202

[Current
Science

THE DYNAMICAL ORIGIN OF SYMMETRY OF ELEMENTARY PARTICLES*

E. C. G. SUDARSHAN
Physics Department, Syracuse University, Syracuse, New York

1. INTRODUCTION

NE of the most remarkable features of ele-
mentary particles is their multiplet struc-
ture. The simplest such structure is the
particle-antiparticle pairing with equal mass,
spin, lifetime, etc, but with opposite charge
(and baryon number, hypercharge, ete.). We
relate this regularity to the TCP invariance of
the theory, though in earlier years we would
have considered the regularity to be a conse-
quence of charge conjugation invariance. We
may say that we understand the origin of the
particle-antiparticle symmetry.l

But among the strongly interacting particles
we see multiplets of particles with equal spin
and parity, but only approximately equal mass.
It is conventional to identify such a multiplet
structure with the manifestation of an internal
symmetry group, the multiplets constituting
irreducible representations of this group. Charge
independence of strong interactions is now well
established, and if is not inconsistent to assume
that the deviations from exact charge inde-
pendence are due to the charge dependent
coupling with the radiation field: though it is
by no means true that this is the only possible
mechanism of violation of charge independence.
By now it is also well established that there
are regularities in the particle (and resonance)
spectrum which go beyond charge independence,
in the sense that the multiplets can be further
grouped together to constitute supermultiplets
with the same spin, parity and baryon number
and comparable masses, which constitute
irreducible representations of the special unitary
group in three dimensions.? In this case the
departures from symmetry are not -easily
blamed on a known non-strong interaction, but
have to be ascribed to a “small” part of the
strong interactions themselves.

All along, the framework was une in which
the symmetry group was “given”. As long as
the perturbations are neglected, the particles
and resonances are to constitute irreducible
multiplets, with the coupling constants being
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proportional to the Clebsch~Gordan coefficients.
But as to which multiplets occur, or as to the
identification of observed particles with irredu-
cible representations, the theory is silent. The
difference between the Sakata and the Gell-
Mann-Ne'eman versions of SU,; is a case in
point, A simple-minded suggestion is that the
lowest dimensional representations of the group
only occur, There are at least two shortcomings
to this point of view: first, it does not tell
which of the “smaller” representations actually
occur and the order of their masses; second,
one has to invoke extraneous considerations {o
eliminate the triplet (and sextet, etc.) represen-
tations of the unitary group. In view of these,
it is worthwhile to seek a more intimate con-
nection between the symmetry group and the
dynamics of the system.

There is another line of development which
makes such a connection even more desirable.
In a dynamical scheme, where the particles or
resonances appear in the direct channel of a
two-particle scattering process as a result of the
exchange of these and other particles or reso-
nances in the crossed- channels, there are self-
consistency demands on the number of particles
or resonances in a multiplet and on the relative
magnitudes of the various coupling constants;
and the multiplets that can be exchanged to
give an attractive force are not arbitrary.3 Thus
there is a possibility of seeking a dynamieal
origin of symmetries, starting from the existence
of (mass-spin-parity degenerate) multiplets of
interacting particles and requiring self-consis-
tency. In addition to the need of self-consis-
tency, in most such attempts to-date, one
includes other conservation laws, like conser-
vation of baryon number, electric charge, hyper-
charge, etc. As a result of these, with restric-
tion to equal masses of the particles within a
multiplet, the problem of dynamical self-con-
sistency reduces to a set of algebraic non-linear
equations. In case these equations lead to a
symmetry group, the group comes equipped
with the specific representations furnished by
the interacting multiplets.

Essentially the same, but weaker, equations
follow from considerations of an entirely dif-
ferent nature. In this, one again starts from
fhe existence of (mass-spin-parity dege.erate)
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multiplets but extends the identity of their one-
particle properties to particles in interaction by
requiring that the two-point (i.e., one-particle)
pbropagators of the interacting “particles” be-
longing to the multiplet are identicalt No
questions of self-consistency are necessary in
this scheme, but the equations derived by iso-
lating and equating suitable terms in the dif-
{erent propagators serve more or less the same

purpose as the self-consistency equations in'

establishing a dynamical origin of symmetries.
Again, as before, the groups come equipped
with the irreducible representations furnished
by the interacting multiplets,
2. SMUSHKEVICH EQUATIONS FROM FIELD THEORY
Consider three multiplets of interacting
particles E, F, ¢ with m, » and » members.
Then the dynamical principle of equal pro-
pagators require that
Gnl'l" (x - 'U) = 8rr’ G* (IE - y)
1<rr<m
Ghy (2 — y) = 8, G (2 — )
1<s,8<n
GPha (X = y) = dgqr G? (x — 7))
1<aad <y, (le)
Here G®, Gr, (¢ are appropriate Green func-
tions. The essential point is the appearance of
the Kronecker delta on the right-hand side,
and it is a consequence of the requirement that
the propagators be equal for any two members
of the multiplet, since we have the freedom to
redefine the components using any unitary
transformation :

(La)

(1d)

Er (x) -> E’r (’L‘) = ‘;):" Urr' E, (x) (2 a)
Fs (y) -> F,l (y) = 2’:‘ Wu’ F&' ('U) (2 b)
é (¢) — d’,a (f) = glj Veaar bor (f) (2¢)

We now assume that there exists a non-vanish-
ing ftirilincar wvertex (Fig. 1) coupling the
particle multiplets E, F, ¢ which is of the form

Far,: (x, v, f) = g%, I' (x, Y, £) (3)
By isolaling the contribution from two-particle
intermediate states (Fig. 2) to the propagators
(1) we get the bilinear relations

Z"ga'rx (gar’s)“‘ = Al 3rr’ (4 a)
«,

2-:‘ gay‘s (ga.,, s)* v Bl au' (4 b)
.y

2 9%, (ga.'")* = C, 3c(,ct.’ (4 c)
.8

It is convenient to introduce a matrix notation
at this point, identifying g% as the (r,s) matrix
element of the matrix g% Then we can rewrite
(4) in the form
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Fig. 8.

(5a)
(5b)

tr (7% got) = Cy Saqr (5¢)
It is to be noticed that the unit matrices in
(5a) and (5b) are respectively m X m and
n X n.

To proceed further we must appeal to a dia-
grammatic expansion of the propagator. Such
an expansion follows most naturally in a per-
turbation theory: there are, however, some
grounds for believing that the higher order
relations derived by equating these quantities to
have a large range of validity than perturbation
theory itself, In the general case5 when no
two of the multiplets E, F, ¢ are identical the
next irreducible contribution to the propagatcr
comes from a sixth order diagram (Fig. 3).
These take the form:

5 g*gtBgYgragfgiT = Al (6a)
U.F’Y
J gte gfg+7 g%g+f g7 = B; 1 (6b)
agy

(6c)

I tr (g%g*f g¥ g+ gf g*7 = C, 8,
Ther’i are tenth, fourteenth,...order relations
generalizing this structure. The constants
A, B, C in these equations are not independent ;
they are related by
- m Al =nBy=v C1

mAs=n By=v C!




204 The Dynamical Origin

o
r .
WETA
VAN ANANANN
« s\g% %
»

’

L

Tl
Fie. 3
FIG. 8. The sixth crder diagrams.
and so on. All these equations including (5)

are invariant under the automorphism
g% > N Vuo Ug® Wr (7)
af

Considerable simplifications result if two of
the mutiplets are the same, say E=F. In this
case,t we could choose ¢ to be hermitian with-
out any essential loss of generality. This implies
that the coupling matrices g% could be chosen
hermitian so that we could drop the hermitian
conjugation sign in these equations; (5 a) and
(5b) are no longer independent, and similarly
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Fies. 4-5. Fig. 4. The fowth order diagrams.
Fig. 5. Disgramllustrating the self-consistency relation~—
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(6a) and (6b). In addition, there are irredu-
cible diagrams of fouirth order, eighth order, efe.
The fourth order diagrams (Fig. 4) give the
contributions

Zg*gP o P = A, ®
o

5 na.
ZP; tr (9% 9P g% gP) = Cy 35y l Saar. (9]

These relations are not, in general, invarians
under the automorphisms (7) but only under
the restricted automorphisms

g% = X Vyu Ug® U, (10)
al

We shall refer to the relations satisfled by the

coupling matrices in either case as the

Smushkevich relations.

3. SMUSHKEVICH EQUATIONS FROM SELF-
CONSISTENT DYNAMICS

Essentially the same relations can be deduced
from the self-consistent dynamical model. Tn
this case, the interaction potential (or the N
function of an N/D method) is due to the
exchange of particles in the crossed channel,
while the wave function of, say, the ¢ particle
viewed as being composed of an E particle an:

an F particle (an F antiparticle) is to be con-
sidered an eigenfunction of this potential
(correspending to a low-lying bound state).
Equality of the masses within a multiplet
enables us to factorize the wave function¢ in
a manner completely analogous to (3):

‘l”m(r,m = gars ] (11)
where 1 is a suitable function of momentum
variables but independent of «, r, s. Normali-
zation of the various components of yp o in (11)
demands :

g; gars (gars')* !‘/’lz = 6a.a,'

which is equivalent to (4¢) with C;=1/[y].2
Similar relations follow from viewing an E (o)
particle as a bound state of an F particle and
a ¢ (E) particle, thus completing the set of equa-
tions (4) or (5).

The potential is again defined in terms of the
coupling constants ¢%  introduced by (11).
Again, two distinct cases arise depending upon
whether we are considering two identical multi-
plets or all these multiplets being distinct. In
the former case we have a one-particle exchange
contribution to the potential, while in the
second case the potential has only contributions
corresponding to two (or four, six, eight, etc.)
particle exchanges. Continuing to assume the
degeneracy of the masses, we can write 'own
the factorized forms
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f)’ 2 gﬁrs" (er, s")* gyr"s (gﬁr"s’)* -N
’YY”S"

=§7 (gﬁ g’Y—i-)”, (gﬁq‘ g'y)s’s N (12)
it

for the scattering of an E particle and an F
particle (an T antiparticle). The requirement
(see Fig. 5) that (11) is an eigenfunction of
(12) leads to the relation®
5%’3'(9%’”)”’ (gﬁ’.{. gly)s’s gar' = /\3 gafs (13)
where A, is a constant, since the D matrix is
diagonal. This may be rewritten
T gf g7+ g% gf+ gV = ) g (14)
By
By similar considerations of the wave function
of the E and F particle in terms of the other
two particles we get exactly the same equation.
Combining (14) with (5) we can deduce (6)
with the parameters satisfying (5’) and (6')
in the form
Ay _B; G

A B G
For the case of two multiplets being identical,
we have a one-particle exchange potential of

the form$
g 9P gfy s N (15)

As.

which (see Fig. 6) leads to
Zgfgrgl =2g° (16)
g

which, in turn, leads to (8) and (9) with
A, C,

¢
A‘l CI :

T >
x}>w_.=>\>w

FIG. &6
F1G. 6. Diagram illustrating the derivation of Eq. (16).

This completes the derivation of the
Smushkevich equations from dynamical con-
siderations. We shall now seek the conditions
under which the Smushkevich equations imply
a symmetry group. We remark here that if the
coupling constants transform as invariant three
index symbols (generalized Clebsch-Gordan
coefficients) then we know that these relations
are all satisfied automatically, provided there
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4. UNITARY Syaiaieray

The simplest case tg consider is one in whion
M=N=+/1+7 but E£F. In this case“:.:';
can deduce SU, symmetrys with £, tdentized
Wl.th the self-representations and ¢ \:“'Bfg
adjoint representation of the group, ma:.iné ;e
of only (5) which follow, without the use of
any diagrammatic expansion. To sh@wufhis,

w . . .
€ note that the matrices g% which accerding

to (5) satisfy the trace orthogonality
r (g%g¥+) = A, 8

et 1<gad <nt-y

(17}
can be augmented by a matrix ¢ which
satisfies

tr(e®gh) = A1 8y, O<p<ni—1 (18)
These n® matrices constitute a complete set of

nXn matrices and, hence, satisfy the com-
pleteness relation

ne—1

Mfog'u'rs (g'ur's’)* =a 8rr' Sss' (19.\“
where a is a suitable constant. Hence, in
particular

ni—1

2 ghght=aqa1

M0
But we had, from (5),

nd=1 1

2 gt = (n- ‘) Al

e, n

This implies

g° g%+ = J«Jt—-A1 (n-—-—l-)}l
{ n
so that ¢g® is a multiple of a unitary matrix.
We now make use of redefinition (2) of the
particles of the multiplet which generates an
automorphism of the type (7). If we now choose

= = n o
u=1 W '\/'na-%-(n’—-l)Al ¢
(20)

then it follows that

g% —> ,;,’er g% W+ (21)
with *

tT (gm) .—> gvaa' tr (ga' W+) = 0

according to (18) and (20). But (n?-—1)
traceless matrices satisfying (18) can be chosen
to be proportional to the (n*—1) generators of
SU, in the n X n representation. We have thus
deduced the SU, invariance of the svstem with
E, F transforming as the n dimensional
representations of the group and ¢ transforming
as the (n2—1) dimensional adjoint representa-
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tion. Once we have deduced the group structure
we can be assured that the higher order equa-
tions like (6) are automatically satisfied.

For the case of E=F, m=n=4/1+4» the
derivation of unitary symmetryt is more compli-
cated since the automorphisms (10) do not
allow the transformation of the type (20). To
prove tracelessness, one has to use the fourth
order equations. We use (9) and (5) to deduce

82 tr {{g% 91 [g%, 9f)}

= 2§(C. — A; Cy) 844,
From this equation, making use of the auto-
morphisms (10) it is possible to show that the
g must be traceless and, hence, that the
interaction is invariant under SU, with the
multiplet E=F and ¢ transforming as the =
dimensional self-representation and the (n2 —1)
dimensional adjoint representation respectively.

These results are of interest in connection
with the recent interest in the existence of
particles belonging to the three-dimensional
representation of SU; and the possible role of
these particles in the realization of SU; as the
relevant symmetry group. The models found
here, in so far as the coupling of these “quarks”
with octets is concerned, are similar to the con-
structions” of Zweig and of Gell-Mann for the
E=F case and to the construction of Bacry,
Nuyts and Van Hove for the E s F case.

We must emphasize here that the derivation
of unitary symmetry from the Smushkevich
equations in these two cases involved the
assumption neither of isotopic spin conservation
nor of the electric charge. With proper identifi-
cation of the generators, we deduce the conser-
vation of isospin and of electric charge.t

5. OcTET-OCTET~OCTET COUPLING

Another case of practical interest is the
coupling of two identical octets with another
octet in accordance with SU,;. In this case, the
Smushkevich equations by themselves cannot
vield® the SU, invariant coupling. But if we
assurme that all three multiplets are the came
and if their coupling matrices are completely
antisymmetric (appropriate, for example, for
the ‘“gauge” coupling of vector mesons), we can
deducef that the coupling constants constitule
the structure constants of some semi-simple Lie
group with the particles transforming as the
adjoint representation ; if we further restrict
the set of particles to be irreducible (i.e., cannot
be separated into mutually non-interacting sub-
multiplets), it must be a simple Lie group. If
we now seek the solution ccrresponding to n = 8,
we can single out the simple group SU,;. Hence,
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a completely antisymmetric trilinear coupling
of an octet must be SU, invariant® as a con-
sequence of the Smushkevich equations.
Instead of requiring complete antisymmetry,
we may substitute other requirements. For
example, by requiring conservation of isospin
and hypercharge as well as charge conjugation
invariance in the coupling cf two (pseudoscalar)
octets with a (vector) octet we can again
derive unitary symmetry for their coupling.

6. Non-ReLATIVISTIC MODELS ; SU,

So far, cur discussion was carried out in a
menner appropriate to a relativistic theory. But
the notion of symmetry, the particle exchange
mechanism of generating forces and the notion
of antiparticles, etc, arec not restricted to a
relativistic theory. We can, for example, con-
sider a Galilei invariant theory (or even a
Euclidean theory); in this case, the particle-
antiparticle correspondence is not inevitable but
is consistent with Galilei or FEuclidean
invariance.ll By a parallel development, we
can again deduce the self-consistency equations
(14) and (16) for the self-consistent dynamical
Smushkevich equations.

In the case of the Galilei group, the spin is
& more or less independent quantity ; and it is
possible to consider special kinds of interaction
in which the spin is conserved by itself. By a
natural generalization, it is possible to consider
a theory in which we form multiplets in which
the multiplet labels mzy include the spin labels.
We can then again deduce, for the m=n=
(14+7)% case a unitary symmetry scheme.
Thus, using a triplet of spin half particles for
the E=F multiplet, we can deduce SU, in-
variance in ihe interaction of these particlas
with a 35~component boson multiplet.l2 Since
the SUg transformations treat the spin and the
addl’monal particle label on the same footing,
the 35-component multiplet will contain parhcles
with different spins. Giirsey, Radicati and Pais,
and Sakita have shown!? that in such a scheme,
the 35-component multiplet breaks up into a
pseudoscalar (scalar) octet and a vector
(pseudovector) nonet. The baryon super-
multiplet corresponding to the third rank sym-
metric tensor has 56 components, and breaks
up into a 1/24 baryon octet and a 3/2 -+
baryon resonance decuplet. (Incidentally, the
Thomas term arising as a relativistic correction,
or any other spin-orbit force produces auto-
matically a breakdown of this SUg symmetry.)

7. BROKEN SYMMETRY

The particles in nature do not fall into mass
degenerate super-multiplets, the masses are only
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approximately equal. It is {rue that the mass
deviations from the unitary symmetric limit can
be quantitatively understood in terms of a simple
mass formula, But the question arises as to
how such perturbations of symmetry can be
reconciled with the dynamical scheme we have
been considering. There are two possible ways
in which this can arise : first, the mass devia-
tions that are observed destroy the factoriza-
bility of the potential, wave function, or the
propagator contributions ; the problem can then
no longer be studied as an algebraic problem.
The other mechanism of symmetry breakdown
is to have all the Smushkevich equations
satisfied and yet the solutions not exhibiting a
group structured; this feature of the solutions
of field equations was emphasized elready by
Heisenberg in connection with his theory of
clementary particles. The general symmetry
violation is composed of both kinds.

The symmetry violations of the second type
have been studied only in the special case
m=n=3; E=Fs¢. In this case, one findsd
threc solutions : one corresponding to inveriance
under SU, ; another one corresponding to a
3-parametler Abelian group (this is a reducible
case); and a third case in which there is no
continuous symmetry group, but all the
Smushkevich equations are satisfied. Clearly
more work is nceded to understand these cases.
Butl it appears that for the equal mass case
these violations of the symmetry are always
large. This is to be contrasted with the case
of the first type of symmetry violation where
the deviation could be as small as we like.

In casc the mass degenecracy within a multiplet
is split by small amounts, we can study the
modificalions in a self-consistent theory by
considering the deviations as expanded in terms
of quantities transforming irreducibly under
the symmetry group.t If the coupling trans-
forms as an invariant plus a small term trans-
forming as an irreducible representation, thin
the Smushkevich equations (5) and (8) have
their right-hand sides replaced by matrices
transforming as this irreducible representation.
The equatlions so obtained may not fully specify
the deviations of the coupling from its unitary
symmetry limit. In the self-consistent dynamical
model the corresponding modification is to alter
the sclf-consistency relations (14) and (16) by
having a “small” arbitrary linear combination
of matrices G which transform as the specific
irreducible representation added to the matrix
g> on the right-hand side. The structure and
stability of this system has not been investi-
gated in any great detail; but it is possible 1o

ST pE——"
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