions as a result of Deep Sea Drilling Project

e
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(DSDP) provided a unique opportunity in delineating the Pliocene/Pleistocene
boundary from widely separated regions of the world. Detailed integrated micropale-
ontological and paleomagnetic studies of the deep sea cores proved useful in
identifying various physical and bio-events and the duration of the Pleistocene. Based
on recent studies the last appearance of Globigerinoides fistulosus which occurs at
the top of Olduvai Normal Paleomagnetic Event at 16 Ma appears to be an excellent
marker for delineating the Pliocene/Pleistocene boundary in the Tropical Indo-
Pacific deep sea sequences (Srinivasan and Singh 1991; Srinivasan and' Sinha 1991,
1992). Following the above criteria Pliocene/Pleistocene boundary is well defined at
the examined DSDP sites 219 and 238. '

4. Method of study

The present investigation is based on a total of 19 samples from 33-0m of core at
site 219 and 22 samples from 34-5m of core at site 238 at a regular interval of about
1-5 m. The samples (10 cc in volume) were treated with 159, hydrogen peroxide solution
and water (1:3 ratio) and wet sieved over 63 um and 149 um tyler sieves. All the
benthic foraminifera over 149 um size fraction (dry sieved) were picked from each
sample, At both the sites benthic foraminifera are well preserved and commonly do
not constitute more than 5% of the total foraminiferal population. The benthic
foraminifera were mounted on microfaunal slides, identified and counted.

5. Quantitative analyses of benthic foraminifera

Although much work has been carried out on generating qualitative benthic forami-
niferal data, there are only few published records on the quantitative aspect of the
Indian Ocean deep sea benthic foraminifera (Corliss 1979a,b, 1983, 1985; Gupta and
Srinivasan 1990a,b, 1992a,b; Srinivasan and Gupta 1990; Gupta 1991, 1992, 1994;
Rai and Srinivasan 1992, 1993). Most of the modern benthic foraminifera whose
distribution pattern in the Indian Ocean is now well established also occur in the
Pleistocene. Total of 137 and 107 benthic foraminiferal species were identified at sites
219 and 238 respectively (Appendix 1); of these only a few species dominate the
assemblage and show changes in their relative abundances during the Pleistocene.

The relative percentages of dominant benthic foraminiferal groups and species
(seven species at 219 and six at site 238) showing significant changes are plotted in
figures 2—5. The Species Diversity, H(S) and Equitability, E' were also calculated
using Shannon-Wiener Diversity Index (Rai and Srinivasan 1992) and are shown in
figures 3 and 5, ' /

The calcareous benthic foraminifera constitute the most dominant part of the
Pleistocene assemblages at both the examined sites. Arenaceous foraminifera
constitute about 5% of the total benthic foraminiferal population at both the sites
whereas relative abundances of porcellaneous taxa range from 5 to 109 at site 219
and 5 to 15% at site 238 during the Pleistocene (figures 3 and 5). The dominant
species at these two sites include Uvigerina proboscidea, Cibicides wuellerstorfi,
Globocassidulina subglobosa, Bulimina aculeata and Oridorsalis umbonatus. Such a
dominant assemblage has been recorded from the core top samples of the Indian
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eistocene at seven DSDP sites in the Indian Ocean (Water

Figure 6. Distribution of Bulimina aculeata and Stilostomella lepidula during Pliocene—Pl

and sites 220 and 237 from Rai 1992).

k)

216 and 217 from Gupta 1987;

Depth of each site is given in parenthesis) (Data of sites 214,
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Ocean by Gupta (1994) in a water depth ranglng 1500-2500 m, representing a high
productivity region.

Most of the Pleistocene sequence at site 219 and Early Pleistocene at site 238 are
dominated by U. proboscidea and Globocassidulina subglobosa assemblage (figures 2
and 4). Late Pleistocene in the latter site is marked by the abundance of benthic
foraminiferal assemblage consisting of C. wuellerstorfi, 0. umbonatus, Epistominella
exigua and Pullenia spp. (mainly P. bulloides) (figures 4 and 5).

The most dominant species prevailing at both the sections is U. proboscidea which

occurs in frequencies between 5 to 35% and shows remarkable changes through the
- Pleistocene. The earliest Pleistocene (c. 1'6 to ¢. 10 Ma) is marked by the highest
relative abundance of U. proboscidea (> 35%) at both these sites (figures 2 and 4)
which corresponds to the interval of less diverse and less equitable benthic fauna
(figures 3 and 5). A distinct peak of abundance (> 25% at site 219 and > 15 at site
238) of U. proboscidea is also marked at about 0-4 Ma with corresponding low values
of H(S) and E’ (figures 2-5). U. proboscidea shows declining trend during the
Early/Late Pleistocene transition at both these sites (figures 2 and 4). In general, Early
Pleistocene is characterized by comparatively high and changing abundance of U.
proboscidea than the Late Pleistocene at both the examined sites (figures 2 and 4).

At site 219, Stilostomella lepidula abundantly occurs during the Early Pleistocene
whereas Late Pleistocene is marked by rare occurrence of this taxon (figures 2 and
6). Bulimina aculeata occurs abundantly (commonly > 5%) during the Pleistocene at
site 219 and declines suddenly at the Pliocene/Pleistocene boundary (figures 5 and
6). At site 238 B. aculeata and S. lepidula show very rare and sporadic occurrences.
The relative abundances of O. umbonatus and U. proboscidea show mutually opposite
trends reflecting different ecological preferences (figures 2 and 4).

6. Discussion

In the two DSDP sites studied here the assemblages are characterized by several
benthic foraminiferal species. However, only a few species in the assemblages show
marked changes in their abundances through time. To interpret these variations in
terms of oceanographic changes we need to understand their response to the deep
water characteristics.

The characteristic North Indian Deep Water (NIDW) assemblage (U. proboscidea
- and G. subglobosa) dominates most of the Pleistocene sequence at site 219 and the
Early Pleistocene interval at site 238. Whereas, the Late Pleistocene interval at site
238 is dominated by an assemblage consisting mainly of C. wuellerstorfi, Oridorsalis
umbonatus, Epistominella exigua, Pullenia spp. alongwith occasional occurrence of
Nuttallides umbonifera. Studies reveal that Nuttallides umbonifera is a cosmopolitan
deep water species found associated with AABW (Streeter 1973; Schnitker 1974;
Anderson 1975; Bremer and Lohmann 1982; Kurihara and Kennett 1986; Gupta
1992, 1994).

Uvigerina spp. (mainly U. probosczdea) is the most dominant clement present during
the Pleistocene and changes in its relative abundance appear to be closely linked
with some climatically induced paleoceanographic changes (Gupta and Srinivasan
1992a). Recently, Boyle (1990) argued that factors unrelated to the deep water
properties, such as surface productivity or the depositional environment may play a
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significant role in controlling the distribution patterns of Uvigerina spp. This was ~
supported by ‘Gupta and Srinivasan (1992a), who pointed out that the peaks of -
abundance of U. proboscidea during the Late Neogene reflect intervals of increased .
upwelling leading to high surface productivity and perhaps high rates of biogenic ‘
sediment accumulation.

The Early Pleistocene interval (c. 16 to ¢. 1-0 Ma) at both the sites is marked by
high relative abundance of U. proboscidea with corresponding low sediment
accumulation. Gupta and Srinivasan (1990a, b) also recorded a similar change during
the Early Pleistocene at site 214 (Ninetyeast Ridge). This reflects the high rate of
surface productivity and increased winnowing of deep sea sediments due to dissolution
by corrosive bottom waters during this interval. The Early Pleistocene is characterized
by widespread deep sea hiatuses in global oceans (Ledbetter and. Ciesielski 1986;
Barker et al 1988). In general the presence of a hiatus reflects climatic cooling affecting
the intensity of oceanic circulation (Kennett 1977; Barron and Keller 1982; Ciesielski
et al 1982; Osborn et al 1983). The widespread deep sea hiatuses during the Early
Pleistocene correspond to the times of enhanced Antarctic glaciation leading to low
sea level stands during which an increase in AABW activity causes more erosion and
dissolution of deep sea sediments (Moore et al 1978; Barron and Keller 1982). Keller
and Barron (1987) suggested that increased polar cooling would cause high surface
productivity due to upwelling and hence high rates of carbonate sedimentation. The
low values of H(S) and E’ during this interval also reflect the instability in the deep
sea: environments. The role of species diversity in the environmental studies have
been discussed by several workers. The integrated study of the species diversity pattern
and stable isotopic records in the Indian Ocean revealed that the lower values of
H(S) and E’ occurred during the intervals of higher J 180 and lower 6 '*C values
reflecting global cooling and low sea level stands (Rai and Srinivasan 1992). The
dominance of temperate planktonic foraminiferal assemblages in the northern Indian
Ocean during the interval also reveals cooling of surface water due to climatic deterio-
ration (Singh and Srinivasan 1993).

The low abundance of U. proboscidea and more diverse and equitable assemblage
at both the sites during Late Pleistocene mark the onset of relative stability of the
deep sea environments in the northern Indian Ocean. The intensity of deep and
shallow hiatuses is low due to reduced velocity of AABW during the Late Pleistocene
(Ledbetter and Ciesielski 1986). A short interval of high percent frequency of U.
proboscidea at about 0-4 Ma represents the unstable deep sea environment of the
northern Indian Ocean which corresponds to the high 6 180 value in the North
Atlantic (Shackleton and Hall 1984). This coherence in the faunal and isotopic data
appears to be due to global climatic cooling leading to an increase in Northern and
Southern Hemisphere ice sheets.

The quantitative benthic foraminiferal analyses at sites 219 and 238 as well as site
214 (Gupta and Srinivasan 1990a, b) reveal that in general, the Early Pleistocene was
relatively cooler than the Late Pleistocene and marked by more intensified bottom
water circulation. However, several short intervals of marked faunal changes represent
the oscillations in the deep sea environments due to enhanced bottom water activity .
representing the intervals of frigid and unstable conditions. Because of the paucity
of core samples at required sampling intervals it is not possible at this stage to identify
various Pleistocene glacial and interglacial episodes.

The distribution pattern of B. aculeata during the Pleistocene at various DSDP
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sites in the Indian Ocean reveals that it does not occur at water depths greater than
2300 m (figure 6). In other areas also the lower depth range for the occurrence of B.
aculeata is around 2300 m (Kaiho and Nishimura 1992) suggesting that the distribution
of this species is mainly controlled by the water depth. It is interesting to note that
B. aculeata shows sudden increase in-abundance close to Pliocene/Pleistocene
boundary while abrupt decline in relative abundance of S. lepidula occurs near
Early/Late Pleistocene boundary (c. 0-6 Ma).

7. Conclusions

A detailed quantitative study of the Pleistocene benthic foraminifera at the DSDP
sites 219 and 238 as well as available data from site 214 (Gupta and Srinivasan
~ 1990a, b) in the northern Indian Ocean has led to the following inferences (table 1).

1. The dominance of U. proboscidea and G. subglobosa assemblage during most of
the Pleistocene at site 219 and beginning of the Pleistocene at site 238 suggests the
influence of North Indian Deep Water (NIDW). However, during the later part of
Pleistocene the nature of watermass at site 238 appears to be intermediate between
NIDW and AABW as evidenced by the dominance of C. wuellerstorfi, 0. umbonatus,
E. exigua and Pullenia spp. assemblage along with occasional occurrences of
Nuttallides umbonifera.

2. The peaks of abundance of U. proboscidea along with low values of H(S) and E’
- at both the sites during c. 1'6 to c. 1-0Ma (Early Pleistocene) and at c. 0-4 Ma (Late
Pleistocene) reflects marked cooling, intensified oceanic circulation and upwelling of
the nutrient rich bottom waters giving rise to high surface productivity.

3. In general, the northern Indian Ocean bottom waters were relatively cooler during
the Early Pleistocene than the Late Pleistocene as evidenced by the high abundance
of U. proboscidea along with less diverse and equitable benthic fauna. The high
dissolution due to cold and corrosive bottom waters during the Early Pleistocene
possibly resulted into the low sediment accumulation.

4. The modern distribution pattern of B. aculeata in the Indian Ocean DSDP sites
reveals that the lower depth range for this taxon is about 2300 m.
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Appendix 1. Benthic foraminifera recorded from the examined sites.

Marginulina obesa Cushman

Benthic foraminifera Found in
DSDP sites

Textularia halkyardi Lalicker 219, 238
T. lythostrota (Schwager) 219, 238
T. porrecta (Brady) 238
Siphotextularia rolshauseni Phleger and Parker 219, 238
S. solita (Schwager) 219, 238
Gaudryina solida Schwager 219
Dorothia brevis Cushman and Stainforth 219
Eggerella bradyi (Cushman) 219, 238
Karreriella baccata (Schwager) 219
K. bradyi (Cushman) 219, 238
K. subrotundata (Schwager) 219, 238
Martinottiella communis (d’Orbigny) 219, 238
Spiroloculina antillarum d’Orbigny 219
Quinqueloculina cf. pygmaea Reuss 219, 238
Q. seminulum Linne’ 219
Q. venusta Karrer 219, 238
0. weaveri Rau 219, 238
Pyrgo depressa (d’Orbigny) 219, 238
Biloculina comata Brady 219
B. lucernula Schwager 219, 238
B. murrhina Schwager 219, 238
Triloculina tricarinata d’Orbigny 219, 238
Nummoloculina irregularis (d’Orbigny) 219
Sigmoilopsis asperula (Karrer) 219’
S. schlumbergeri (Silvestri) 219, 238
Nodosaria aff. lamnulifera Boomgart 219

~ N. raphanus Schwager 219
N. spirostriolata Cushman 219
Astacolus crepidulus (Fichtel and Moll) 219, 238
A. increscens (Reuss) 219
A. insolitus (Schwager) 238
A. reniformis (d’Orbigny) 238
Chrysalgonium equisetiformis (Schwager) 219, 238
Dentalina costai (Schwager) 219, 238
D. intertenuata (Schwager) 219
D. intorta (Dervieux) ‘ 238
D. neugeboreni (Schwager) 219, 238
D. stimulea (Schwager) 219, 238
D. subsoluta (Cushman) 219, 238
Lagena spp. 219, 238
Robulus aff. gibbus (d’Orbigny) 219, 238
R. nicobarensis (Schwager) 219

219, 238
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Appendix 1. Continued
Benthic foraminifera Found in
DSDP sites

Orthomorphina aff. antillea (Cushman) 238

O. challengeriana (Thalmarin) 219

0. koina (Schwager) 219

0. modesta (Bermudez) 219

0. perversa (Schwager) 219, 238

Guttulina austriaca d’Orbigny 219

Pyrulina cylindroides (Roemer) 219, 238

P. extensa (Cushman) 219, 238

P. fistulosa (Thalmann) 219, 238

P. labiata Schwager 219, 238

Fissurina spp. 219, 238

Oolina spp. 219, 238

Ceratobulimina pacifica Cushman and Harris 219

Hoeglundina elegans (d’Orbigny) 219

Buliminella andamanica (Srinivasan and Singh) 219

Sphaeroidina bulloides d’Orbigny 219, 238
~ Bolivinita pseudoplicata (Heron-Allen and Earland) 219, 238

Bolivina pseudopunctata Hoeglund 219, 238

Brizalina pusilla (Schwager) 219

Favocassidulina australis Eade 219, 238

F. decorata (Sidebottom) 238

F. favus (Brady) . 219, 238

Stilostomella consobrina (d’Orbigny) 219

S. fistuca (Schwager) 219

S. insecta (Schwager) 219, 238

S. lepidula (Schwager) 219, 238

Bulimina aculeata d’Orbigny 219, 238

B. alazanensis Cushman 219, 238

B. jarvisi Cushman and Parker 238

B. striata d’Orbigny 219

B. subacuminata Cushman and Stewart 219

Protoglobobulimina affinis (d’Orbigny) 238

P. pacifica Cushman 219

Praeglobobulimina spinescens (Brady) 219

Uvigerina hispida (Schwager) 219, 238

U. ¢f. longa (Cushman and Bermudez) 238

U. peregrina (Cushman) 219, 238

U. porrecta (Brady) 219

U. proboscidea (Schwager) 219

U. schencki (Asano) - 219

Noviuva interrupta-costata (LeRoy) 219, 238

Rectuvigerina royoi Bermudez and Fuenmayor - 219

219, 238
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Appendix 1. Continued
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Benthic foraminifera Found in
DSDP sites
Discopulvinulina bertheloti (d’Orbigny) 219, 238
Epistominella exigua (Brady) 219, 238
Gavelinopsis lobatulus (Parr) 219
Laticarinina pauperata (Parker and Jones) 219, 238
Planulina ariminensis d’Orbigny 238
Heronallenella boltovskoyi Gupta and Sen Gupta 219, 238
Nuttallides umbonifera (Cushman) 219, 238
Cibicides bengalensis Srinivasan and Sharma 219, 238
. bradyi (Trauth) 219, 238
. cicatricosus (Schwager) 219
. kullenbergi Parker 219, 238
. lucidus (Reuss) 219
. robertsonianus (Brady) 219, 238
aff. soendaensis Le Roy 219
. telisaensis Le Roy 219, 238
. wuellerstorfi (Schwager) 219, 238
Pleurostomella acuminata Cushman 238
P. alternans Schwager 219, 238
P. bolivinoides Schubert 238
P. brevis Schwager 219, 238
P. obtusa Berthelin 219, 238
P. sapperi Schubert 219
Ellipsoidella sp. - 219
Fursenkoina bradyi (Cushman) 219
F. bramletti (Galloway and Morrey) 219
F. schreibersiana (Czjzek) 238
F. texturata (Brady) 219, 238
Francesita advena (Cushman) 219, 238
Cassidulina carinata (Silvestri) 219, 238
C. laevigata d’Orbigny 219, 238
Ehrenbergina carinata Eade 219, 238
E. praebicornis n. sp. 219, 238
Evolovocassidulina bradyi Norman 219, 238
E. seranensis Germeraad 219
Globocassidulina elegans (Sidebottom) 219, 238
G. oblonga (Reuss) 219, 238
G. murrhina (Schwager) 219
G. subglobosa (Brady) 219, 238
G. tumida (Heron-Allen and Earland) 219, 238
Chilostomella oolina Schwager 219, 238
Allomorphina pacifica Hofker 219, 238
Quadrimorphina laevigata (Phleger and Parker) 219, 238
Astrononion stelligerum (d’Orbigny) 219, 238
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Appendix 1. Continued

Benthic foraminifera Found in
DSDP sites

A. umbilicatulum Uchio 219, 238
Nonionella auris (d’Orbigny) 219, 238
N. clavata Cushman 219
N. japonicum (Asano) 219, 238
Pullenia bulloides (d’Orbigny) 219, 238
P. osloensis Feyling-Hanssen 219, 238
P. quadriloba Reuss 219, 238

- P. quinqueloba (Reuss) : 219, 238
P. salisburyi Stewart and Stewart ' 219, 238
Oridorsalis prominula (Stache) 219, 238
0. umbonatus (Reuss) 219, 238
Osangularia culter (Parker and Jones) 219, 238
Gyroidinoides broeckhianus (Karrer) 219, 238
G. cibaoensis (Bermudez) 219, 238
G. nitidula (Schwager) 219, 238
G. polius (Phleger and Parker) 219, 238
Anomalina globulosa Chapman and Parr 219, 238
Anomalinoides glabratus (Cushman) 219

~ Melonis barleeanum (Williamson) 219, 238
M. nicobarensis (Cushman) 219, 238
M. pompilioides (Fichtel and Moll) 219, 238
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