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Quantum Scattering Theory in the light of an exactly solvablemodel with rearrangement collisionsS. Varma* and E. C. G. Sudarshan yCenter for Particle Physics and Department of Physics,The University of Texas at Austin, Austin, Texas 78712ABSTRACTWe present an exactly solvable quantum �eld theory which allows rear-rangement collisions. We solve the model in the relevant sectors and demon-strate the orthonormality and completeness of the solutions, and constructthe S-matrix. In the light of the exact solutions constructed, we discussvarious issues and assumptions in quantum scattering theory, including theisometry of the M�oller wave matrix, the normalization and completenessof asymptotic states, and the non-orthogonality of basis states. We showthat these common assertions do not obtain in this model. We suggest ageneral formalism for scattering theory which overcomes these, and other,shortcomings and limitations of the existing formalisms in the literature.1. IntroductionQuantum scattering has been an important subject of study since the early days ofquantum physics. Unfortunately, while we have a reasonable understanding and intuitionfor simple scattering problems, such as single channel scattering, we cannot say the samefor more general scattering problems such as multi-channel scattering, rearrangement col-lisions, �eld theoretic scattering, problems where bound states appear, and the like. Therehave been many attempts to generalize scattering theory to deal with more complicated* e-mail: varmint@delphi.comy e-mail: sudarshan@physics.utexas.edu



2cases. However, the literature in this �eld, though vast, is highly implicit and not con-structive. Most authors that have dealt with the problem have carried over the intuitiondeveloped from the study of single channel potential scattering. This intuition, while quiteadequate for simple problems, is ill-equipped to deal with more complicated scatteringproblems. Therefore, it is important to examine the common claim by some authors, forexample Haag [1,2], that their formalism is general enough to encompass complicated scat-tering problems, as well as �eld theory. Unfortunately, most such formalisms are basedlargely on previous results from potential scattering. Furthermore, even when these prob-lems are addressed in quantum mechanical scattering, �eld theoretic scattering remainsproblematical. Many papers, such as the paper by Gell-Mann and Goldberger [3], treat�eld theoretic scattering as somewhat of an afterthought, without much development from�rst principles, or such as the papers by Van Hove [4], treat it as a case for discussion. The�rst clear development of �eld theoretic scattering from �rst principles was the seminalpaper by Lehmann, Symanzik, and Zimmerman [5]. However the LSZ formalism is notapplicable in many cases, for example, collisions in which stable bound states appear. Thisis, in fact, pointed out by the authors themselves.All this leads to the question: how many of our results and assumptions, and how muchof our intuition can we carry over from simple single-channel potential scattering to morecomplicated scattering situations? To attempt to answer this question, we will construct anexactly solvable sector for a quantum �eld theory. This model has a three particle sector,and allows rearrangement collisions. We will use the solutions of this model, along withprevious results, to point out where the existing formalism has defects and shortcomings.



3Our model, which we shall call the Rearrangement Model, is an elaboration of the LeeModel [6], and the Cascade Model [7], but with extra particles and couplings chosen insuch a way as to allow rearrangement collisions. The couplings of the model are B $ C�and D $ C�. This model has a sector, which we shall call the Rearrangement Sector,B� $ C�� $ D�, in which rearrangement collisions can take place. The model canbe applied directly to physical problems involving rearrangement collisions. We shall,however, leave the applications to subsequent work.This model is interesting because it a very simple one, and yet contains the essence ofmany phenomena that can take place in an interacting system. It displays the followingcharacteristics:1. New states can appear, which have no corresponding states in the originalHamiltonian.2. The thresholds and continuous spectra shift, and the spectra of H and H0 arenot the same. Furthermore, the continuous spectra are shifted by di�erentamounts.3. Genuine rearrangement collisions can take place. Yet we have the sub-additivityof the spectra: the spectra in the higher sectors is the sum of all the spectra inthe lower sectors, with possibly additional terms.We will construct the solutions of this model, and then, in the light of the solutions wehave constructed, will examine various assumptions and assertions made in the literatureabout quantum scattering theory. In particular, we will focus on four key points, that ofthe isometry [1] of the M�oller wave matrix [8], the normalization [1] and completeness [9]of the asymptotic states, and the non-orthogonality of the physical B�, C��, and D�



4states [10,11]. We shall show that these assertions do not obtain in this model. We alsocomment upon the use of the (renormalized) free Hamiltonian in the literature [1,3,9,10,12],rather than the correct prescription, which is to use the isospectral comparisonHamiltonian(see section 8).The plan of this work is as follows. We start with a review of scattering theory in boththe single channel and multiple channel cases. In the next three sections, we introduce theHamiltonian of the Rearrangement Model, show how explicit solutions can be found forthis model in the Rearrangement Sector, and verify that the solutions obtained are, in fact,solutions to our model. We then show that the solutions obtained are orthonormal andcomplete, write down the M�oller matrix and the comparison Hamiltonian, and show thatthe comparison Hamiltonian is isospectral with the full Hamiltonian, but not with the freeHamiltonian. Then we calculate the S-matrix of the system in this sector, demonstrateits unitarity, and calculate its eigenphases. In section 12, we present a general formalismfor scattering theory which overcomes the shortcomings and limitations of the existingformalisms in the literature. In section 13 we discuss scattering theory and its relationto the solutions that we constructed, and to previous work. Finally, in section 14, wesummarize our work and present our conclusions.



52. The Single Channel FormalismFor our purposes, it makes no di�erence whether we use the time dependent or timeindependent formalisms of scattering theory. We are concerned with the assumptions andresults that obtain from the formalisms, and they remain essentially the same in bothcases. We shall therefore restrict ourselves to the time dependent formalism in the nexttwo sections. We follow the treatment of Newton [13] for both sections.The discussion in the next two sections is supposed to be very general. In fact, eventhough the method described deals with the non-relativistic region, \the formalism setup is such that, provided there exists a consistent relativistic quantum �eld theory, thetransition to the relativistic domain is relatively simple" [14]. However, we �nd that evenin such a simple model as our Rearrangement Model, these anticipations are not ful�lled.This formalism leads to wrong and contradictory results, as will be discussed in section 13.We wish to solve the Schr�odinger equationi @@t	(t) = H	(t) : (2:1)We split H into a free Hamiltonian and an interaction Hamiltonian,H = H0 +H 0: (2:2)We assume that this split can be carried out: we shall consider the case of rearrangementcollisions later. We de�ne four Green's functions�i @@t �H0�G� (t) = 1� (t) ; (2:3a)�i @@t �H�G� (t) = 1� (t) ; (2:3b)



6with the initial conditions G+ (t) = G+ (t) = 0; t < 0; (2:4a)G� (t) = G� (t) = 0; t > 0: (2:4b)G+ and G+ are therefore the advanced Green's functions, and G� and G� are the retardedGreen's functions.These may be solved formally yieldingG+ (t) = �ie�iH0t� (t) ; (2:5a)G� (t) = ie�iH0t� (�t) ; (2:5b)G+ (t) = �ie�iHt� (t) ; (2:5c)G� (t) = ie�iHt� (�t) : (2:5d)Let 	0(t) be a state vector satisfying the free Schr�odinger equation. The operator G+can then be used to express the state vector 	0(t0) for any time t0 later than t, in terms ofits value at t0 = t, 	0 �t0� = iG+ �t0 � t�	0 (t) : (2:6)	0(t0) then satis�es the free Schr�odinger equation for t0 > t, and 	0(t0) ! 	0(t) whent0 ! t.Therefore, limt!0+ G+ (t) = limt!0+ G+ (t) = �i1; (2:7a)limt!0�G� (t) = limt!0� G� (t) = i1: (2:7b)Similarly, for t0 > t we can write	 �t0� = iG+ �t0 � t�	(t) ; (2:8)



7and for t0 < t we have 	0 �t0� = �iG� �t0 � t�	0 (t) ; (2:9a)	 �t0� = �iG� �t0 � t�	(t) : (2:9b)We now wish to de�ne \in" and \out" states. We start by de�ning	0 (t) � iG+ �t� t0�	 �t0� ; (2:10)whose time development for t > t0 is governed by the free Hamiltonian, but which at timet0 was equal to 	(t0). We now let the time, t0, approach �1. Then, for the case oft! +1, we have the \out" state, and for the case of t! �1, we have the \in" state. Interms of the \in" and \out" states, the equations for 	(t) are	 (t) = 	in (t) + Z +1�1 dt0 G+ �t� t0�H 0	in �t0� ; (2:11a)= 	out (t) + Z +1�1 dt0 G� �t� t0�H 0	in �t0� : (2:11b)Note that these are retarded and advanced Green's functions for the whole system. Theseare not the same functions as those that appear in a (time ordered) Dyson series which are,instead, time ordered particle propagators. Note also that for every state in the continuousspectrum of H0, and only for such states, these formulae de�ne a corresponding state inthe spectrum of H.If we insert Eq. (2.9b) in Eq. (2.11a), we �nd	 (t) = 
(+)	in (t) ; (2:12)where 
(+) = 1� iZ +1�1 dt0 G+ �t� t0�H 0G� �t0 � t�= 1� iZ +1�1 dtG+ (�t)H 0G� (t) (2:13)



8is called the wave operator or the M�oller matrix. We can similarly de�ne 
(�).Because H 0 is hermitian, Eq. (2.13) gives us the relation	in (t) = 
(+)y	(t) ; (2:14a)and similarly 	out (t) = 
(�)y	(t) : (2:14b)Then, Eq. (2.12) and Eqs. (2.14) give us the relations	in (t) = 
(+)y
(+)	in (t) ; (2:15a)	out (t) = 
(�)y
(�)	out (t) : (2:15b)We now consider the possibility that the free states 	in(t) and 	out(t) span the entireHilbert space, i.e. they are complete. From this assumption, we conclude that 
(+) and
(�) are isometric, 
(+)y
(+) = 
(�)y
(�) = 1: (2:16)This does not, however, mean that the 
's are unitary: we cannot conclude from Eq. (2.15a)that Eq. (2.16) holds with its factors reversed.Furthermore, granted the assumption that the 	in and 	out each form complete sets,we conclude that H
(�) = 
(�)H0: (2:17)When there are bound states in the spectrum ofH, we proceed as follows. Let 	0(E;�)be the eigenstates of the free Hamiltonian with eigenvalue E, and � be the set of variablesnecessary to remove any degeneracy. Then, the completeness of these states can be writtenas a resolution of the identity,1 =X� Z 10 dE	0 (E;�) 	0y (E;�) : (2:18)



9We again emphasize that we do not know whether the states of H0 are complete, a priori.We are simply proceeding under that assumption. We then insert this into the product

y, to get 

y = 
Z 10 dE X� 	0 (E;�) 	0y (E;�)
y= Z 10 dE X� 	(E;�)	y (E;�)= 1� �: (2:19)� is called the unitary de�ciency of 
. From the completeness of the set of all states,bound and scattering, of H, � =Xn 	(n)bd 	(n)bd y: (2:20)Thus, � projects onto the space spanned by the bound states of H. If H has no boundstates, then 
(+) and 
(�) are unitary. Both H and H0 are hermitian; therefore, thehermitian conjugate of Eq. (2.17) givesH0
y = 
yH: (2:21)We now let both sides of Eq. (2.21) act on 	(E;�) to getH0
y	(E;�) = E
y	(E;�) ; (2:22)which shows that if E is in the spectrum of H but not in the spectrum of H0 then
y	(E;�) = 0;and so 
y� = 0: (2:23)Thus, the range of the operators 
(�) is not the entire Hilbert space. Instead, theseoperators map the whole space onto the subspace spanned by the continuum eigenstates



10of H. We cannot reach the subspace spanned by the bound states of H, and therefore,cannot construct an inverse operator for the whole space. The closest that we can comeis to use the operators 
(�)y which are inverses of 
(�) on the subspace of states spannedby the scattering states of H, and which annihilate the subspace of bound states of H.Assuming that the asymptotic states are complete, we construct the S-matrix in thefollowing manner. We use Eqs. (2.15b) and (2.12) to write the \out" state in terms of the\in" state, 	out (t) = 
(�)
(+)	in (t) ; (2:24)which de�nes for us the S-matrix S � 
(�)y
(+): (2:25)The S-matrix can be shown to be unitary and isometric. See Newton [13] for details; note,however, that S is only unitary when 
 is unitary. (This point is not clearly stated inNewton, or in the literature.)Some mathematical questions about convergences arise in the above. Conventionally,in the Schr�odinger picture (the one in which we are currently working), one demands that(see Newton [13] for details)limt!�1 [	 (t) �  in (t)]) 0; (2:26a)limt!+1 [	 (t) �  out (t)]) 0; (2:26b)limt!�1 in (0)) 	(0) � 
(+) in (0) ; (2:26c)where ) denotes the strong limit.We will �nd, in our model, that if we construct the asymptotic \in" and \out" statescorrectly, these limits will be satis�ed; however, the states will not be orthonormal or



11complete. On the other hand, if we make the usual assumptions of scattering theory,namely that the asymptotic states are orthonormal and complete, then these limits willnot be satis�ed.3. The Multiple Channel FormalismThe above formalism is only adequate for simple single-channel cases. For more generalscattering problems, such as rearrangement collisions, we must generalize the formalism.We shall again follow Newton [13].We want to split up the Hamiltonian into two pieces: one piece, Ha, that is left whenthe two initial fragments are taken far apart, and the remaining piece, H 0a. We can then gothrough the same development of 	(t) from 	in(t) as above. However, there is a di�cultythat occurs for the development for the distant future. If rearrangements or break-ups canoccur, then it is possible that the \channel" Hamiltonian in the future is di�erent than the\channel" Hamiltonian in the past.The various possibilities for an n-particle system are handled by de�ning a partitionof them into k clusters, denoted by ak. Given a partition a, we de�ne Ha by allowing alldistances between clusters to independently tend to in�nity. Therefore, Ha will containonly interactions that are internal to clusters, but none between them. Then, H 0a is de�nedby the requirement that H = Ha +H 0a, and therefore, for any two partitions a and b, wehave H = Ha +H 0a = Hb +H 0b: (3:1)



12To each partition, there will correspond Green's functions given by�i @@t �Ha�G�a (t) = 1� (t) ; (3:2)with the same boundary conditions as Eqs. (2.4). If Ha, after removing the kinetic energyof the center of mass motion and of the centers of mass of its clusters, has at least onebound state, it is called an arrangement channel. When this condition on Ha does nothold, the channel is not of interest as an initial or �nal scattering state. If Ha has morethan one bound state, then each of them de�nes a separate channel, and therefore, ineach channel the clusters are in a speci�c bound state but moving freely relative to oneanother. The channel consisting of the entire n-cluster partition is the channel 0 becausethen Ha = H0.Now consider the space of each arrangement channel a, which we shall denote by Ha.Then, if a has m fragments, each state in Ha will have m groups of bound particles. Thismeans that unless the channel a is the entire n-fragment arrangement channel, Ha will notbe the whole Hilbert space: the ionized eigenstates of Ha will be missing. Furthermore,as each Ha is de�ned by di�erent channel Hamiltonians, Ha, the Ha's are generally notorthogonal to each other. In fact, \the complete set of basis functions is not linearlyindependent and, of course, not orthonormal" [15].It will be convenient to de�ne the orthogonal projections Pa onto the channel spaces,Ha. In other words, we de�neP 2a = Pa; P ya = Pa; PaHa = Ha; (3:3)with the null space of Pa de�ned as the space spanned by the ionized eigenstates of Ha.Pa projects states from the full Hilbert space, H, to the channel spaces, Ha. Obviously,for the n-cluster arrangement channel, we have P0 = 1.



13We now wish to de�ne \in" and \out" states. We �rst de�ne an a state, which is astate that develops according to Ha but is in Ha,�i @@t �Ha�	a (�; t) = 0; (3:4)where the label � contains all the other information including the arrangement channel(even though including the arrangement channel in � is redundant for 	a(�; t), it is con-venient for other purposes).We then de�ne 	(+)(�; t) as a state in H that develops according to H,�i @@t �H�	(+) (�; t) = 0; (3:5)and for which there exists an a-state such thatlimt!�1 �	a (�; t) ;	(+) (�; t)� = 1: (3:6)Therefore, the state 	a(�; t) is the \in" state 	in(�; t) in relation to the state 	(+)(�; t).Eq. (3.6) demands that the probability of �nding the system in state 	a(�; t) in the remotepast approach 1, and therefore, it is equivalent to	(+)a t!�1) 	a (�; t) ; (3:7a)or Z dt iG+a �t� t0�	(+) ��; t0� t!�1) 	in (�; t) ; (3:7b)with the double arrow denoting the strong limit.Similarly, Z dt0 (�i)G�a �t� t0�	(�) ��; t0� t!�1) 	out (�; t) : (3:8)



14Exactly analogous to Eqs. (2.11), we can now write	(+) (�; t) = 	in (�; t) + Z +1�1 dt0 G+ �t� t0�H 0a	in ��; t0� ; (3:9a)	(�) (�; t) = 	out (�; t) + Z +1�1 dt0 G� �t� t0�H 0a	out ��; t0� : (3:9b)We can now de�ne the M�oller matrices, and the S-matrix. The M�oller matrices arede�ned by 	� (�; t) = 
(�)a 	a (�; t) ; (3:10)with only those states 	a admitted which are in Ha. On the orthogonal complement (i.e.the ionized eigenstates of Ha) 
(�) is de�ned to be zero,
(�)Pa = 
(�):Then, on the space Ha, using Eq. (3.9a), we �nd
(+)a = Pa +K(+)a ;K(+)a = �iZ 1�1 dtG+ (�t)H 0aG�a (t)Pa= �iZ 0�1 dt eiHtH 0ae�iHatPa;and therefore, 
(+)a = limt!�1 eiHte�iHatPa: (3:11)We can similarly �nd, on Ha, that
(�)a = limt!1 eiHte�iHatPa: (3:12)The range of 
(+)a is the space of all full states that develop from arrangement channela, and the range of 
(�)a is the space of all full states that develop into arrangement channel



15a. Let us call these rangesR(+)a and R(�)a , and their respective orthogonal projections Q(+)aand Q(�)a . The M�oller matrices, 
(�), map Ha onto R�a , and from Eqs. (3.10) we �nd thaton R(+)a and R(�)a , respectively,	a (�; t) = 	in (�; t) = 
(+)y	(+) (�; t)= 	out (�; t) = 
(�)y	(�) (�; t) : (3:13)Therefore, because the 	a(�; t) span the space Ha, we �nd that the M�oller matrices,
(�)a , are partially isometric from the space Ha, i.e.
(�)a y
(�)a = Pa: (3:14)Similarly, the 
(�)a y are partially isometric from the ranges R(�)a of the 
(�), i.e.
(�)a 
(�)a y = Q(�)a ; (3:15)which de�nes the Q(�)a . The full states developing from or into any arrangement channelare orthogonal to each other as can be seen by direct evaluation of the inner products ofasymptotic states. \If the two arrangement channels are di�erent, then there must be atleast one particle for which the \overlap" of the two states was negligible in the remotepast because it belonged to a di�erent fragment. Hence that inner product must vanishfor all times" [16].A major point of di�erence with our results from the Rearrangement Model is thestatement, \note that the same argument shows that the inner product(	b (�; t) ;	a (�; t)) (3:16)approaches zero as t ! �1 (for a 6= b). But since Ha 6= Hb, it is not independentof t and hence it does not generally vanish for �nite times" (emphasis added) [16]. In



16the Rearrangement Model, this is untrue: we show in section 7 that our states are allorthogonal to each other.From the Schr�odinger equation, one can writeH
(�)a = 
(�)a Ha; (3:17)which means that 
 intertwines H and Ha. This again is a major di�erence with theRearrangement Model, because we show in section 7 that 
 intertwines H and HC , whereHC is the comparison Hamiltonian, which has the same spectrum as H; here, Ha does nothave the same spectrum as H.Our channel de�nitions could also include the single cluster arrangement channel, whichis the channel of all the n-particle bound states of H. If we de�ne � to be the orthogonalprojection onto that subspace, then for all a we haveQ(�)a � = 0: (3:18)Now, every non-bound state must be decomposable into states that arise from, or go into,one of the other arrangements. Therefore, we assume� +Xa Q(�)a = 1; (3:19)which is known as asymptotic completeness.Using Eqs. (3.12), (3.17), and (3.19), we may then de�ne a unitary S-matrix,	(+) (�; t) t!�1) 	out (t) =Xb Sba	a (�; t) ; (3:20)where Sba = 
(�)b y
(+)a : (3:21)



17The mathematical questions of convergence are the same here as for the single channelcase, as in Eqs. (2.26).4. The Rearrangement ModelTo keep contact with earlier work, we shall use a combination of the notations of [7]and [17], as far as possible. We consider a quantum �eld theory with �ve distinct �elds,B, C, D, �, and �, and the corresponding particles (no anti-particles).The non-zero commutators are:hB;Byi = hD;Dyi = hC;Cyi = 1;h�(!); �y(!0)i = � �!0 � !� ; h�(�); �y(�0)i = � ��0 � �� : (4:1)Note that � and � are labelled by continuum parameters, 0 < !; � < 1, while B, C,and D, are treated as single modes (\in�nitely heavy") [18]. We choose to use the energyas our variable, rather than momentum, because this makes the model much simpler, andmore physically transparent. We want a total Hamiltonian for the system which allowsthe transitions B $ C�;and D$ C�:Therefore, we choose our Hamiltonian to be:H = H0 + V; (4:2)



18where H0 = mBByB +mDDyD + Z d! !�y(!)�(!) + Z d� ��y(�)�(�); (4:3)and V = Z d! f (!) �(!)CDy + Z d! f� (!) �y(!)CyD+ Z d� g (�)�(�)CBy + Z d� g� (�)�y(�)CyB: (4:4)This Hamiltonian has three constants of motion apart from itself. They are:C1 = ByB + CyC +DyD; (4:5a)C2 = ByB + Z d� �y(�)�(�); (4:5b)C3 = DyD + Z d! �y(!)�(!): (4:5c)Therefore, no transitions can occur between sectors labelled by di�erent values of thesequantum numbers. Let us start by enumerating the stable sectors. The �rst such sectoris the vacuum and has C1 = C2 = C3 = 0. The next three are: C1 = 1; C2 = 0; C3 = 0;C1 = 0; C2 = 1; C3 = 0; and C1 = 0; C2 = 0; C3 = 1. These correspond to the states C, �,and �, respectively. Finally, there is the sector with C1 = 0; C2 = 1; C3 = 1; it correspondsto a state ��.The three lowest non-trivial sectors are:C1 = 1; C2 = 1; C3 = 0; (4:6a)C1 = 1; C2 = 0; C3 = 1; (4:6b)C1 = 1; C2 = 1; C3 = 1: (4:6c)These correspond to B $ C�, D $ C�, and B� $ C�� $ D�, respectively. The lastof these is the sector in which rearrangement collisions can take place, and as mentionedbefore, we shall call this the Rearrangement Sector.



19Our strategy for solving the model in the Rearrangement Sector will be to �rst con-struct the solutions of the two lowest non-trivial sectors, (4.6a) and (4.6b) (which areexactly analogous to the Lee Model), and then use these solutions to express the Rear-rangement Sector equations.5. Solving the ModelWe start by constructing the solutions for the B $ C� and D $ C� sectors. Theseare exactly the same as the Lee model, so the solutions are simple. We shall denote non-interacting (\bare") states by single bras and kets (h , i), and interacting states (\dressed"or \physical") by double bras and kets (hh , ii).The equations we need to solve for the continuum solutions areHj�ii = �j�ii (5:1a)in the B $ C� sector, and Hj�ii = �j�ii (5:1b)in the D$ C� sector.We de�ne � (z) � z �mD � Z 10 d! jf (!) j2z � ! ; (5:2)� (z) � z �mB � Z 10 d� jg (�) j2z � � ; (5:3)��;B(�) � hC�(�)j�ii; (5:4)��;D(!) � hC�(!)j�ii; (5:5)



20��;B � hBj�ii; (5:6)��;D � hDj�ii: (5:7)For shorthand, we will write �(�) for �(� + i�) and ��(�) for �(� � i�), and similarly for�(�). In terms of these, the solutions are:��;B(�) = � (�� �) + g� (�) ��;B�� � + i� ; (5:8a)��;D(!) = � (�� !) + f� (!)��;D�� ! + i� ; (5:8b)��;B = g (�)� (�) ; (5:8c)��;D = f (�)� (�) : (5:8d)If �(z) develops zeros then we have additional discrete states. Similarly, if �(z) developszeros then again we have additional discrete states. For our purposes, we shall alwaysassume that both �(z) and �(z) have exactly one zero each, which are denoted by MDand MB , respectively. There is no loss of generality if we use this assumption because theextension to more than one zero is trivial. The equations for the discrete states are:HjMBii =MB jMBii (5:9a)in the B $ C� sector, and HjMDii =MDjMDii (5:9b)in the D$ C� sector. We de�ne �B(�) � hC�(�)jMBii; (5:10)�D(!) � hC�(!)jMDii; (5:11)pZB � hBjMBii; (5:12)pZD � hDjMDii: (5:13)



21In terms of these, the normalized solutions are:�B(�) =pZB g� (�)MB � � ; (5:14a)�D(!) =pZD f� (!)MD � ! ; (5:14b)ZB = "1 + Z d� jg (�) j2(MB � �)2#�1 ; (5:14c)ZD = "1 + Z d! jf (!) j2(MD � !)2#�1 ; (5:14d)where the last two are obtained by imposition of the orthonormality condition. Note thatthese solutions, Eqs. (5.8) and (5.14), form a complete orthonormal set.Now, we use these solutions to construct the solutions in the Rearrangement Sector. Inthis sector we will have four sorts of solutions. The �rst will correspond to the \physical"jC�(!)�(�)ii sector, the second to the \physical" jD�(�)ii, the third to the \physical"jB�(!)ii, and the last to one or more dynamically generated bound states, which we shalldenote by jMAii. Which solution is obtained will depend on whether we put the deltafunctions (which represent the plane wave parts of our solutions) in our solutions. If weput none, we get the discrete states.We wish to solve the eigenvalue equationHjEii = EjEii: (5:15)We expand Eq. (5.15) in terms of �y(!)j�ii, �y(!)jMBii, �y(�)j�ii, and �y(�)jMDii. Byacting on these states with the Hamiltonian, and using Eqs. (5.1) and (5.9) we get(E � �� !)hh�j�(!)jEii = f� (!) hh�jCyDjEii; (5:16a)(E �MB � !)hhMBj�(!)jEii = f� (!) hhMBjCyDjEii; (5:16b)(E � �� �)hh�j�(�)jEii = g� (�) hh�jCyBjEii; (5:16c)



22(E �MD � �)hhMDj�(�)jEii = g� (�) hhMDjCyBjEii: (5:16d)We need to evaluate the unknownmatrix elements on the right hand side of Eqs. (5.16).We solve for these elements by inserting H in them, commuting it on one side, and lettingit act on jEii on the other. For example, we can solve for hh�jCyDjEii in the followingmanner: hh�jCyDHjEii = Ehh�jCyDjEii) hh�jnHCyD + hCyD;HiojEii = Ehh�jCyDjEii: (5:17)We now let H in the �rst term of Eq. (5.17) act on hh�j, and evaluate the commutatorin the second term. We proceed similarly for the other three equations and, when all thedust settles, get(E � ��mD) hh�jCDyjEii= Z d! f (!) hh�j�(!)jEii� ��;B��Z d! f (!)nZ d�0��0;Bhh�0j�(!)jEii+pZBhhMB j�(!)jEiio+ Z d� g (�)nZ d�0��0;Dhh�0j�(�)jEii+pZDhhMDj�(�)jEiio�; (5:18a)(E �MB �mD) hhMBjCDyjEii= Z d! f (!) hhMB j�(!)jEii�pZB�Z d! f (!)nZ d�0��0;Bhh�0j�(!)jEii+pZBhhMB j�(!)jEiio+ Z d� g (�)nZ d�0��0;Dhh�0j�(�)jEii+pZDhhMDj�(�)jEiio�; (5:18b)(E � ��mB) hh�jCByjEii= Z d� g (�) hh�j�(�)jEii� ��;D��Z d! f (!)nZ d�0��0;Bhh�0j�(!)jEii+pZBhhMBj�(!)jEiio



23+ Z d� g (�)nZ d�0��0;Dhh�0j�(�)jEii+pZDhhMDj�(�)jEiio�; (5:18c)(E �MD �mB) hhMDjCByjEii= Z d� g (�) hhMDj�(�)jEii�pZD�Z d! f (!)nZ d�0��0;Bhh�0j�(!)jEii +pZBhhMBj�(!)jEiio+ Z d� g (�)nZ d�0��0;Dhh�0j�(�)jEii+pZDhhMDj�(�)jEiio�: (5:18d)We �rst solve for the \physical" jC�(!)�(�)ii states. We start by inverting Eqs. (5.16)and putting in the requisite delta functions. Note that we may put the product of twodelta functions because this is an in�nitely degenerate (double) continuum, which cannotbe speci�ed by just E; rather, we have to label the state with the variables E and n, withthe n variable representing the division of energy between the � and � particles. We thensubstitute these into the �rst term of each of Eqs. (5.18), and solve for the unknown matrixelements. Having found them, we put them into Eqs. (5.16) to �nd our solutions. De�ningbC(E;n; �; !) � hh�j�(!)jE;nii; (5:19a)bCF (E;n;MB; !) � hhMBj�(!)jE;nii; (5:19b)dC(E;n; �; �) � hh�j�(�)jE;nii; (5:19c)dCF (E;n;MD; �) � hhMDj�(�)jE;nii; (5:19d)we getbC(E;n; �; !) = �(E � �� n)�n;D(!)� f� (!)(E � �� ! + i�) ��;B�� (E � �)KC (E;n) ; (5:20a)bCF (E;n;MB; !) = � f� (!)(E �MB � ! + i�) pZB� (E �MB)KC (E;n) ; (5:20b)dC(E;n; �; �) = � (�� n) �E�n;B(�) � g� (�)(E � � � � + i�) ��;D�� (E � �)KC (E;n) ; (5:20c)dCF (E;n;MD; �) = � g� (�)(E �MD � � + i�) pZD� (E �MD)KC (E;n) ; (5:20d)



24where KC (E;n) = g (E � n) f (n)� (E � n)� (n) 1 (E) ; (5:21) (E) = ZD� (E �MD) + Z d� jf (�) j2j� (�) j2 1� (E � �) (5:22a)= ZB� (E �MB) + Z d� jg (�) j2j� (�) j2 1� (E � �) : (5:22b)The last equality follows from Eqs. (A.10).We now solve for the \physical" jD�(�)ii sector. We must again start by invertingEqs. (5.16), but this time need to put just the one requisite delta function in Eq. (5.16d).We put these equations in Eqs. (5.18), and solve for the unknown matrix elements puttingin another delta function in Eq. (5.18a) when inverting because now we must account forthe zero of �(E � �) at MD. We then put these results in Eqs. (5.16). De�ningbD(E;�; !) � hh�j�(!)jEii; (5:23a)bDF (E;MB ; !) � hhMBj�(!)jEii; (5:23b)dD(E;�; �) � hh�j�(�)jEii; (5:23c)dDF (E;MD; �) � hhMDj�(�)jEii; (5:23d)we getbD(E;�; !) = �D (!) �(E � ��MD)� f� (!)(E � �� ! + i�) ��;B�� (E � �)KD (E) ; (5:24a)bDF (E;MB; !) = � f� (!)(E �MB � ! + i�) pZB� (E �MB)KD (E) ; (5:24b)dD(E;�; �) = � g� (�)(E � �� � + i�) ��;D�� (E � �)KD (E) ; (5:24c)dDF (E;MD; �) = �E�MD;B (�)� g� (�)(E �MD � � + i�) pZD� (E �MD)KD (E) ; (5:24d)where KD (E) = pZD (E) g (E �MD)� (E �MD) ; (5:25)



25and (E) is the same as that de�ned in Eqs. (5.22).In exactly the same way, we can �nd the solutions for the \physical" jB�(!)ii sector.They are:bB(E;�; !) = � f� (!)(E � �� ! + i�) ��;B�� (E � �)KB (E) ; (5:26a)bBF (E;MB; !) = �E�MB ;D (!)� f� (!)(E �MB � ! + i�) pZB� (E �MB)KB (E) ; (5:26b)dB(E;�; �) = �B (�) � (E � ��MB) � g� (�)(E � �� � + i�) ��;D�� (E � �)KB (E) ; (5:26c)dBF (E;MD; �) = � g� (�)(E �MD � � + i�) pZD� (E �MD)KB (E) ; (5:26d)where KB (E) = pZB (E) f (E �MB)� (E �MB) ; (5:27)and (E) is the same as that de�ned in Eq. (5.22).Finally, we wish to solve for any dynamically generated discrete states. In this case,we put no delta functions anywhere. When we follow the procedure of putting Eqs. (5.16)in Eqs. (5.18) and solving for the unknown matrix elements, we �nd that the only wayto satisfy all the equations is if (E) has zeros. Denoting these zeros by MA, we �nd thediscrete state solutions:bA(MA; �; !) = � f� (!)(MA � � � !) ��;B�� (MA � �)KA (MA) ; (5:28a)bAF (MA;MB ; !) = � f� (!)(MA �MB � ! + i�) pZB� (MA �MB)KA (MA) ; (5:28b)dA(MA; �; �) = � g� (�)(MA � � � �) ��;D�� (MA � �)KA (MA) ; (5:28c)dAF (MA;MD; �) = � g� (�)(MA �MD � � + i�) pZD� (MA �MD)KA (MA) ; (5:28d)whereKA(MA) is now an arbitrary normalization factor which is �xed, when demonstratingcompleteness, to be qd(E)dE jE=MA (see the discussion after Eq. (7.18)). For our purposes,



26without loss of generality, we assume that there is only one zero of (E), denoted by MA,and thus only one dynamically generated discrete state. The extension to more than onediscrete state is trivial.In each of Eqs. (5.20), (5.24), (5.26), and (5.28) the superscript refers to the sector thatthe solution is in, and the subscript F refers to solutions expanded in the the discrete statepart of the Lee Model sectors. Furthermore, we have anticipated future developments by�xing the arbitrary constants accompanying the delta functions in Eqs. (5.20), (5.24), and(5.26). We do this by demanding that Eq. (6.3a) and Eq. (6.3b), or their equivalents forthe other two sectors, give the same result, and that the solutions be orthonormal.6. Veri�cation of the SolutionsWe now proceed to verify that Eqs. (5.20), (5.24), (5.26), and (5.28) are each solutionsto our problem. To do this, we �rst transform our solutions into the bare state basis;i.e. in terms of the non-interacting states jC�(!)�(�)i, jB�(!)i, and jD�(�)i, using thecompleteness of the lower sector solutions. With the expansion coe�cients in the \physical"jC�(!)�(�)ii sector de�ned in the following manner (with the coe�cients for the othersectors de�ned similarly)jE;nii � CC(E;n; !; �)jC�(!)�(�)i+BC(E;n; !)jB�(!)i+DC (E;n; �)jD�(�)i; (6:1)where 	C(E;n; !; �) �0@CC(E;n; !; �)DC (E;n; �)BC(E;n; !) 1A ; (6:2)and



27CC(E;n; !; �) � hC�(!)�(�)jE;niiBC(E;n; !) � hB�(!)jE;niiDC (E;n; �) � hD�(�)jE;nii:we have CC(E;n; !; �) = Z d���;B(�)bC(E;n; �; !) + �B(�)bCF (E;n;MB ; !); (6:3a)= Z d���;D(!)dC(E;n; �; �) + �D(!)dCF (E;n;MD; �); (6:3b)DC (E;n; �) = Z d���;DdC(E;n; �; �) +pZDdCF (E;n;MD; �); (6:3c)BC(E;n; !) = Z d���;BbC(E;n; �; !) +pZBbCF (E;n;MB ; !); (6:3d)with similar equations for the other three sectors (for example, for the \physical" jD�(�)iisector, we would replace CC(E;n; !; �) by CD(E;!; �), bC (E;n; �; !) by bD(E;�; !), etc.).A good check that we have solved our equations correctly is to verify that Eqs. (6.3a) and(6.3b) give the same result. This is indeed completely trivial if we use Eq. (A.14).For the \physical" jC�(!)�(�)ii sector in the bare basis, we get:CC (E;n; !; �) = �n;D(!)�E�n;B(�) �KC (E;n) f� (!) g� (�)(E � ! � � + i�)�Z d� j��;Bj2(E � �� ! + i�)� (E � �) + Z d� j��;Dj2(E � �� � + i�)� (E � �)+ ZB� (E �MB) (E �MB � ! + i�) + ZD� (E �MD) (E �MD � � + i�)�; (6:4a)DC (E;n; �) = f (n)� (n)�n;D(!) �KC (E;n) g� (�)�Z d� j��;Dj2(E � �� � + i�)� (E � �) + ZD� (E �MD) (E �MD � � + i�)�; (6:4b)BC (E;n; !) = g (E � n)� (E � n)�E�n;B(�)�KC (E;n) f� (!)�Z d� j��;Bj2(E � �� ! + i�)� (E � �) + ZB� (E �MB) (E �MB � ! + i�)�: (6:4c)



28For the \physical" jD�(�)ii sector in the bare basis, we get:CD (E;!; �) = �D (!) �E�MD ;B (�)�KD (E) f� (!) g� (�)(E � ! � � + i�)�Z d� j��;B j2(E � � � ! + i�)� (E � �) + Z d� j��;Dj2(E � �� � + i�)� (E � �)+ ZB� (E �MB) (E �MB � ! + i�) + ZD� (E �MD) (E �MD � � + i�)�; (6:5a)DD (E; �) =pZD�E�MD ;B (�)�KD (E) g� (�)�Z d� j��;Dj2(E � � � � + i�)� (E � �) + ZD� (E �MD) (E �MD � � + i�)�; (6:5b)BD (E;!) = �D (!) �E�MD;B �KD (E) f� (!)�Z d� j��;B j2(E � � � ! + i�)� (E � �) + ZB� (E �MB) (E �MB � ! + i�)�: (6:5c)For the \physical" jB�(!)ii sector in the bare basis, we get:CB (E;!; �) = �B (�) �E�MB;D (!)�KB (E) f� (!) g� (�)(E � ! � � + i�)�Z d� j��;B j2(E � �� ! + i�)� (E � �) + Z d� j��;Dj2(E � �� � + i�)� (E � �)+ ZB� (E �MB) (E �MB � ! + i�) + ZD� (E �MD) (E �MD � � + i�)�; (6:6a)DB (E; �) = �B (�) �E�MB ;D �KB (E) g� (�)�Z d� j��;Dj2(E � �� � + i�)� (E � �) + ZD� (E �MD) (E �MD � � + i�)�; (6:6b)BB (E;!) =pZB�E�MB;D (!)�KB (E) f� (!)�Z d� j��;B j2(E � �� ! + i�)� (E � �) + ZB� (E �MB) (E �MB � ! + i�)�: (6:6c)Finally, for the discrete states, we get:CA (MA; !; �) = �KA (MA) f� (!) g� (�)MA � ! � ��Z d� j��;Bj2(MA � � � !)� (MA � �) + Z d� j��;Dj2(MA � �� �)� (MA � �)+ ZB� (MA �MB) (MA �MB � ! + i�)



29+ ZD� (MA �MD) (MA �MD � � + i�)�; (6:7a)DA (MA; �) = �KA (MA) g� (�)�Z d� j��;Dj2(MA � �� �)� (MA � �) + ZD� (MA �MD) (MA �MD � � + i�)�; (6:7b)BA (MA; !) = �KA (MA) f� (!)�Z d� j��;Bj2(MA � � � !)� (MA � �) + ZB� (MA �MB) (MA �MB � ! + i�)�: (6:7c)We now verify that Eqs. (6.4), (6.5), (6.6), and (6.7) are each solutions of our model. Todo this, we explicitly write down the analogues of Eqs. (5.16) in the bare basis, plug ineach set of solutions in turn, and verify that the equations are satis�ed. A straightforwardanalysis shows that the following equations must be satis�ed in the bare basis (we havewritten them for the \physical" jC�(!)�(�)ii sector, i.e. with the variable n|for the othersectors the variable n is, of course, missing):(E � ! � �)C (E;n; !; �) = g� (�)B (E;n; !) + f� (!)D (E;n; �) ; (6:8a)(E �mB � !)B (E;n; !) = Z d� g (�)C (E;n; !; �) ; (6:8b)(E �mD � �)D (E;n; �) = Z d! f (!)C (E;n; !; �) : (6:8c)Putting each of Eqs. (6.4), (6.5), (6.6), and (6.7) in turn into Eqs. (6.8), or their equivalentsfor the other sectors, and using Eq. (A.14), we �nd that each of these sets of solutionssatis�es the equations. Incidentally, a glance at Eqs. (6.8) immediately shows why wecould not have solved the problem directly rather than the somewhat convoluted methodwe went through: the integral equations are not separable, and are quite intractable.



307. Orthonormality and CompletenessWe now proceed to verify orthonormality and completeness of the solutions Eqs. (6.4),(6.5), (6.6), and (6.7). We start by verifying orthonormality for the diagonal componentsbeginning with the scalar product (	Cy(E0; n0; !; �);	C(E;n; !; �)), which is given byZ d! d�	Cy(E0; n0; !; �)	C(E;n; !; �)= Z d! d� CC�(E0; n0; !; �)CC(E;n; !; �)+ Z d! BC �(E0; n0; !)BC (E;n; !)+ Z d� DC �(E0; n0; �)DC (E;n; �): (7:1)We now use Eqs. (6.3) to write this asZ d! d�	Cy(E0; n0; !; �)	C(E;n; !; �)= Z d! d� �Z d�0 ���0;B(�)bC �(E0; n0; �0; !) + ��B(�)bCF �(E0; n0;MB ; !)��Z d���;B(�)bC(E;n; �; !) + �B(�)bCF (E;n;MB ; !)�+ Z d!�Z d�0 ���0;BbC�(E0; n0; �0; !) +pZBbCF �(E0; n0;MB ; !)��Z d���;BbC(E;n; �; !) +pZBbCF (E;n;MB ; !)�+ Z d� DC�(E0; n0; �)DC (E;n; �): (7:2)We then do the integrals over � and �0 to �ndZ d! d�	Cy(E0; n0; !; �)	C(E;n; !; �)= Z d�d! bC�(E0; n0; �; !)bC (E;n; �; !)+ Z d! bCF �(E0; n0;MB; !)bCF (E;n;MB ; !)+ Z d� DC �(E0; n0; �)DC (E;n; �): (7:3)



31De�ning L1 �E0; n0� � f� (n0) g� (E0 � n0)�� (n0)�� (E0 � n0) ;L2 (E;n) � f (n) g (E � n)� (n) � (E � n) ; (7:4)we �nd that the sum of the �rst two integrals is� �E �E0� � �n� n0�� � �E0 � n0 �E + n� f� (n0) f (n)�� (n0)� (n)+ L1 �E0; n0�L2 (E;n)� 1� (E0)�� (E0 �E + n) + 1 (E)� (E �E0 + n0)�+ L1 (E0; n0)L2 (E;n)� (E0)  (E) � �ZB�� (E0 �MB)� (E �MB) � Z d� j��;B j2�� (E0 � �)� (E � �)�;(7:5)while the third integral gives� �E0 � n0 �E + n� f� (n0) f (n)�� (n0)� (n)� L1 �E0; n0�L2 (E;n)� 1� (E0)�� (E0 �E + n) + 1 (E)� (E �E0 + n0)�+ L1 (E0; n0)L2 (E;n)� (E0)  (E)� ZD� (E �MD)�� (E0 �E +MD) + ZD�� (E0 �MD)� (E �E 0 +MD)+ Z d�0 j��0;Dj2�� (E0 � �0)� (E �E 0 + �0) + Z d� j��;Dj2� (E � �)�� (E0 �E � �)�:(7:6)Adding Eqs. (7.5) and (7.6) together, and doing the integrals by combining them into asingle contour integral (which evaluates simply to its residues), we �nd that the only termleft is �(E0 �E)�(n0 � n), which is just as required.We can similarly show thatZ d! d�	Dy(E0; !; �)	D(E;!; �)= Z d�d! bD�(E0; �; !)bD(E;�; !)



32+ Z d! bDF �(E0;MB; !)bDF (E;MB; !)+ Z d� DD�(E0; �)DD(E; �)= � �E0 �E� ; (7:7)and Z d! d�	By(E0; !; �)	B(E;!; �)= Z d�d! bB�(E0; �; !)bB(E;�; !)+ Z d! bBF �(E0;MB; !)bBF (E;MB; !)+ Z d� DB�(E0; �)DB(E; �)= � �E0 �E� : (7:8)Finally, 	Ay(MA; !; �)	A(MA; !; �) = 1: (7:9)Now we take up the o�-diagonal elements. ForZ d! d�	Cy(E0; n0; !; �)	D(E;!; �)= Z d�d! bC�(E0; n0; �; !)bD(E;�; !)+ Z d! bCF �(E0; n0;MB; !)bDF (E;MB; !)+ Z d� DC �(E0; n0; �)DD(E; �); (7:10)we �nd that the third integral exactly cancels the sum of the �rst two, giving us 0. Wecan similarly show that Z d! d�	Cy(E0; n0; !; �)	B(E;!; �) = 0; (7:11)Z d! d�	Cy(E0; n0; !; �)	A(MA; !; �) = 0; (7:12)



33Z d! d�	Dy(E0; !; �)	B(E;!; �) = 0; (7:13)Z d! d�	Dy(E0; !; �)	A(MA; !; �) = 0; (7:14)Z d! d�	By(E0; !; �)	A(MA; !; �) = 0: (7:15)Therefore, the set of solutions we found, Eqs. (6.4), (6.5), (6.6), and (6.7) are orthonor-mal.We now consider completeness. We wish to show thatZ dE dn	C(E;n; !; �)	Cy(E;n; !0; �0) + Z dE	D(E;!; �)	Dy(E;!0; �0)+ Z dE	B(E;!; �)	By(E;!0; �0) + 	A(MA; !; �)	Ay(MA; !0; �0)=0@ � (� � �0) � (! � !0) 0 00 � (� � �0) 00 0 � (! � !0)1A : (7:16)Let us start with the diagonal elements. The (1; 1) element of the matrix isZ dE dnCC(E;n; !; �)CC�(E;n; !0; �0) + Z dE CD(E;!; �)CD�(E;!0; �0)+ Z dE CB(E;!; �)CB�(E;!0; �0) + CA(MA; !; �)CA�(MA; !0; �0): (7:17)These integrals are most easily done in the following manner. The �rst term can berewritten, using Eqs. (6.3), asZ dEdnCC(E;n; !; �)CC�(E;n; !0; �0)�Z d�0 ���0;B(�0)bC �(E;n; �0; !0) + ��B(�0)bCF �(E;n;MB ; !0)�= Z dE dn�Z d���;B(�)bC (E;n; �; !) + �B(�)bCF (E;n;MB ; !)�: (7:18)One then rewrites subsequent terms in Eq. (7.17) in a similar fashion as Eq. (7.18).Since the integrals are exceedingly tedious, we describe how they are done, and leave it to



34the interested reader to verify our results. The integrals over n are done with the help ofEq. (A.15). Then, the integrals over E are done by converting them into contour integrals.When all the contour integrals are combined it is found that they add together into onelarge contour integral (plus the non-contributing circle at in�nity), which evaluates simplyto its residues. These residues exactly cancel the other pieces in the expression, leavingover one or more delta functions for the diagonal terms, and nothing for the o�-diagonalones. For convenience, the branch cuts and poles of the function 1(z) , where z is a complexintegration variable in the contour integral, are shown in Figure 3.One �nds that the (1; 1) term is �(! � !0)�(� � �0). In doing this, one has to �xKA(MA) =qd(E)dE jE=MA , which �xes the unknown normalization constant in Eqs. (5.28).One can similarly show that the (2; 2) and the (3; 3) terms are �(� � �0) and �(! � !0),respectively.For the o�-diagonal terms, one proceeds similarly and �nds that they are all zero. Thus,our set of solutions, namely, Eqs. (6.4), (6.5), (6.6), and (6.7) is a complete orthonormalset of solutions of our model in this sector.8. The M�oller Matrix and the Comparison HamiltonianThe matrix (with continuous eigenvalues) of the eigenfunctions, including any discretesolutions, gives us the generalized M�oller Matrix by virtue of the results already demon-strated on orthonormality and completeness [7]. It is given by
 (E;n; !; �) = �	C(E;n; !; �);	D(E;!; �);	B(E;!; �);	A(MA; !; �)� (8:1)



35with components0@CC(E;n; !; �) CD(E;!; �) CB(E;!; �) CA(MA; !; �)DC (E;n; �) DD(E; �) DB(E; �) DA(MA; �)BC(E;n; !) BD(E;!) BB(E;!) BA(MA; !) 1A : (8:2)It has the properties of being unitary 

y = 1; (8:3a)
y
 = 1; (8:3b)and of diagonalizing the full Hamiltonian, H,H
 = 
HC ; (8:4a)
yH
 = HC ; (8:4b)where HC is called the comparison Hamiltonian. It can be calculated in the followingmanner. First, we use the eigenvalue equations to writeH
(E;n; !; �)= �E	C(E;n; !; �); E	D(E;!; �); E	B(E;!; �);MA	A(MA; !; �)� ; (8:5)and then act on Eq. (8.5) with 
y from the left, and make use of the orthonormalityrelations to get
yH
 =0B@E� (E �E0) � (n� n0) 0 0 00 E� (E �E0) 0 00 0 E� (E �E0) 00 0 0 MA1CA= HC : (8:6)To compare HC with the free Hamiltonian, H0, we rewrite HC , putting E = n + �for the (1; 1) element, E = MD + � for the (2; 2) element, and E = MB + � for the (3; 3)



36element, and similarly for E0. Thus, HC becomes0B@ (n+ � ) � (� � � 0) � (n� n0) 0 0 00 (MD + � ) � (� � � 0) 0 00 0 (MB + � ) � (� � � 0) 00 0 0 MA1CA: (8:7)The free Hamiltonian, H0, is0@ (! + �) � (! � !0) � (� � �0) 0 00 (mD + �) � (� � �0) 00 0 (mB + !) � (! � !0)1A : (8:8)Comparing HC and H0, we see that we can identify HC with H0 if we include bothmass and wave-function renormalization terms in the interaction, and ignore the discreteMA state in HC . The mass renormalization means that we must add a quantity � to H0,where � is � = 0@ 0 0 00 (MD �mD) � (� � �0) 00 0 (MB �mB) � (! � !0)1A : (8:9)The structure of our solutions, Eqs. (6.4), (6.5), and (6.6) immediately tells us that wemust have a wave function (and consequent coupling constant) renormalization.Thus, the �elds B, C, D, �, and � have the wave function renormalizationsB !p�0B = 1pZBB; (8:10a)D! p�0D = 1pZDD; (8:10b)C ! C; (8:10c)�! �; (8:10d)�! �: (8:10e)Because there are no proper vertex corrections, the coupling constant renormalizationsreect the wave function renormalizations [7]f (!)!pZDf (!) ; (8:11)g (�)!pZBg (�) : (8:12)



37Furthermore, as there are no divergences in this problem, the coupling constant andwave function renormalizations are inessential, and the mass renormalization making H0+� identi�able with HC is essential only in this sector. These renormalizations are su�cientfor higher sectors as well. The only change in the higher sectors is due to the massrenormalizations which alter the continuum thresholds from mD and mB to MD and MB,respectively, but leave everything else una�ected.Notice that while HC and H0 have the same structure (as long as � and � bothhave zeros, and  does not), they have di�erent spectra. Only the double continuum0 < n < E <1 is coextensive; the D� and B� continua are renormalized downwards frommD to MD and from mB to MB, respectively. Notice also that, contrary to conventionalwisdom [1,3,12], the M�oller matrix intertwines the full Hamiltonian, H, with HC , not withH0. However, HC and H do have the same spectrum.In addition, if we take the unitary transformation of HC in reverse, we can convert thecomparison Hamiltonian to the full Hamiltonian
HC
y = H; (8:13)and just as in the Cascade Model of [7], we �nd that the notion of an interaction is basisdependent.



389. The S MatrixWe have obtained one set of solutions to our problem, namely, Eqs. (6.4), (6.5), (6.6),and (6.7). We can, of course, obtain another set in which the singular operators of the form(E � ! � � + i�)�1 (which give the \in" states) in Eqs. (6.4), (6.5), and (6.6) are changedto (E � ! � � � i�)�1 (which give the \out" states), while Eqs. (6.7) remain unchanged.Let us denote these solutions, and quantities associated with them, with a prime. Thisnew set also furnishes a M�oller matrix,
0 = �	C 0(E;n; !; �);	D0(E;!; �);	B 0(E;!; �);	A(MA; !; �)� ; (9:1)which satis�es the same properties as the original M�oller matrix, that of unitarity
0
0y = 1; (9:2a)
0y
0 = 1; (9:2b)and of diagonalizing H H
0 = 
0HC ; (9:3a)
0yH
0 = HC : (9:3b)The set of states, Eqs. (6.4), (6.5), (6.6), and (6.7) are such thatlimt!�1 eiHCte�iHt	C(E;n; !; �) =0@ � (n� !) � (E � ! � �)00 1A ; (9:4a)limt!�1 eiHCte�iHt	D(E;!; �) =0@ 0pZD� (E �MD � �)0 1A ; (9:4b)limt!�1 eiHCte�iHt	B(E;!; �) =0@ 00pZB� (E �MB � !)1A ; (9:4c)limt!�1 eiHC te�iHt	A(MA; !; �) = 	A(MA; !; �); (9:4d)



39of which the �rst three are the plane wave ideal eigenstates of the comparison Hamiltonian.However, notice that there is the need for a wave function renormalization in 	D(E;!; �)and 	B(E;!; �), and that the threshold is renormalized in these two cases (i.e. mB !MBand mD ! MD). Clearly, these states are the \in" states in our problem. This is againanalogous to the Cascade Model of [7].For t! +1 for these \in" states we havelimt!+1 eiHCte�iHt	C(E;n; !; �)=0BBB@ � (E � ! � �) �� (n� !) ��(n)��(E�n)�(n)�(E�n) + 2�i(E) f(n)g(E�n)�(n)�(E�n) f�(!)g�(�)�(!)�(�) �2�i(E) f(n)g(E�n)�(n)�(E�n)ZD� (E �MD � �) g�(�)�(�)2�i(E) f(n)g(E�n)�(n)�(E�n)ZB� (E �MB � !) f�(!)�(!) 1CCCA ; (9:5a)limt!+1 eiHCte�iHt	D(E;!; �)=0BBB@ 2�i� (E � ! � �) pZD(E) g(E�MD)�(E�MD) f�(!)g�(E�!)�(!)�(E�!)pZD� (E �MD � �) ���(�)�(�) + 2�i(E)ZD jg(�)j2�(�)�(�)�pZB� (E �MB � !) 2�i(E)ZB jf(!)j2�(!)�(!) 1CCCA ; (9:5b)limt!+1 eiHCte�iHt	B(E;!; �)=0BBB@ 2�i� (E � ! � �) pZB(E) f(E�MB)�(E�MB) f�(!)g�(E�!)�(!)�(E�!)pZD� (E �MD � �) 2�i(E)ZD jg(�)j2�(�)�(�)pZB� (E �MB � !) ���(!)�(!) + 2�i(E)ZB jf(!)j2�(!)�(!)�1CCCA ; (9:5c)limt!+1 eiHCte�iHt	A(MA; !; �) = 	A(MA; !; �): (9:5d)(The limits in Eqs. (9.4) and Eqs. (9.5) are understood for multiplication by smoothfunctions of ! or � or both, as the case may be).The \out" states behave in an analogous but opposite fashion to the \in" states. Theybehave simply for t ! +1, but have a complicated structure as t ! �1. Furthermore,the \in" states at t ! �1 and the \out" states at t ! +1 are identical. Therefore, we



40can de�ne an S-matrix, and can compute it in one of several ways. For example, we cancompute it using 	scattered = limt!1 (	 (t)�	(�t)) ; (9:6)or we can take the scalar product of the \in" and \out" states�	0;	� = S: (9:7)Both methods, of course, give the same answer.The method of the inner products is cleaner and more aesthetically satisfying so weshall follow it for the calculation. The results are easily checked by doing the calculationby the other methods.Schematically, the S-matrix looks like (the \+" subscript means an \in" state and the\�" subscript means an \out" state)S =0B@�hhC��jC��ii+ �hhC��jD�ii+ �hhC��jB�ii+ �hhC��jMAii�hhD�jC��ii+ �hhD�jD�ii+ �hhD�jB�ii+ �hhD�jMAii�hhB�jC��ii+ �hhB�jD�ii+ �hhB�jB�ii+ �hhB�jMAiihhMAjC��ii+ hhMAjD�ii+ hhMAjB�ii+ hhMAjMAii 1CA : (9:8)Let us start with the (1; 1) component of S. We wish to calculateChhE0; n0; outjE;n; iniiC= Z d! d� CC 0�(E0; n0; !; �)CC(E;n; !; �)+ Z d! BC 0�(E0; n0; !)BC(E;n; !)+ Z d� DC 0�(E0; n0; �)DC (E;n; �): (9:9)We rewrite Eq. (9.9) in terms of the lower sector physical states using Eqs. (6.3) to getZ d! d� �Z d�0 �0��0;B(�)bC 0�(E0; n0; �0; !) + �0�B(�)bC 0F �(E0; n0;MB ; !)�



41�Z d���;B(�)bC(E;n; �; !) + �B(�)bCF (E;n;MB ; !)�+ Z d! �Z d�0 �0�0;BbC 0�(E0; n0; �0; !) +pZBbC 0F �(E0; n0;MB; !)��Z d���;BbC(E;n; �; !) +pZBbCF (E;n;MB; !)�+ Z d� DC 0�(E0; n0; �)DC (E;n; �): (9:10)Doing the integrals over � in Eq. (9.10) we getZ d�d�0 �� (�)� (�) � ��� �0� Z d! bC 0�(E0; n0; �0; !)bC(E;n; �; !)+ Z d! bC 0F �(E0; n0;MB; !)bCF (E;n;MB ; !)+ Z d� DC 0�(E0; n0; �)DC (E;n; �): (9:11)The sum of the �rst and second integrals gives� �E �E0��� �n� n0� �� (E � n)�� (n)� (E � n)� (n) + 2�i (E) g (E � n) f (n)� (E � n)� (n) g� (E � n0) f� (n0)� (E � n0)� (n0) �� � �E0 � n0 �E + n� �� (E � n) f� (n0) f (n)� (E � n)� (n0)� (n)+ g� (E0 � n0) f� (n0) g (E � n) f (n)� (E0 � n0)� (n0) � (E � n)� (n)� 1 (E)� (E �E0 + n0) + 1 (E 0)� (E0 �E + n)�+ 1 (E0)  (E) g� (E0 � n0) f� (n0) g (E � n) f (n)� (E0 � n0)� (n0) � (E � n)� (n)��Z d� j��;B j2 1� (E0 � �)� (E � �) � ZB� (E0 �MB)� (E �MB)�; (9:12)and the third integral gives� �E0 � n0 �E + n� �� (E � n) f� (n0) f (n)� (E � n)� (n0)� (n)� g� (E0 � n0) f� (n0) g (E � n) f (n)� (E0 � n0)� (n0) � (E � n)� (n)� 1 (E)� (E �E0 + n0) + 1 (E0)� (E0 �E + n)�



42+ 1 (E0)  (E) g� (E0 � n0) f� (n0) g (E � n) f (n)� (E0 � n0)� (n0)� (E � n)� (n)�12 Z d� j��;Dj2 1� (E � �) � 1�� (E0 �E + �) + 1� (E0 �E + �)�+ 12 Z d�0 j��0;Dj2 1� (E0 � �0) � 1�� (E �E0 + �0) + 1� (E �E0 + �0)�+ ZD2� (E �MD) � 1�� (E0 �E +MD) + 1� (E0 �E +MD)�+ ZD2� (E0 �MD) � 1�� (E �E0 +MD) + 1� (E �E0 +MD)��: (9:13)Adding Eqs. (9.12) and (9.13), and converting the sum of the integrals to contourintegrals (which evaluate to their residues and cancel the other terms with them inside thecurly brackets), we are left withC hhE0; n0; injE;n; outiiC = � �E �E0��� �n� n0� �� (E � n)�� (n)� (E � n)� (n)+ 2�i (E) g (E � n) f (n)� (E � n)� (n) g� (E � n0) f� (n0)� (E � n0)� (n0) �: (9:14)In a similar fashion, we can do all the other S-matrix elements. They areDhhE 0; outjE; iniiD = � �E �E0���� (E �MD)� (E �MD)+ 2�iZD (E) jg (E �MD) j2� (E �MD) � (E �MD)�; (9:15)BhhE0; outjE; iniiB = � �E �E0���� (E �MB)� (E �MB)+ 2�iZB (E) jf (E �MB) j2� (E �MB)� (E �MB)�; (9:16)AhhMAjMAiiA = 1; (9:17)BhhE 0; outjE; iniiD = 2�i� �E0 �E� pZDpZB (E) f� (E �MB) g (E �MD)� (E �MB) � (E �MD) ; (9:18)DhhE0; outjE; iniiB = 2�i� �E0 �E� pZDpZB (E) f (E �MB) g� (E �MD)� (E �MB) � (E �MD) ; (9:19)DhhE0; outjE;n; iniiC = 2�i� �E0 �E� pZD (E) g (n) f (E � n)� (n) � (E � n) g� (E �MD)� (E �MD) ; (9:20)



43ChhE0; n0; outjE; iniiD = 2�i� �E0 �E� pZD (E) g� (n0) f� (E � n0)� (n0) � (E � n0) g (E �MD)� (E �MD) ; (9:21)BhhE0; outjE;n; iniiC = 2�i� �E0 �E� pZB (E) g (n) f (E � n)� (n) � (E � n) f� (E �MB)� (E �MB) ; (9:22)ChhE0; n0; outjE; iniiB = 2�i� �E0 �E� pZB (E) g� (n0) f� (E � n0)� (n0) � (E � n0) f (E �MB)� (E �MB) ; (9:23)AhhMAjE;n; iniiC = 0; (9:24)C hhE0; n0; outjMAiiA = 0; (9:25)AhhMAjE; iniiD = 0; (9:26)DhhE0; outjMAiiA = 0; (9:27)AhhMAjE; iniiB = 0; (9:28)BhhE0; outjMAiiA = 0: (9:29)10. Unitarity of the S MatrixWe can almost trivially show that the S matrix that we have obtained is unitary. Inequations, we wish to show that SSy = 1: (10:1)Let us calculate the (1; 1) term in SSy. It isSSy(1;1)= � �E �E0� Z dn00 �� �n� n00� �� (E � n)�� (n)� (E � n)� (n)+ 2�i (E) f� (n00) f (n) g� (E � n00) g (E � n)� (n00)� (n) � (E � n00)� (E � n) ��� �n0 � n00� � (E � n0)� (n0)�� (E � n0)�� (n0)



44� 2�i� (E) f (n00) f� (n0) g (E � n00) g� (E � n0)�� (n00)�� (n0)�� (E � n00)�� (E � n0)�� (2�i)2j (E) j2 � �E �E0� f (n) g (E � n)� (n) � (E � n) f� (n0) g� (E � n0)�� (n0)�� (E � n0)�ZD jg (E �MD) j2j� (E �MD) j2 + ZB jf (E �MB) j2j� (E �MB) j2�: (10:2)Doing the integral in Eq. (10.2) with the help of Eq. (A.15) we �nd that the result is�(E � E0)�(n � n0), exactly as desired. The rest of the terms are done in the same way.We �nd SSy(2;2) = � �E �E0� ; (10:3)SSy(3;3) = � �E �E0� ; (10:4)SSy(4;4) = 1; (10:5)with all other terms in SSy being zero, as required. Thus SSy = 1. In the same way, wecan also show that SyS = 1, and therefore, our S-matrix is unitary.11. Eigenphases of the S MatrixThe interesting case for the S Matrix is when E > 0 so that all channels are open. TheS Matrix must satisfy S� = ��; (11:1)where j� j2 = 1, for some �. This is equivalent to the following relations (where we ignorethe discrete A channel, as it is decoupled from everything else, and suppress �(E �E0))� � �� (E � n)� (n)� (E � n)� (n) �n



45= 2�i(E) f(n)g(E � n)�(n)�(E � n)�Z dn0 f�(n0)g�(E � n0)�(n0)�(E � n0) �n0 +pZD g�(E �MD)�(E �MD) �D+pZB f�(E �MB)�(E �MB) �B�; (11:2a)� � �� (E �MD)� (E �MD) �D= 2�i(E)pZD g(E �MD)�(E �MD)�Z dn0 f�(n0)g�(E � n0)�(n0)�(E � n0) �n0 +pZD g�(E �MD)�(E �MD) �D+pZB f�(E �MB)�(E �MB) �B�; (11:2b)� � �� (E �MB)� (E �MD) �B= 2�i(E)pZB f(E �MB)�(E �MB)�Z dn0 f�(n0)g�(E � n0)�(n0)�(E � n0) �n0 +pZD g�(E �MD)�(E �MD) �D+pZB f�(E �MB)�(E �MB) �B�: (11:2c)We now de�ne the unimodular quantities� (n) � �� (E � n)�� (n)� (E � n)� (n) ; (11:3a)�D � �� (E �MD)� (E �MD) ; (11:3b)�B � �� (E �MB)� (E �MB) : (11:3c)These are the basic equations. We can solve them for continuum values or for dis-crete values of the eigenphase shifts. Let us start with the continuum values. We invertEq. (11.2a) and put a delta function on the right hand side along with the appropriatenormalization. We then multiply both sides of the equation by f�(n)g�(E�n)�(n)�(E�n) and integrateover n to get�1� 2�i(E) Z jf (l) j2jg (E � l) j2j� (l) j2j� (E � l) j2 � (l)� � � (l) + i��Z dn0 f�(n0)g�(E � n0)�(n0)�(E � n0) �n0= f� (� ) g� (� )� (� )� (� ) + 2�i(E) Z jf (l) j2jg (E � l) j2j� (l) j2j� (E � l) j2 � (l)� � � (l) + i��pZD g�(E �MD)�(E �MD) �D +pZB f�(E �MB)�(E �MB) �B�: (11:4)



46De�ning � � 1� 2�i(E)ZD jg (E �MD) j2j� (E �MD) j2 �D� � �D� 2�i(E)ZB jf (E �MB) j2j� (E �MB) j2 �B� � �B ; (11:5)we invert Eq. (11.2b) and Eq. (11.2c) to solve for the term in the curly braces on the righthand side of Eq. (11.4), namely, pZDg�(E�MD)�(E�MD) �D +pZB f�(E�MB)�(E�MB) �B, and �ndpZD g�(E �MD)�(E �MD) �D +pZB f�(E �MB)�(E �MB) �B= � 1� � 1�Z dn0 f�(n0)g�(E � n0)�(n0)�(E � n0) �n0: (11:6)We now de�ne�(� ) = 1� 2�i (E)� Z dl jf (l) j2jg (E � l) j2j� (l) j2j� (E � l) j2 � (l)� � � (l) + i� ; (11:7)and use this to combine Eq. (11.4) and Eq. (11.6), and �ndZ dn0 f�(n0)g�(E � n0)�(n0)�(E � n0) �n0 +pZD g�(E �MD)�(E �MD) �D +pZB f�(E �MB)�(E �MB) �B= 1�(� )� f� (� ) g� (� )� (� )� (E � � ) : (11:8)Therefore, our continuum solutions are�n = p� 0� (� � � (n))+ 2�i(E) f(n)g(E � n)�(n)�(E � n) 1(� � � (n) + i�)�(� )� f� (� ) g� (E � � )� (� )� (E � � ) ; (11:9a)�D = 2�i(E)pZD g(E �MD)�(E �MD) 1(� � �D + i�)�(� )� f� (� ) g� (E � � )� (� )� (E � � ) ; (11:9b)�B = 2�i(E)pZB f(E �MB)�(E �MB) 1(� � �B + i�)�(� )� f� (� ) g� (E � � )� (� )� (E � � ) : (11:9c)To investigate the spectrum of � , we use the method of [7]. We de�ne the followingquantities, taking advantage of their being unimodular:e2i�(n) � � (n); (11:10a)



47e2i�D � �D; (11:10b)e2i�B � �B; (11:10c)e2i� � �: (11:10d)We then put these de�nitions in Eqs. (11.9), and see that � (n) = e2i�(n) ranges contin-uously along a unit circle in the complex plane from � = �(0) to � = �(E).In addition, these solutions are continuum normalizedZ dn �n �� 0 � i�� �n (� + i�)+ �D �� 0 � i�� �D (� + i�) + �B �� 0 � i�� �B (� + i�)= � �� 0 � �� ; (11:11)and will be complete if there are no discrete zeros of �(� ). If there are, they will have to beincluded in the completeness identity. We now �nd the number of discrete zeros of �(� ),that is, the number of discrete eigenphase shifts of our S-Matrix.We de�ne � � 1 + ix1� ix; � (n) � 1 + ix (n)1� ix (n) ;�D � 1 + ixD1� ixD ; �B � 1 + ixB1� ixB ;put these in Eq. (11.7), and take real and imaginary parts to get� 12 Z dl jf (l) j2jg (E � l) j2j� (l) j2j� (E � l) j2 x (1 + x (l))x � x (l) + i�= Im� (E)2�i �� 12 x (1 + xD)x � xD ZD jg (E �MD) j2j� (E �MD) j2� 12 x (1 + xB)x � xB ZB jf (E �MB) j2j� (E �MB) j2 ; (11:12a)� 12 Z dl jf (l) j2jg (E � l) j2j� (l) j2j� (E � l) j2= Re� (E)2�i �� 12ZD jg (E �MD) j2j� (E �MD) j2 � 12ZB jf (E �MB) j2j� (E �MB) j2 : (11:12b)



48We observe that Eq. (11.12b) is an identity, by means of Eq. (A.15). To �nd the numberof zeros of �(� ), we multiply both sides of Eq. (11.12a) by (x � xD)(x � xB). We then�nd that the highest power of x appearing in Eq. (11.12a) is x3, barring any higher powerscontributed by the integral. Therefore, there are at least three discrete zeros of �(� ), andthus, at least three discrete solutions which will have to be included in the completenessidentity, Eq. (11.11).12. A general formalism for scattering theoryIn this section, we describe an approach due to Sudarshan and collaborators [19-25],which takes a very di�erent view of scattering problems, and is quite di�erent in spirit. Itis essentially immune to many of the problems that occur in the conventional approachesin the literature. The idea is that one always works with the complete set of eigenstatesof the full Hamiltonian, H, properly labelled. This set, by de�nition, is both orthonormaland complete. The matrix made up of these eigenstates is the M�oller matrix. This M�ollermatrix, again by de�nition, will diagonalize the full Hamiltonian giving the comparisonHamiltonian.In other words, we have a Hamiltonian for the system, H. We wish a physical inter-pretation of this object as a scattering system. One starts by considering the complete setof states for H, which we denote as  �(E), where E is the energy of the eigenstate, and �contains everything else necessary to uniquely specify the state such as spin, channel, etc.Then, H � (E) = E� � (E) : (12:1)



49Form the generalized M�oller matrix, W , by de�ningWE;� �  � (E) :Therefore, HW =WHC : (12:2)where the implied integration is of the Stielje's type{i.e. we sum over any discrete in-dices, and integrate over any continuous ones. Because we have assumed that the set ofeigenstates of H is complete, this M�oller matrix has the property that

y = 1; 
y
 = 1: (12:3)It is thus isometric and unitary, as long as we ensure that the spectra of H and HC are thesame, and the spectrum multiplicity is properly preserved. The only caveat here is thatnot all formally hermitian Hamiltonians have a complete set of eigenstates. However, all\reasonable" Hamiltonians will have a such complete set.Now, one normally wants an interpretation of a scattering system in terms of asymp-totic states. The point here is that, to get such an interpretation, we should use HC , notH0. We must set up a correspondence between the set of eigenstates ofHC withH, becauseunlike H0, we are guaranteed that H and HC are isospectral. Any asymptotic conditions(such as the strong convergence properties of Eqs. (2.26)) should be expressed using HC ,not H0. Thus, it is HC , not H0, which is the proper starting point for any perturbativescheme. Furthermore, as indicated by our model, we should endeavour to construct a per-turbative scheme to calculate the full states, not the asymptotic ones, because we cannotsay, with any con�dence, what the appropriate conditions are on the asymptotic states(see the next section for details). In addition, note another advantage of this formalism.



50Any, and all, shifts in the thresholds and spectrum of H (such as a mass renormalization)are automatically taken care of by this procedure.Finally, it is worth remarking that, in general,W and HC are not going to be analyticin the coupling constants. Therefore, the procedure that one occasionally sees in theliterature of splitting H into HC + V 0 is not very useful, and not very constructive. BothHC and V 0 will be complicated functions of the coupling constants, and will have all sortsof renormalization factors appearing.If we are interested in working perturbatively, then we must set up the system carefully.We give here an analysis of Sudarshan [26]. Consider a quantum system de�ned in a Hilbertspace H with the Hamiltonian split in the usual wayH = H0 + V; (12:4)in which we already know the ideal eigenstates for the continuum, and the proper eigen-vectors for the discrete states. The ideal states are, of course, not normalizable and wemust take proper linear combinations of them to get states that are square integrable, andin H. Then, we set up a correspondence between eigenstates of H and eigenstates of H0,in such a manner that H � = � �; (12:5a)H0 0� = � 0�: (12:5b)Therefore, (1�G0 (�)V ) � =  0�; (12:6a)G0 (�) (��H0) = 1; (12:6b)



51where G0 is the free Green's function. From this we can write � = (1�G0 (�) V )�1  0�; (12:7)thus de�ning for us a possible M�oller matrix, 
0 given by
0 = (1�G0V )�1 : (12:8)Now this 
0 is a possible M�oller matrix in the sense that it intertwines H and H0:H
0 = 
0H0: (12:9)Unfortunately, it is not very useful because it is not necessarily unitary, or even isometric.One must renormalize it correctly so as to get a unitary operator. Furthermore, H andH0 are not isospectral. Consider the full Green's function, G(�):G (�) = 1��H + i� = (1�G0 (�) V )�1G0 (�) : (12:10)While, at �rst glance, it would seem that G0 and G have the same singularities, this isnot necessarily true. Firstly, G can have additional singularities from the �rst factor (1�G0(�)V )�1 in Eq. (12.10). These can come from bound states produced by the interaction,and more importantly, from continuum states in which one or more of the particles iscomposite so that its mass gets shifted. Secondly, G can have some of its singularitiescancelled when this factor vanishes. Therefore, G and G0 are not necessarily isospectral, ingeneral. In other words, the statement that \perturbations vanish at in�nity" is not validgenerally. Rather, this n�aive asymptotic condition is not generally ful�lled. This shows uswhy 
0 failed to be unitary: the new spectra produced by (1�G0(�)V )�1 do not appearwith a canonical weight. As advertised, we correct this problem by de�ning a renormalized



52
 given by 
 = (1�G0V )�1D�1; (12:11a)where D2 = �1� V G+0 ��1 (1�G0V )�1 : (12:11b)However, since this new 
 is unitary, it connects H with an isospectral and diagonalHamiltonian. We have already seen that this associated diagonal Hamiltonian cannot beH0. Rather, it is a di�erent object, which we call the comparison Hamiltonian, HC . Forfurther details, and concrete examples of this formalism applied to several models, such asthe Lee Model, the separable potential model, and the Cascade model, see [26]. In thesemodels, one can explicitly see these various e�ects such as shifts in the continuous spectra,the deletion of spectra from H0 to get the spectra of H, and the augmentation of spectrain H0 to get the spectra of H.13. Putting the \generic" formalisms to the testThere are many di�erent approaches to QuantumScattering in the literature. The mostfamiliar of these is potential scattering. Others include the LSZ formalism, the \almostlocal" formalism, and the Lax-Phillips formalism. Lax-Phillips [27] theory is outside thescope of this work.The well known LSZ formalism [5], extended by Mohan [28], postulates the convergenceof the matrix elements of interacting �elds to the matrix elements of free �elds. However,the formalism does not apply in many cases. For example, as noted by LSZ themselves, it



53is inapplicable to problems in which stable bound states exist. Trouble occurs when thispoint is forgotten, and the formalism is extended into areas where it is inapplicable. The\almost local" formalism due to Haag [1], Ruelle [9], Ekstein [10], Jauch [12], Araki [29],and others tries to be general enough to consider complicated problems [1]. Its basicidea is that it is possible to construct asymptotic in-going and out-going states as stronglimits in Hilbert space, if a certain \space like asymptotic condition" is veri�ed by thevacuum expectation values of products of �eld operators [9]: the so called \almost local"operators [1].We shall restrict our attention to the conventional, and quite \generic" formalism,as reviewed earlier in sections 2 and 3; as mentioned before, the LSZ formalism is notapplicable to situations where stable bound states are present, such as our model. We willcompare these results to the results obtained from the Rearrangement Model.Conventional formalisms for quantum scattering theory have the following protocol forgeneric scattering systems:1. They do not use the comparison Hamiltonian2. The asymptotic states are orthonormal [1,9,13]3. The completeness of the asymptotic states is postulated [1,13]4. For the case of potential scattering only, the M�oller Matrix is isometric but notnecessarily unitary [1,13]5. The eigenstates of the exact Hamiltonian are never considered.We shall take up these points one by one, and put them to the test by comparing them tothe results explicitly obtained from our model.



541. It is essential when taking the limits, limt!�1 eiHte�iH0t	, where 	 is eithera wave function or a �eld operator, that the continuous spectra of H and H0coincide. If they did not there would be wild oscillations while taking thelimit, and the limit would not exist. It is for this purpose that H0 is mass-renormalized to H 00. However, in general, this is still not enough. It is perfectlypossible, if there are bound states or unstable particles in the spectrum of H,that no amount of tinkering with H0 will make its spectrum coincide withH. This can be seen by inspection of Eqs. (8.7) and (8.8). No amount ofrenormalization of H0 can give us the discrete MA state present in HC , butthis may be ignored because MA is a discrete point eigenvalue. On the otherhand, we do have the possibility of a continuous spectrum in H correspondingto the scattering states involving physical B or D particles.However, unlike H and H0, H and HC are guaranteed to be isospectralbecause HC is obtained by diagonalizing H. Therefore, it is HC , and notH0, that is the proper starting point for any scattering scheme, perturbative orotherwise. The method for obtaining the correct spectrum ofH by perturbationtheory is discussed in the work of Sudarshan, Chiu, and Bhamathi [30]. Insimple cases such as when stable bound states are not present, or �eld theorywith no bound states or unstable particles, HC can be identi�ed with therenormalized H0, as noted in section 8.In fact, even in cases where (formally) no splitting is made, i.e. no explicitmention or use is made of an H0, there is still the implicit use of H0 because,



55commonly, asymptotic particles are de�ned as solutions of free particle equa-tions like the Klein-Gordon equation.2. Both formalisms assert the orthonormality of the asymptotic states, and theresult is supposed to be generic. In Eqs. (9.4), we have obtained the asymp-totic states of the Rearrangement Model according to both formalisms. Yet,as we can see from a glance at the Haag-Ruelle asymptotic wave functions,Eqs. (9.4), the asymptotic states computed according to their rules do notform an orthonormal set. This point should not cause confusion. Our fullstates, namely, Eqs. (6.4), (6.5), (6.6), and (6.7) are, indeed, all orthonormal toeach other, as was shown in section VII. As a result, we have orthonormal setsof \in" and \out" states. However, when we calculate the Haag-Ruelle typeasymptotic states according to either of the formalisms, we �nd that they arenot orthonormal. This lack of orthonormality stems from a factor of the wavefunction renormalization constant that appears in each of the asymptotic wavefunctions. This factor is essential: if it were not present, the interacting stateswould not be orthonormal.3. As mentioned earlier, Ruelle extends Haag's work by postulating the complete-ness of the \in" and \out" states [9]. This is also postulated in simple potentialscattering [13]. This postulate is necessary to prove that the S-matrix is uni-tary. Again, simply by inspection of Eqs. (9.4), we can see that the asymptoticstates of the Rearrangement Model, according to these two formalisms, arenot complete. Again, this point should not cause confusion. Our full states,Eqs. (6.4), (6.5), (6.6), and (6.7) are complete, as was shown in section VII.



56As a result, our \in" and \out" states form complete sets. However, the set ofHaag-Ruelle type asymptotic states calculated according to either of the twoformalisms is not complete.4. In potential scattering the M�oller matrix, 
, can be de�ned using the full in-teracting wave functions so that it is isometric even in the presence of boundstates [1]. We see that the Haag-Ruelle asymptotic solutions, Eqs. (9.4), ob-tained by the use of 
, are certainly not orthonormal, whereas the originalinteracting wave functions were; therefore, the M�oller matrix computed bytheir rules is not isometric, i.e. it is not norm preserving. However, the gen-eralized M�oller matrix that we de�ned in Eq. (8.1) is not only isometric, butunitary.5. It is important to note that even though these asymptotic wave functions areneither orthonormal nor complete, they still lead to the correct S-matrix, ascan be veri�ed by calculating it using Eq. (9.6). If we had insisted upon theasymptotic wave functions being orthonormal and complete, we would have gotthe wrong S-matrix.6. Notice that because of this lack of orthonormality and completeness in theexact asymptotic states, the strong limits of Eqs. (2.26) are satis�ed. Namely,limt!�1 [	 (t) �  in (t)]) 0; (13:1a)limt!+1 [	 (t) �  out (t)]) 0; (13:1b)limt!�1 in (0)) 	(0) � 
(+) in (0) ; (13:1c)are automatically satis�ed. This can be seen easily in the following way. Forthe �rst two equations above, the expression on the left hand side is just the



57requisite full wave function, but with the delta function part removed. Whenwe now take the norm and then take the limit, the remainder cancels givingzero. Similarly, the third equation above can be shown to be satis�ed.On the other hand, if we had insisted that the asymptotic states are or-thonormal and complete, the wave function renormalization constants wouldhave been missing from the asymptotic states. Thus, the delta function pieceswould not have cancelled between the full and asymptotic states, and therefore,these pieces would contribute, and we would get a non-zero result. Thus, inthis case, the strong limit would not hold.7. It is important to note that the reason that all these problems occur is that thefull states are never considered. Most formalisms in the literature try to set upthe problem in terms of the asymptotic states, and are thus forced to make as-sumptions regarding their properties and behavior. These assumptions are notnecessarily correct in general, as is amply demonstrated by the RearrangementModel, and other models such as the Cascade Model [7].All this points out the importance of the correct normalization of the state vectors, apoint already considered by DeWitt [31]. However, his work was restricted to the case ofno bound states. The question of the correct description of the asymptotic states was alsoconsidered by Van Hove in his papers on the description of \persistent interactions" [4].However, as noted in those papers, the formalism developed there does not deal with casesinvolving bound states, and does not deal with �eld theoretic scattering except for a fewcomments at the end.



58In the multichannel case (such as rearrangement collisions), in the \channel Hamil-tonian" formalism, the statement is made that the basis states of one group of channelsare not orthogonal to the others [10,11,13] because they are eigenstates of di�erent freeHamiltonians. As we can see, in our model, the physical states C��, D�, and B� arestrictly orthogonal to each other. Evidently, this problem arises due to the use of \channelHamiltonians" in the formalism. It is our belief that the method of splitting up the inter-action di�erently depending on which channel one is considering is fundamentally awedbecause \every channel can be distinguished and is observable independently in experi-ments. This means that these channels should be orthogonal to each other" [32]. Onemethod for ensuring orthonormality is given in [32]; however, this method still su�ers fromthe aws pointed out above.It is straightforward to see the problems caused by this lack of orthogonality. We areinstructed, in these formalisms, to begin with asymptotic states. Let us �rst consider the\channel Hamiltonian" formalism. Then, the asymptotic states are the eigenstates of the\channel Hamiltonian" in the sector we are considering. As an example, let us considerjMB� (!) ii ! jMD� (�) ii; (13:2)where MB is the physical B particle and MD is the physical D particle. We immediatelynotice, even before we consider any scattering, that the jMB�(!)ii state is not orthogonalto the jMD�(�)ii state, as can be seen by inspection of Eqs. (5.10), (5.11), (5.12), (5.13),and (5.14). In other words, two experimentally distinct channels are not orthogonal toeach other. This will clearly lead to the wrong S-matrix elements because it says that evenif there is no scattering, there is a non-zero probability that the jMB�(!)ii state will turninto the jMD�(�)ii state. We cannot even argue that the two states are \asymptotically



59orthonormal" [10] because they clearly are not. This can easily be seen by observing thatboth jMB�(!)ii and jMD�(�)ii have expansion coe�cients in the \bare" jC�(!)�(�)i sec-tor. Therefore, as these states are neither orthonormal nor complete, we cannot have anisometric or unitary S-matrix, since orthonormality is necessary for isometry, and com-pleteness for unitarity. However, we have constructed a set of orthonormal (and complete)solutions for our system, a feat that many authors [33] tacitly assume is not possible, andhave a perfectly isometric and unitary S-matrix.These problems with the S-matrix can be veri�ed by explicit calculation. Since thecalculation is tedious, we describe the method, and leave it to the interested reader toverify the results. Our interest is in the scattering of physical states, and so we must startby re-expressing the Hamiltonian, Eqs. (4.3) and (4.4), in terms of the operators whichcreate the physical B and D particles. We denote these operators by B and D, respectively.They are found by inspection of Eqs. (5.10), (5.11), (5.12), (5.13), and (5.14), which are thewave functions for the physical particles. To �nd the expressions for these operators, wepromote the states jC�(�)i, jC�(!)i, jBi, and jDi to operators, all acting on the vacuum,and read o� the expansions for the operators B and D. In other words,By = Z d� �B (�)Cy�y (�) +pZBBy; (13:3a)Dy = Z d! �D (!)Cy�y (!) +pZDDy: (13:3b)We re-express the Hamiltonian in terms of these operators, which can be split into variouschannel Hamiltonians, from which the S-matrix is calculated.We can go even further than this. Consider the state jMB�(!)ii, which is a productstate of the physical B particle and a free � particle. If we wanted the asymptotic state



60corresponding to this then, by the Haag-Ruelle protocol, we should �nd that the compo-nents of this state are only in the jC��i and jB�i sectors, with no admixture of the jD�istate. However, we can use our exact solutions to calculate this asymptotic state. We will�nd that this assertion will not hold true.To calculate the asymptotic state, we take the limitlimt!�1 eiHCte�iHtjMB� (!) ii: (13:4)Inserting a complete set of states, we haveZ dE dn limt!�1 eiHCte�iHtjE;niihhE;njMB� (!) ii+ Z dE dn limt!�1 eiHCte�iHtjEiiDDhhEjMB� (!) ii+ Z dE dn limt!�1 eiHCte�iHtjEiiBBhhEjMB� (!) ii: (13:5)Expanding each of the physical states, jE;nii, jEiiD, and jEiiB in terms of the bare statesjC�(!)�(�)i, jB�(!)i, and jD�(�)i, and taking the limit, it is immediately obvious thatthe expansion coe�cients in the jD�(�)i sector are not zero.As a physical example, consider the case of a proton bound to a �xed nucleus by apotential VP , and bombarded by a neutron which interacts with the proton and the nucleusthrough the potentials VPN and VN , respectively [32]. The total Hamiltonian of the systemis H = KP +KN + VP + VN + VPN ; (13:6)where KP and KN are the kinetic energy of the proton and the neutron, respectively. Theinitial state, denoted by �1;i, is given byH1�1;i = Ei�1;i; (13:7)



61where H = H1 + V1; (13:8a)H1 = KP +KN + VP ; (13:8b)V1 = VPN + VN : (13:8c)Therefore, the initial state, �1;i, is a product of a bound proton, �BP (EBi ), and of a freeneutron (represented by a plane wave), uN(Ei � EBi ), where EBi is the binding energy ofthe proton.Several possible reactions can occur giving rise to di�erent �nal products. Let usconsider four such reactions.1. Elastic or inelastic collisions.The proton remains bound to the nucleus, and the neutron is free after thecollision. Therefore, the Hamiltonian is divided in the same manner as above.2. Exchange scattering.The neutron knocks out the bound proton and becomes bound to the nu-cleus. The Hamiltonian is then divided as:H = H2 + V2; (13:9a)H2 = KP +KN + VN ; (13:9b)V2 = VPN + VP : (13:9c)Therefore, the �nal state isH2�2;f = Ef�2;f ; (13:10a)�2;f = uP �Ef �EBf ��BN �EBf � : (13:10b)



623. Ionization.The neutron knocks out the bound proton and both are free after thecollision. The Hamiltonian is then divided as:H = H3 + V3; (13:11a)H3 = KP +KN ; (13:11b)V3 = VPN + VP + VN : (13:11c)Therefore, the �nal state isH3�3;f = Ef�3;f ; (13:12a)�3;f = uP �EPf �uN �Ef �EPf � : (13:12b)4. Pickup.The proton and the neutron become bound and form a deuteron. TheHamiltonian is then divided as:H = H4 + V4; (13:13a)H4 = KP +KN + VPN ; (13:13b)V4 = VP + VN : (13:13c)Therefore, the �nal state isH4�4;f = Ef�4;f ; (13:14a)�4;f = uc �X;Ef �EBf ��BPN �r;EBf � : (13:14b)Here, X is the center of mass coordinate of the deuteron, and r is the internalcoordinate of the deuteron.



63Property Conventional Rearr.Formalism ModelAsymptotic states normalized? Yes NoAsymptotic states orthogonal? Yes YesAsymptotic states complete? Yes No
 isometric? Yes NoS-matrix unitary? Yes YesStrong limit satis�ed? No YesHC used? No YesAdditional property for the multiple-channel casePhys. states orthog.? No No YesTable 13.1: Comparison of the properties of the Rearrangement Model tovarious scattering formalisms.The �nal states given by Eqs. (13.10), (13.12), and (13.14), are eigenstates of di�erentfree Hamiltonians. Thus, in general, they are not orthogonal to each other, and theconcomitant problems follow.The reason that these methods do not work properly is that the basis used is onein which bound-state eigenfunctions of the Hamiltonians that bind each fragment aremultiplied by plane waves for the fragment motion [13]. In our model, because we havemade no breakup, we get the physically reasonable result that the wave functions of thebound states are always orthogonal to the scattering states, and that the basis statesof di�erent channels are explicitly orthogonal to each other. We do not have to worryabout making the explicit assumption that as the separation between the fragments goesto in�nity, the overlap becomes negligible. This assumption may or may not be true, andleads to the problems with \persistent interactions" considered by Van Hove [4].



64We compare the results from the conventional formalism with those from the Rear-rangement Model in Table 13.1.In addition, even when it is not stated explicitly in the literature, it is often assumedthat the spectra of the bound states and the scattering (continuum) states do not overlap.However, it is possible to construct models in which the spectra of one or more boundstates overlap with the continuum [34,35]. Therefore, this assumption is not necessarilytrue, and will in general depend upon the details of the model under consideration. Itis also possible to construct two di�erent potentials which can lead to the same S-matrixwith, in one case, redundant poles unnecessary for completeness, and in the other case,with the same poles being absolutely necessary for completeness [36,37]. This points outthe need for resisting the temptation to identify the poles of the S-matrix with physicalbound states of the system.More importantly, no authors have as yet worried about the evident normalizationproblem with the asymptotic states because they are always assumed to be normalized.These states are not normalized in the Rearrangement Model, and consequently, assum-ing orthonormality of the asymptotic states, in general, is very dangerous. In addition,we notice that in this model even though the asymptotic states are not normalized, theinteracting states are.One approach that tries to avoid all these problems, especially in the cases of unstableparticles and bound states, is that of analytic continuation [7,19,23,24,38,39] of the statespaceH into a generalized vector space G. This has already been done for the case of the Leemodel by Sudarshan, Chiu, and Gorini [19], Parravicini, Gorini, and Sudarshan [20], andby B�ohm [40]. For instance, with this method, one can identify resonances and redundant



65poles, and study the decay of a metastable quantum system. It can also be used for manyother things, such as studying the Khal�n observation that the decay of a metastablesystem with an energy spectrum bounded from below can never be strictly exponential [41].See the above references for details.14. Summary and conclusionIn this work, we constructed a model that allows rearrangement collisions. We ex-plored the spectra and the complete set of orthonormal (ideal) eigenfunctions of this Re-arrangement Model in the Rearrangement Sector. Because of the structure of the e�ectiveHamiltonian in this sector, we were able to solve the model exactly. In a similar fashionas for the Cascade Model [7], we �nd that the spectra can be interpreted as a B particlewith energy MB < 0 coupled to a � particle with energy !, 0 < ! <1; a D particle withenergy MD < 0 coupled to a � particle with energy �, 0 < � < 1; and a C particle ofenergy 0 coupled to � and � particles with energies ! and �, 0 < !; � < 1. We see thatthe interacting �eld theory has a particle interpretation.Both the B and the D particles su�er mass renormalizations, and these mass renor-malizations alter the threshold of the B� and D� continua, respectively. In Eqs. (6.5b)and (6.6c), we also see the presence of both the mass and wave function renormalizationsof the B and D particles in the plane wave parts of their respective wave functions.We have throughout emphasized the importance of using the comparison Hamiltonian(the diagonalized form of the e�ective Hamiltonian) because it is isospectral with the fullHamiltonian. Its spectrum di�ers from that of the free Hamiltonian by the alteration of



66the B� and D� continua, and by the addition of a discrete A state. These e�ects are non-perturbative and, as emphasized in [7], can only be handled by a renormalized perturbationscheme in which HC , not H0, is taken as the starting point.Our results are surprising when compared to what we would expect from conventionalscattering theory. We �nd that while the interacting state vectors are normalized, theasymptotic states are not. Moreover, the asymptotic states are neither orthonormal norcomplete because of the presence of the wave function renormalization factors in the phys-ical D� and B� sectors. We note that this lack of orthonormality and completeness isabsolutely necessary. If we construct the S-matrix from these states, we get the correctresult (i.e. it is the same S-matrix as the one constructed from the full state). On theother hand, if we didn't allow the wave function renormalization factors because of ourdemand that the asymptotic states be orthonormal and complete, we would get the wrongS-matrix. Furthermore, for the strong limits Eqs. (2.26) to hold, we must again make sureto have these non-orthonormal and non-complete states. We also �nd that our physicalC��, D�, and B� states, while being the basis states for di�erent channels, are strictlyorthogonal to each other. Further, the M�oller matrix, as de�ned in the literature is notisometric: it does not preserve the norm of the states. However, we de�ned a generalizedM�oller matrix which is not only isometric, but unitary. All these results are contrary tothe usual formalisms of quantum scattering theory.More generally, we argued that the correct procedure, for any Hamiltonian, H, is totake its complete set of eigenstates, and an associated isospectral comparison Hamiltonian,HC . The matrix of normalized eigenfunctions of H constitutes the generalized M�ollermatrix, which is unitary and intertwines H and HC .



67This model is a very simple one. However, even this simple model is enough to showthe problems with conventional perturbation theory, and the conventional formulations ofscattering theory. It is clearly necessary in the light of this model, and previous work onthe existence of redundant poles in the scattering amplitude [36,37] and the presence ofdiscrete solutions degenerate in energy with the scattering continuum [34,35], that a funda-mental re-examination be made of some of the postulates and assumptions of conventionalquantum scattering theory.AcknowledgmentsA portion of this work �rst appeared in the Ph.D. Dissertation of one of the authors(S.V.) [42]. This research was supported in part by DOE Grant No. DE-FG03-93ER40757.A. Some Useful FormulaeThe following formulae are very useful for the calculations in the main text. By ourde�nitions in section 6 we have the following ranges for our variables:0 � � �1; (A:1)0 � � � 1; (A:2)0 � n � 1; (A:3)with E being free to run over all values.We then have the easily proved identitiesjg (�) j2 = 12�i [� (�) � �� (�)] ; (A:4)



68jf (�) j2 = 12�i [� (�) � �� (�)] ; (A:5)jg (�) j2j� (�) j2 = � 12�i � 1� (�) � 1�� (�)� ; (A:6)jf (�) j2j� (�) j2 = � 12�i � 1� (�) � 1�� (�)� ; (A:7)jg (E � �) j2j� (E � �) j2 = � 12�i � 1� (E � �) � 1�� (E � �)�� ZB� (E � ��MB) ; (A:8)jf (E � �) j2j� (E � �) j2 = � 12�i � 1� (E � �) � 1�� (E � �)� �ZD� (E � � �MD) : (A:9)The equations (A.8) and (A.9) follow because E � � and E �� can be less than zero, andthus pick up singularities at MB < 0 and MD < 0, respectively. On the other hand � and� are always greater than or equal to zero, and so cannot pick up any singularities.Another useful identity is (E) = Z d� jg (�) j2j� (�) j2 1� (E � �) + ZB� (E �MB) (A:10a)= Z d� jf (�) j2j� (�) j2 1� (E � �) + ZD� (E �MD) : (A:10b)We can easily show this by means of the contours in Figures 1 and 2. If we convert theintegral in Eq. (A.10a) into a contour integral by using Eq. (A.6), we get�� 12�i�ZC1 dz 1� (z)� (E � z) + ZB� (E �MB) ; (A:11)with the contour shown in Figure 1. Then, we make a change of variables from z to E � zto get �� 12�i� (�1) ZC4 dz 1� (z) � (E � z) + ZB� (E �MB) ; (A:12)with the contour shown in Figure 2. Now we deform the contour C4 and write it as thecontour C3 plus the circle at in�nity, while picking up the contributions from the residuesof the integrand. Note that the circle at in�nity gives no result, so we have�� 12�i� (�1) (�1)ZC3 dz 1� (z) � (E � z) +�� 12�i� (�1) (2�i) ZD� (E �MD)



69+�� 12�i� (�1) (�1) (2�i) ZB� (E �MB) + ZB� (E �MB) : (A:13)The pZB terms cancel, and the �rst two terms are Eq. (A.10b), by de�nition. Therefore,Eq. (A.10a) is equal to Eq. (A.10b), and the identity is established.We can similarly show thatZ d� jg (�) j2j� (�) j2 1� (E � �) 1(�� � + i�)= Z d� jf (�) j2j� (�) j2 1� (E � �) 1(E � �� � + i�) � 1� (E � �) � (�)+ ZD� (E �MD) (E �MD � � + i�) � ZB� (E �MB) (E �MB � ! + i�) : (A:14)Using Eqs. (A.7), (A.8), and (A.10) we can get another useful formulaZ dn jf (n) j2jg (E � n) j2j� (n) j2j� (E � n) j2=  (E)� � (E)(�2�i) �ZD jg (E �MD) j2j� (E �MD) j2 � ZB jf (E �MB) j2j� (E �MB) j2 : (A:15)Finally, in Figure 3, we display the branch cuts and poles of 1(z) which are used inshowing the completeness of our solution set.References1. W. Brenig and R. Haag, Quantum Scattering Theory, Marc Ross (editor), IndianaUniversity Press, Bloomington (1963), pp. 13;R. Haag, Proceedings of the Theoretical Physics Institute, Summer 1960, Universityof Colorado (1961), pp. 326.2. R. Haag, Phys. Rev. 112, 669 (1958).3. M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398 (1953).
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74Figure CaptionsFigure 1. Contour for Eq. (A.10a)Figure 2. Contour for Eq. (A.10b)Figure 3. Contour for the function 1(z) .


