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Under the restriction to a symmetry group whose generators can be linearly expressed in terms of
the generators of the Lorentz group and of an internal symmetry group, we show that charge conser-
vation implies that the symmetry group is a direet product of the Lorentz group and the internal
symmetry group. Only local structure of the groups and their unitary representations are considered.

HE problem of combining relativistic invariance

and internal symmetries has recently been dis-
cussed by several authors.' Since the multiplet
masses are only approximately the same, the only
way of reconciling exact invariance under both the
internal symmetry group and the relativity group
is to require that the elements of the two groups
do not commute in general. Let us assume’ that
the full invariance group of the physical (strongly
interacting) system is a Lie group (which has as
subgroups the internal symmetry group, assumed to
be simple, and the inhomogeneous Lorentz group)
which has a Lie algebra A whose elements can be
expressed as a linear combination of the elements
of the Lie algebras of the internal and Lorentz
groups. It can then be shown® that, if a complete
set of commuting generators of the semisimple in-
ternal symmetry algebra S commute with the gen-
erators of the inhomogeneous Lorentz algebra I,
then the algebra A is a direct sum of the algebras
S and L.

In this paper we wish to extend this result to
the case when only a single generator of S commutes
with all elements of Z. This framework is of par-
ticular interest since electric charge is conserved in
all known interactions and it is a generator, or
associated with a generator of the internal symmetry
group which we expect to be relativistically in-
variant. We show that as long as we are interested
in unitary representations only a direct sum algebra
results; this is disappointing since there is then no
possible explanation of the mass splittings within
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a multiplet compatible with exact invariance under
the group.

Theorem. Let € be any generator of S, If Q
commutes with every element of L (and if the set
of elements of S and L are closed under commuta-
tion), then every element L, of L can be decomposed
in the form with L, = L} + L}, L} being a linear
combination of elements of S and L{ commuting
with every element of S. Further, both LS and L}
satisly the same commutation relations as the ele-
ments I, of the Lorentz algebra.

Proof. Since the Lie algebra S is simple, there
exists a Cartan—Weyl basis H,, F, such that

(H:, E.] = r(a)E,, (22)
[H:,, H,]=0, (2h)
(Ee, Eg] = NegEass, 1@ +r(8) #0, (20)
(E., B_.]= 2 rne)H, (2d)

[]

No generality is lost by taking H, to be a multiple
of @ so that

[H 1y LA] = 0- (3)
By hypothesis we can write
(B., L = ,Z a(xAB)E, + ; aleADH,

- );‘, a(@AB)L,.
Hence, if r,(a) # 0 we deduce
(B, L. = ; aladB)d{ri(e) — r,(B)}E;.

For those cases where r(a) = 0, we can use (2¢)
to deduce the general expression

[Bay Li = ; a(aAB)é{r(a) — r(B)}E,
- %}a(aam)a{rl(a)}rfm. (4)
Similarly from (2b) and (3) we deduce
(H:, L = Zﬁ‘, b(LAB)8{r (8)} Es
+ > bIAm)H.. (5)
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Evaluating the double commutator
[HI: [En) L.ri]]
= 2 a(@AB)ri(8)d{ri(x) — ri(8)}Es

B
using the Jacobi identity, we get the expression

([H:, E.), L. — [[H:, L.}, E.]
= 3 aladB)ri(@)siri(a) — ri(B)}Es

#

e ,,,Z alaAm)ri(a)éfri(e)} Hn
= ; b(I4s)6{r(8)}[Es, E.]
— 3 bIAmM)Yra(@)E..

Comparing the terms in £, in these two expressions,
we get

; bldm)r,(e) = 0. (6)

Since (6) is true for all «, and since the r,(e) span
an m-dimensional vector space as « varies over the
allowed range, it follows that

b(ldm) = 0. (7

Two possible cases arise now.
(a) If H, is such that r,(8) # 0 for any B it

follows that®
[Hl: LA] =0

and hence every element of S commutes with every
element of L. Hence the statement of the theorem
is trivially satisfied with

Li=L,-Li=0.

(b) If there are some ¥y for which r,(8) = 0 we
have only proved that

Hi, L. = ; b(14B)é{r(8)} Bs. @®)
But making use of (2b) we can then show -
; {b(IAB)r(B) — b(mABr(8)} 8{r:(B)1Es = 0.

This relation entails the existence of numbers ¢(45),
not necessarily nonzero, such that

b(14B) = q(AB)r:(B). ©
From (4), we can deduce
[[EM EﬁLLA:l

= 2 a@A)8{n(B) — rnM}E.,E,]

¥

— Y aladv)s{r(a) — r(v)}[EBs, E,]
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which implies
ala+8 4 a+p) = alada) + a(BA4B).

This requires the existence of numbers p(Al), not
necessarily nonzero, such that

a(eda) = E p(ADr (). (10)
Now consider the quantity
Li=Ls+ ?MAE}H: g 3 ; q(AB)Es.  (11)
Tt is then immediately verified that
(L2, H] =0. (12)

Consequently, we make use of (4) and (11) to write
(Li, EJ= ; eld)Es + 3 el@Am)H,;

we can deduce
; eladp){rue) — r.(B)}Es
| + T ralaeladDH: = 0,
so that
eladp) = 0;e(xdl) = 0.
Hence
[E., Li] =0. 13)

If we now write the commutation relations of the
Lorentz algebra in the form

{Lu LB] = Z")’EBIJ{;" (14)

we can rewrite it in the form
[Li, Lz] — Zc:'risLS

= [Ls — LAO, Ly — LJ?I - CZ: 1’35(1:'(: - Lco}-
Since the expression on the left-hand side commutes
with H;, E, while the right-hand side is linear in

them, both sides must identically vanish; this gives
the basic result

(Li, Lg] = ;wEBLS, (15)
with
Li}=L,—-Lj. 17

This concludes the demonstrations of the theorem.*

¢ After this work was completed, the suthor had the op-
portunity to learn that essentially the same results have been
deduced by V. Ottoson, A. Kihlberg, and J. Nilsson, “In-
iernal and Space-Time Symmetries,” Phys. Rev. 137, B658
{1965). See also L. Michel, Phys, Rev. 137, B405 (1965).
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We can deduce an important corollary from this
theorem:

Corollary. In every unitary representation of the
full symmetry algebra, L; must identically vanish;
and hence we get a unitary representation of a
direct sum of L and S only.

This follows since every unitary representation of
the algebra S is the direct sum of irreducible finite
dimensional unitary representations. Consequently,
the quantities L) satisfying (16) have a unitary
representation which is the direct sum of finite di-
mensional unitary representations. But the only such
representations are trivial.®

We now make several remarks:

(1) The restriction to a simple group S can be
easily relaxed to any semisimple group, the only
requirement, being that the generator @ must have
nonvanishing “parts” in each of the simple algebras
which oceur in the direct sum decomposition of the
semisimple algebra.

(2) The theorem is equally applicable if the
Lorentz algebra I is replaced by any other Lie
algebra, say the algebra of the Galilei group. In
this case the corollary is no longer applicable since
the Galilei group has nontrivial finite-dimensional
unitary (nonfaithful) representations.

(3) We could interchange the roles of the internal
symmetry algebra and the Lorentzalgebra: if we
require that any one element of the homogeneous
Lorentz algebra, say 1M ,,, commute with all elements
of the symmetry algebra, then every element of the
internal symmetry algebra could be expressed in
the form

H! =H?+H}::
E,=E. +E,,

(18)

with H}, E! being linear combinations of the ele-
ments of the Lorentz algebra, such that H?, B
commute with every element of the Lorentz algebra.’
We can then show these quantities satisfy the
relations

[H:I E:] aikri(a)E::
[H;: HNI:] = 0:
(Bi, BL) = &" X n@Hi,

i

® It is interesting to point out that Ottoson, Kihlberg,
and Nilsson (Ref. 4) have considered nonunitary representa-
tions of the Lorentz group, relating the nonunitary nature to
the instability of several members of each multiplet.
® This result has been deduced by Y. Tomozawa, “Internal
[S}S'élu;etry and the Poincaré Group,”’ J. Math. Phys. 6, 656
1965).
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{E:; Eﬁ] = 5“N“3Ei+p,

which generalize the commutation relations (2).

(4) In the demonstration above, H} and E! are
linear combinations of those elements of I, which
commute with all elements of S. Hence if we require
that the rotation subalgebra generated by My, M,
M, all commute with S, H} and E} must be linear
combinations of the elements of L which are in-
variant under rotations. To see this we note that
the decomposition (18) is unique since if

H, = Hi + H, = H' + H{,
E. = E +E} = E% + B,
then
2~ Hf = H - B!
and
E} — E = B} — E!

must commute with every element of L but they
are at the same time elements of L. Hence they
belong to the center of L, which is trivial. Hence
H} and E are unique and hence must be invariant
under rotations. But the only element of L invariant
under rotations is the Hamiltonian (time translation
generator); consequently the commutator of any
two elements of Hj, K} vanish which implies, by
virtue of (19), that they themselves vanish. Hence
if the elements of S commute with space rotations,
we get only a trivial direct sum structure.

The present work in conjunction with that of
other authors imply the extreme difficulty of con-
structing a purely Lie algebra model of an exact
symmetry involving mass splittings. Any such
scheme would require for its success a Lie algebra
whose elements cannot be expressed as linear sums
of elements of the internal symmetry algebra and
the Lorentz algebra only.

Note added in proof: A definitive theorem in this
connection has been proved in L. 8. O’Raifeartaigh,
Phys. Rev. Letters 14, 575 (1965).
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