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I. INTRODUCTION

OME general structural features of dynamical
theories can be exhibited in a study of the relation
between classical and quantum mechanics; the essential
dynamical structure of these theories is that of a Lie
algebra of functions of the basic dynamical variables
which provides the infinitesimal generators of the group
of dynamical transformations. While the particular
representation (real variables or operators) which is
chosen for this algebra may be important in the formu-
lation of the kinematics of the theory and for a physical
interpretation, it is not important for the dynamical
structure analysis. We illustrate this point of view by
considering the possibility of a transcription of classical
and quantum mechanics each into the natural repre-
sentation of the other. This point of view leads us to
outline a formal theory of generalized dynamics by
constructing a class of Lie algebras which includes those
of classical and quantum mechanics as special cases.

It is well known that the formal relationship between
quantum mechanics and classical mechanics is ex-
pressed in the analogy between commutator brackets
and Poisson brackets, and between Heisenberg’s equa-
tions of motion and Hamilton’s equations of motion.!
However, it has been shown by Moyal? that quantum
mechanics can be formulated in a natural manner in
terms of functions on the classical phase space such
that there corresponds to the commutator of two
operators, not the Poisson bracket of the functions
corresponding to the operators, but a somewhat more
complicated function which may also be associated
with the two original functions by a bracket-type
mapping. This bracket is shown to have the properties
of a Lie bracket. We are thus led to consider the
functions on the phase space as forming a Lie algebra
with this bracket. The elements of this algebra act as
generators for the dynamical transformations which
are elements of the corresponding Lie group. The
operator representation of this algebra and group
provides, of course, the usual formulation of quantum
mechanics.

With these ideas in mind we begin with a discussion
in IT of classical mechanics, developing the usual phase

*P. A. M. Dirac, Principles of Quantum Mechanics (Oxford
University Press, New York, 1958), Chaps. IV, V.
2 J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949).

space formulation and noting that we may choose any
power series in the dynamical variables as the Hamil-
tonian. Hence the set of such quantities are generators
for the canonical dynamical transformations on the
system. Since the Poisson bracket has the properties of
a Lie bracket, this set is a Lie algebra and we identify
the canonical transformations with elements of the
corresponding Lie group. We then outline formally an
operator representation for the algebra and group and
thus show how classical mechanics would look in the
natural representation of quantum mechanics.

In IIT we note that a parallel discussion is possible
for quantum mechanics, and since we have a phase
space formulation and an operator formulation of both
classical and quantum mechanics at our disposal, com-
parisons are immediately evident. Both classical and
quantum dynamics have the structure of a Lie group of
transformations associated with a Lie algebra of func-
tions of the dynamical variables. We regard the phase
space and operator formulations as different repre-
sentations of these. From this point of view the main
difference between the two mechanics is in the choice
of the Lie bracket. Many of the other features of the
two formalisms become identical; for example, the
commutator of the operators corresponding to two
canonical variables ¢ and p has the value 1 in both the
classical and quantum cases.

In IV we note that the classical formalism may be
considered as the limit as #—0 of the quantum, but we
prefer to take the limit in the equations of motion and
not in commutator brackets. We consider the connec-
tion with the WKB approximation. In V we note that
there is a general form of a Lie bracket which includes
the brackets of classical and quantum mechanics as
special cases and we are thus led to consider the
possibility of more general mechanical formalisms.

Since these topics have been of long-standing interest
they have been considered by various authors from
many different points of view. It was shown by Koop-
man® how the dynamical transformations of classical
mechanics, considered as measure preserving trans-
formations of the phase space, induce unitary transfor-
mations on the Hilbert space of functions which are
square integrable with respect to a density function
over the phase space. This Hilbert space formulation

" 9B. 0. Koopman, Proc. Natl. Acad. Sci. 17, 315 (1931).
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of classical mechanics was further developed by von
Neumann.? It is to be noted that this Hilbert space
corresponds not to the space of state vectors in quantum
mechanics but to the Hilbert space of operators on the
state vectors (with the trace of the product of two
operators being chosen as the scalar product). A com-
parison of classical and quantum mechanics in terms of
these analogous Hilbert spaces and the unitary dy-
namical transformations on them has been carried out
by Uhlhorn,’ who noted that any linear correspondence
between phase space functions and operators would
provide an isomorphism of these Hilbert spaces and
used the phase space formulation of quantum mechanics
to investigate the possible isomorphism of the dy-
namical groups. His result, that there is no isomorphism
of the full groups but that there is an isomorphism of
the subgroups generated by Hamiltonians which are of
at most quadratic degree in the dynamical variables, is
in agreement with our conclusions (see Sec. III). The
association of classical mechanical phase space functions
with quantum mechanical operators and Poisson
brackets with commutator brackets has also been
studied by Groenwold® and Bopp,” among others. The
possible isomorphism of the dynamical groups of
classical and quantum mechanics was investigated by
Van Hove® who also found that the isomorphism does
exist for the subgroup generated by Hamiltonians of
quadratic or lower degree in the canonical variables.
In general the isomorphism of the dynamical groups will
depend on the rule one uses to associate phase space
functions with operators. This led Rivier® to propose a
rule of association which is invariant under simul-
taneous infinitesimal transformations of the classical
and quantum dynamical variables generated by
Poisson brackets and commutator brackets, respec-
tively. However we shall show in Sec. I1I that this rule
does not in general associate Poisson brackets with
commutator brackets. In this paper we have chosen to
use the correspondence rule of Moyal, Wigner,’® and
Weyl,' according to which these dynamical groups
are explicitly nonisomorphic. The various possible
rules for associating function with operators have been
studied by Shewell .2

II. CLASSICAL MECHANICS

The classical statistical mechanical state of a physical
system is represented by a probability distribution
function p(M) on the phase space {M} of the system.

4J. von Neumann, Ann. of Math. 33, 587 (1932).

> U. Uhlhorn, Arkiv. Fysik. 11, 87 (1956).

6 H. J. Groenewold, Physica 12, 405 (1946).

" F. Bopp, preprint. We are grateful to Professor Bopp for pro-
viding us with a copy of his work.

8 L.. Van Hove, Acad. roy. Belg. Bull. Classe Sci. Mém. (5) 37,
610 (1951).

9D. C. Rivier, Phys. Rev. 83, 862 (L) (1951).

10 B, Wigner, Phys. Rev. 40, 749 (1932).

UH. Weyl, The Theory of Groups and Quanium Mechanics
(Dover Publications, Inc., New York, 1950), p. 275.

12 J. R. Shewell, Am. J. Phys. 27, 16 (1959).

AND SUDARSHAN

(In the usual case {M} is the 2n-dimensional Euclidean
space of # pairs of canonical coordinates and momenta
qi, Piy 1=1, 2, -+, m). It is required that p(M) be
normalized

/p(M)szl; (1)

and the expectation value, for this state, of a function
A (M) of the dynamical variables is defined by

()= [40n)p(ar)a. @)

We call a pure state that limiting state in which the
system exists with unit probability at the point M’

parr (M) =6(M—M'). ' 3)

For such a state the time evolution of the system is
given by Hamilton’s equations of motion for functions
A (M) of the dynamical variables

(9/08) A(M) =[A«(M), H(M) les,

where the bracket is the Poisson bracket and H (M) is
the Hamiltonian function. For a state specified by the
density function p(M), the expectation value at time
¢ of the physical quantity 4 will then be given by

(4a)

()= [o(a0) A,30) a1, (50)
where p(M) is taken to be constant in time and A4 ,(M)
satisfies Eq. (4). Here we have let each individual
point in the phase space move along the trajectory
given by Eq. (4) and have averaged over the initial
distribution, since we know by Liouville’s theorem
that the amount of density at an infinitesimal element
of phase space remains constant as that element moves
along its trajectory. But we could just as well consider
the physical function 4 of the dynamical variables to
be constant and average with respect to a distribution
which has undergone the inverse time transformation

(4= [ 0.(30) A0 M (5b)

(9/0t)p(M) =—"[p (M), H(M)Jps.  (4b)

Now a Hamiltonian H (M) generates according to Eq.
(4) an element of the group of canonical transforma-
tions on the dynamical variables. But as yet H is an
arbitrary function of the dynamical variables. For
definiteness we will limit ourselves to Hamiltonians
which have a power series expansion and will illustrate
our ideas for a system with one pair of canonical
coordinate and momentum ¢ and p. Then we may
write
H(p, q) =conng"p"

and the two alternative forms of the equations of
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motion [Eq. (4)] take the form
(9/01) A(q, p) =[A(g, p), ¢"P" Jentm n,
(a/at)P(% P) = _[p((Iy P)v ‘]mP"]PBam.n-

Or we can absorb the time dependence into the
constants e, and write

dA (g, p) =[A(g, ), ¢"p"Jendam,n
dp(q, p) =—"[p(q, p), ¢"p" Jendotm n.

Here the damn appear as a countable set of parameters
which characterize the infinitesimal transformation.
The Poisson bracket has the properties that for any
real numbers ¢ and b and functions 4, B, C

(6a)
(6b)

(7a)
(7b)

[A, dB+bC:]PB=d[A, B]pn+b[A, C]PB, (linearity)
(8a)
[4, AJer=0 (antisymmetry) (8b)

or, equivalently,
[:A; *B]PUZ _[B> A]PB7
[A) [37 C]PB]PB+[B; [C, A]I’B]l’ls

+[C, [4, Blesles=0 (Jacobi identity). (8c)

Hence the real linear space of power series in the
dynamical variables forms an infinite dimensional Lie
algebra’® with the Poisson bracket as Lie bracket.
Evidently the dynamical transformations (7) are
elements of the corresponding Lie group.

This association would become clearer if we could
find an operator representation for this Lie algebra
and dynamical group. Hence we will outline in a
purely formal way the essential properties of such a
representation. To every real function 4 (M) we would
want to correspond a Hermitian operator 4 on a
Hilbert space so that the correspondence is linear, to
the Poisson bracket of two functions 4 (M) and B(M)
there corresponds the commutator bracket of the
operators 4 and B, and

/A (M) B(M)dM =Tr(AB). 9)

We would be interested in the operators py corre-
sponding to the pure-state distributions (3) and, since
all other functions can be written as an integral super-
position of these, we could accomplish our purpose by
letting

AM) =Ti[AL(M)], (10a)

A= f A (M) L(M)dM, (10b)

18 C. Chevalley, Theory of Lie Groups (Princeton University
Press, Princeton, New Jersey, 1946), p. 103.
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where
L(M) =pr'pM'(M)dM’=pr16(M—M’)dM’. (11)
Then, since

/PM'(M)PM"(M)dM=/5(M——M/)5<M—M”)dM
=(M'—-M"),
we will need to require that
Tr(parparr) =8(M'—M") (12)

One can easily check that these are formally consistent,
that (9) is satisfied, and that we can write

A= f A(M") pardM’

A(M') =Tr(Apar)
The operators corresponding to real functions will be
Hermitian if we require py- to be Hermitian. Also we
will assume that

[owam=1, (13)

which implies that

/A(M)dM=Tr(A), (14)
and the normalization condition (1) for probability
distributions becomes
Tr(p) =1 (15)

for density operators p. Conditions (15) and (9) allow
us to let p represent the state of the system and to form
expectation values of physical quantities according to

(4)=T(4p). (16)
Since all 4 and p are Hermitian, {4 ) will be real.

The commutator of two operators 4 and B will be
given by

1/i(AB—BA)=[4, B].
= [ 400 BOL) Lo, preT-aMart’

so we see that we need to specify the commutation
relations of the operators py in order to have the
commutator bracket correspond to the Poisson bracket.
For the case of one pair of canonical variables ¢ and p
we let

[Paps Pq’p’]—=9q'p(a/aq) 8(qg—q') (9/ap") 8(p—1p")

—par (8/0q')8(q—q') (3/3p)8(p—p"). (17)
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Then
[4, B1= [ A(g, p) B, #') o0s(3/09) (g1

- (9/8") 8(p—1") = pur (9/09') 5(g— ') (3/9p) 5(p— ")}
~dgdpdq'dp’,
which, after integrating by parts twice (and discarding

the integrated terms by assuming that p,, is such that
g™ Pp"pe—0 as g or p— oo for any m, n), becomes

[4, B]-
d 9 9 0 o
=/{<3é op'~ ag ﬁ)A(q, PB(, p)}
pud(q—q) 8(p—p)dgdpdq'dp’, (18)

which is clearly the operator corresponding to the
Poisson bracket of 4 (g, ) and B(q, ). The operators
(g™p™) op corresponding to the functions ¢ will then
satisfy the commutation relations

L(go) ™ (Pop) ™, (gop) ™ (pop) "]
= (mame—mamy) { (grtmeprtn)  f - (19)

We note that the correspondence (10) does not, in
general, preserve multiplication. Indeed the commuta-
tion relations (19) are inconsistent with assigning the
operator (gop)™ to ¢” and (pop)™ to p*. To show this we
note that we have

[gops pon]-=1, (20)

from which it follows that
[(gop)?(Pop) " J=1{ (gop) (Pop) "+ (pop) " (gop) }
and
L(gop)?, (o)™ 1-=1{(gop)*(Pop) "+ op (Pop) " 'gop
+ (Do) " (gop)*}.-

Hence if (gop)®=(¢*)opy (Pop)™=($")op, the right-hand
side of the above equations must be the operators for
2ngp™t and 3ng*p™ ' according to (19). Now, multi-
plying the section equation, first on the left and then
on the right by ¢, and taking half the sum of the
results, we get

[(gop)®, (Pop)™J-=1n{(gop)*(Pop) "+ (gop) *(Pop) " 'qop
“+on (Pop) " (gop) *+ (Pop) " (gop) *}
+[n(n—1) /401 (gop)* (Pop) "2 (Pop) "*(gop)*}
But, using (20), we get
L(gop) s (Pop)™ J==1{(gop)* (Pop) "+ (gop) * (Pop) " '¢op
+4op (Pop) " (gop) 2+ (Pop) " (gon) *},

so that by (19) we see that the right-hand side of the
above equation is the operator for 4ng®p and only
the first term in parentheses in the commutator

AND SUDARSHAN

[(gop)?; (gp™) op ) is the operator for 3ng*p™* which ac-
cording to (19) should be equal to the commutator.
Therefore, we have demonstrated that the relation be-
tween functions and operators will not preserve multi-
plication.

We have seen that the kinematics of the system will
be specified by (16) in terms of a density operator p.
Since an arbitrary distribution p(#) is an integral with
a positive weighting function of the pure state distri-
butions pa (M) =8(M—M’), but the delta function
cannot be a sum with positive weights of positive func-
tions having nonvanishing values at points M==M’, we
see that the densities p form a convex set with the pure
states py forming the extremal elements. Hence in
studying the properties of the density operators we can
confine our attention to the pure states. To include the
property (9) we are forced to condition (12) for these
operators. From this and (15) we can conclude that
pyr cannot be positive definite and have a discrete
spectrum. For then we would have Tr(par2) <Tr(pon)
=1, which contradicts (12). But then ps~ cannot be
positive definite. For if it were it would have a discrete
spectrum since it has all of the other properties of the
quantum mechanical density operator.* Also it is
obvious that pa2=Fpar, so that this operator will not
be a projection. This means that the pure state of the
system cannot be associated with a vector of the Hilbert
space. Similarly, the lack of positive definiteness means
that each vector cannot be associated with a physical
state of the system (there is no superposition principle
in classical mechanics). In particular the state in which
a set of quantities have precisely determined values will
not be represented by a common eigenvector of the
corresponding operators. The density operator pgp
does, however, represent a state with definite values
for the quantities ¢ and p corresponding to the non-
commuting operators ¢op and po, for we have that

gmpm)={g)"(p)"=q"p"

or
Tr[8yp (¢"p™) op ]=[Tr (Pg»'Gon) I"[Tr (Pq’p’?op) I
=qlmpln

This reflects the idea that when we say a quantity has
a definite value in a probabalistic scheme we mean
that the expectation values of all powers of the quantity
are determined to satisfy relations of the above type.

Since the commutator bracket is known to satisfy
linearity, antisymmetry, and Jacobi identity relations
corresponding to Eq. (8), we see that the operators
corresponding to power series in the dynamical variables
will form a representation of this Lie algebra.

The dynamics of the system in the operator repre-

“J. von Newmann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1955), p. 189.
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sentation is obtained by replacing Eqgs. (4) and (5) by

(8/6t)A,=|:At, H:I_ (21&.)
or
(9/0t) pr=—Lpy, H]- (21b)
and
(4):=Tr(p4.) (22a)
" (4):=Tr(p.A), (22b)

the choice of the (a) or (b) equations again depending
on whether one chooses to regard the functions of the
dynamical variables or the density of the state of the
system as changing in time. Similarly the Egs. (7)
become

dA=[A4, (¢"p") oo ]-dotmn (23a)

dp=—"[p, (¢"$") o0 -dctmn (23b)

showing how the operators (g™p") op, Which form a basis
of the Lie algebra, act as the generators for the trans-
formation specified by the parameters domm. The
infinite parameter Lie group associated with this Lie
algebra will have finite elements of the form of the
operator

U =exp{am (") op},

where the o, are the infinite set of parameters of the
group and the

(g"7")op =1/i(0U/demn) ass=0

are the infinitesimal generators of the group.’ These
operators will produce dynamical transformations on
the system according to

A—-UAU (24a)
or

p—UpU, (24b)

which for the special case of a Hamiltonian of the
(time-independent) form

H = (q"p") op, U=etlt
become
Ay=eHt e (25a)
py=e"Htpilt, (25b)

which are solutions of (21).

We note that the kinematical formalism of (16) or
(22) shows explicitly that we can use either the (a) or
(b) equations, since for either (24a) or (24b) we get
that

(A)>Tr(UAU ) =Tr(AUpU)

Since the operators (¢™p™)op, are Hermitian, U is
unitary, which ensures that the Hermitian nature, as
well as the other required properties, of 4 and p will be
preserved under the dynamical transformations, and
that the expectation values will remain real.

5 G. Racah, Nuovo cimento Suppl. 14, 67 (1959).
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III. QUANTUM MECHANICS

To each quantum-mechanical state of a physical
system one can associate, as Moyal? has shown, a
quasi-probability distribution function p(M) on the
phase space {M} of the canonical variables of the
system. Similarly, to any physical quantity represented
by the operator A there corresponds the function A4 (M)
which classically represents this quantity. The distri-
bution is normalized according to (1) and expectation
values are taken according to (2). To the commutator
[4, B]- there corresponds a function which we shall
call the Moyal bracket of the functions 4 (M) and
B(M) and shall denote by sin[ A (M), B(M)]. We will
illustrate our arguments with one pair of variables ¢
and p which, as in classical mechanics, is easily gen-
eralized to # pairs of variables. Then the Moyal
bracket has the form

a9 9 9 i] ,
2 smz[an 3pn 520 9n A(q, p)B(q, p)
oo 2041 (_ 1) nt+k

>

(1)2n+162n+1A (q, P)
n=0 k=0 k‘(2n+1—-—k) !

5 a an-l—l—k a Pk

B (g, p)

aqkap2n+1—k ? (26)

where we take =1 (% actually enters the quantity
sin[ ] in such a way that in the limit as #—0 only
the first term, which is the Poisson bracket, remains
nonvanishing). From this form we see that the Moyal
bracket reduces to the Poisson bracket if one of the
functions 4 or B is of quadratic or lower order in the
variables ¢ and p. These ideas have been put into a
more rigorous mathematical formalism by Baker,'® who
has found an integral expression for the Moyal bracket
and developed a set of postulates for quantum me-
chanics, in terms of the distributions p(3), in analogy
to classical mechanics. Instead of delta functions, the
pure states are represented by functions p(M) which
satisfy

p(M) =3 cos[p(M), p(M) ]

where the cos[ ] is defined in complete analogy to the
sin[ ] and corresponds to the anticommutator of the
operators corresponding to the functions. The set of all
(physically allowed) densities is the convex set gen-
erated by these. The time evolution of the system is
given by equations of the forms (4) and (5) with the
Poisson bracket replaced by the Moyal bracket. We
can also write Eqs. (7) with this replacement of
brackets and we can show (see Appendix) that the
Moyal bracket satisfies linearity, antisymmetry, and

(27)

18 G. A. Baker, Jr., Phys. Rev. 109, 2198 (1958). This problem
was also considered by T. Takabayasi, Progr. Theoret. Phys.
(Kyoto) 11, 341 (1954), and the phase-space formulation was re-
viewed by H. Rubin, Proc. International Symposium on Axiomatic
Method at Berkeley (North-Holland Publishing Company, Inc.,
Amsterdam, 1959).
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Jacobi identity relations corresponding to (8). Hence
the linear space of power series in the dynamical
variables forms a Lie Algebra with the Moyal bracket
as the Lie bracket. Evidently the dynamical trans-
formations are again elements of the corresponding Lie
group.

The operator representation is of course the usual
formalism of quantum theory in terms of Hermitian
density operators and operators representing physical
quantities. Stratonovich' has explicitly shown that the
linear correspondence between the phase space and
operator representations which satisfies (9) and
associates commutators with Moyal brackets is given
by Eqgs. (10), now with

L(M) =2 A+4(M),

where the operators 4 ; form a basis in the linear space
of operators corresponding to functions of the dynamical
variables, the inner product being (4, B) =Tr(ABt);
that is,

TI‘(A,‘AJ"") 35.,‘]' (28)

and the corresponding functions 4 ;(M) satisfy
/Ai(M)Aj*(M)dM=6L-,.

[Actually, if we want to maintain the condition (15)
we need to replace (1) by [o(M)N(M)dM =1, where
N(M)=TrL(M).] Condition (28) does not lead to any
of the restrictions that resulted from (12) in the case
of classical mechanics. In fact we can have that for pure
state density operators

' =p,

which is the operator equivalent of (27) and the con-
dition that the Hermitian normalized p be a projection.
Hence we can identify the pure states with vectors of
the Hilbert space. The superposition principle require-
ment that every normalized vector be associated with a
physical state means that p must be positive definite and
thus have a discrete spectrum, which Baker has shown
is indeed the case. The operators then have all the
properties of the quantum mechanical density operators
and (16) gives the usual quantum kinematics.

While we have a positive definite density operator
and a one-to-one correspondence between physical
states and vectors which was not possible in classical
mechanics, the functions p(M), in general, take
negative values (hence the term quasi-probability
distribution function). This means that not all distri-
butions represent physical states of the system; e.g.,
the distribution concentrating all the probability at a
point M’ at which some p(M’) <0 (i.e., we do not have
positive definite distribution functions or a one-to-one

17 R. L. Stratonovich, Soviet Phys.—JETP 4, 891 (1957);
we wish to thank Dr. I. Bialynicki-Birula for bringing this work
to our attention.
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correspondence  between  distribution  functions and
physical states). This is clearly related to the
uncertainty principle.

In the operator representation the dynamics of the
system is given by equations which are identical in
form to Eqgs. (21)-(25); this is, of course, the usual
form of quantum dynamics. The quantum formalism
differs from the classical only in the properties of the
operators. The density operators belong to the convex
set generated by projections, and the operators corre-
sponding to functions of the dynamical variables have
commutators corresponding to Moyal brackets. It is
interesting to note that for the case of one pair of
variables, having specified the operators ¢, and p,, to
satisfy (20) which, while sometimes called the
“quantum condition,” is characteristic of both classical
and quantum mechanics, we can complete the dy-
namical formulation with one simple postulate: the
operators (¢™p")o, are taken to be the symmetrized
products of the operators (¢op)™ and (pop)” That is
these operators will satisfy
(29)

len 1m2n2mn ((]'"P n) opy

[(‘Z"”P"‘) opy ((Z"’ZP'”) Op:]— =

where the Ciupumgn,™ are determined from the Moyal
bracket by

Sill[([mlpm, qmzpnz:] — melmwwnmqmpn.

Equation (29) is the quantum analog of (19). Since
this determines the structure of the Lie algebra corre-
sponding to power serics in the dynamical variables, it
determines the dynamics of the system within the
formalism which we have seen to be descriptive of both
quantum mechanics and classical mechanics.

We also note that with this quantum mechanical
choice of operators the correspondence between func-
tions and operators preserves multiplication except for
a symmetrization of noncommuting factors, e.g., we
have (¢™)op = (qop)™, (p™")op = (pop)". However the
association doecs not preserve multiplication in general,
as has been pointed out by Shewell.’? For example if
H,, is the operator corresponding to the function
H = p*>+¢* one can easily check that (H?),, = (Hop)2
This forces us to conclude that while these studies
facilitate a comparison of quantum to classical me-
chanics the phase-space formulation is not completely
suitable for a physical interpretation of quantum
mechanics, for a function of a physically measurable
quantity must correspond to the same function of the
operator representing that quantity.

As an example of quantities having a Moyal bracket
different from the Poisson bracket one can easily
compute that

[q3: PﬂPB = 992?2,
while
sin[¢’, p*]=9¢"p*—3.
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For the corresponding operators one obtains
[(gop)?; (Pop)®]-=3(gon)* (pon) *+3ep (Pov) *gon
+3(pon)* (gop)*
=9(gop) *(Pop)*} sym.— 5

0 =9/2{ (gop)2(Pcp)2+(Pop)2(90p)2} +3
wit

{ (gop) *(Pop) *} sym. =1E{ (¢op) *(Pop) *+GopPongopon
+op (Pop) *Pop+ Pop (¢op) *Pon+ PopgopPonop

+ (Pop)*(gop)?}

=3{(gop)*(Pop) *+ (Pop) *(gop) *} +35.

According to the Moyal rule of correspondence we
associate the operator {(qop)2(Pop)?}sym. with the func-
tion ¢*p* and we see that in our example the com-
mutator bracket corresponds to the Moyal bracket.
According to Shewell,* River’s rule of correspondence
associates the function ¢?p? with the operator

31 (Pop) 2 (qop) >+ (Pop) 2(gon) *}

and our example shows that it does not make com-
mutator brackets correspond toPoisson brackets.

We can now also see that Heisenberg’s equations of
motion (21a) will reduce to the form of Hamilton’s
equations of motion if 4 corresponds to a function of
quadratic or lower order in the variables, for then the
Moyal bracket is identical with the Poisson bracket.

The reduction of the Moyal bracket to the Poisson
bracket in the quantum mechanical equation analogous
to (4a) for the case that A(g, p) is equal to g or p
means that the points of phase space will traverse the
same orbits quantum mechanically as classically. But
in the quantum mechanical case the amount of proba-
bility density at an infinitesimal element of phase
space will not remain constant as the element moves
along its trajectory. Hence we were not really justified
in assuming that we could choose either the (a)- or
(b)-type equations to describe the dynamics of the
system in phase space. However in the operator formu-
lation it is clear that we do have this freedom of
choice [see remarks following (25)7], which means
that we have the same freedom in the phase space
formulation as long as we are dealing with functions
which are quantum mechanically “physically meaning-
ful,” i.e., functions which have corresponding operators.
We see then that the duality between the Schrodinger
and Heisenberg pictures is a kind of quantum analog
of Liouville’s Theorem. In a similar way the fact that
the operator formalism always leads to positive definite
probabilities ensures that from the phase space calcula-
tions we cannot get negative probabilities for physically
meaningful quantities.

Stratonovich has shown that equations of the type
(1) can be used to find functions corresponding to
operators which do not represent canonical coordinates
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and momenta, e.g., spin operators. However we can
see that it is meaningless to ask for the classical analog
of quantities which have no Poisson bracket relation-
ships. For operators will be called classical if their
commutators correspond to Poisson brackets and
quantum if they correspond to Moyal brackets. If the
properties of the quantities are known only through
operator equations, this information is unavailable.

IV. THE CLASSICAL APPROXIMATION TO QUANTUM
MECHANICS

Since the equations of quantum mechanics should
reduce to those of classical mechanics in the limit as
ii—0, it is of some interest to consider the explicit
dependence of our quantum mechanical equations on 7.
The form of the commutator bracket is then

[4, B].=1/ifi(AB—BA)

If we were to consider the limit as 7—0 of Eq. (20) as
the starting point for comparing the quantum and
classical formalisms, we would have to conclude that
the classical variables ¢ and p commute. However we
have chosen to regard the difference between the real
variable and operator schemes as a choice of repre-
sentation for the dynamical group. Hence we prefer to
use the equations of motion as the starting point for
our comparison of the two mechanics. With the above
form of the commutator the Schrédinger equation
(21b) is
11(0/3t) p=Hp—pH

For the case that p represents a pure state which
corresponds to the eigenvector ¢ of the energy operator
H with eigenvalue F this equation is equivalent to

ih(/ot) =Ihy = Ey

Now the right-hand sides of these equations are of the
same order in 7 as commutator brackets multiplied by
h. As we have seen, taking the limit as i—0 of such a
quantity will not retain the operator representation
features. Instead we have chosen to consider the com-
mutator bracket which corresponds to the Moyal
bracket which in turn reduces to the Poisson bracket
as 7i—0. Hence in obtaining a classical approximation
to the eigenequation Hy=Fy we should expect to
retain terms of order 7 as well as of zero order in 7.
The well-known WKB approximation does just this,
and it turns out that the zero-order terms give the
equation for Hamilton’s principal function, while
inclusion of the terms of order 7 leads (with some
added conditions) to the Bohr quantization rules.

V. GENERALIZED MECHANICAL FORMALISMS

We have seen that both classical and quantum
mechanics fit into a formal scheme which may be simply
summarized. Suitable dynamical variables are chosen
to describe the system and a quantity is chosen to
describe the probability distribution state of the
system. A bracket relation is assumed hetween functions
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of the dynamical variables by which the quantities
corresponding to power series form a Lie algebra. A
representation is chosen for these quantities which
allows the formulation of a physically meaningful
kinematical scheme. The elements of the corresponding
Lie group then provide the dynamical transformations
of the system.

We are thus led to ask if there are mechanical
formalisms other than the classical or the quantum
which can be found in this way. It is easy to see (see
Appendix) that for the case of one pair of canonical
variables the Poisson and Moyal brackets are special
cases of a general bracket which satisfies the Lie
algebra conditions and can be written as

o 2n41

_ (—1)HC(n) (1
[4, BJ‘%,?;D@)D@%H-/@)@

A (q, p) 9> B(q, p)
: Ak ph  ghapiik

JORDAN AND SUDARSHAN

where C(n) and D(n) are functions of the index #
which are restricted only by the convergence require-
ments of the series. Taking C(xn) =1, D(k) =k! leads
to the Moyal bracket, while C (%) = 6.0, D(k) =k! gives
the Poisson bracket. However, we would not expect it
to be so easy to find representations of the resulting
Lie algebras which provide simple kinematical schemes.
The function representation which has the most
intuitive physical meaning is natural for classical
mechanics while the operator representation which
provides mathematical insight is natural for quantum
mechanics. We have seen that each is very awkward in
the natural representation of the other.
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APPENDIX

The real linear space of functions f(g, $) with the composition rule [ f, g]=sin[ f, g]forms an infinite-dimensional

Lie algebra.

Proof: We write

e (=D 9
sin %, ”]‘§(2n+1) Nog. 8p»  9g O

a 0

o 2n+1

2n+1
L 2Vl 000, p)

(=D mu(g, p) (g, p) 9 +a(g, p)

Bt E\(2n4-1—Fk) ! dgertirapt aghgpimti—h ggapintih :

(1) Then it is obvious that
[u, a1v1+azb2]=a1[u, 7}1:]—}-(12[14, 1)2:'
Lavn+agus, v]= a1, v]+aslus, v],

where ay, @, are real numbers.

(2) [, w]=0=Lutv, ut+o]=0=[u, ul+[u, 0]+ [v, u]+[v, vJ=[w, v]+[v, u]=0 or [u, v]=—[o, u].

(3) We need then only to prove that
[, [v, wll+[o, [w, w]1+[w, [u, v]]=0.

To do this we write

o 2n+1 ( _ 1) ntk 92ty 92ntl

( — 1) m+-1 a2m—Hv

[, o, w]1=2_ 22

(53

a2m+l.w )

S Sk (2n+1—k) | aginti—kgph aqkap2n+1-—k\m=m=0“(2m+l_l) L 9g2mH=lgpl 9qldprti—t

(_ 1)n+m+k+l
- SR 2 H1—B) 1 (2mA1=0)

02 (m+n)+2q

a2m+l.w 62n+lu a2m+1v

( 82m+1u

92(m+n)+2q,) )
)

] q2m+1—-k 9 pk d q2m+1— Ik 5] p2n+l—k+l 9 q l d p2m+l— v 9 q2n+1—k 9 pk a q2m+1— la P l 9 qk-i— 1 d P2 (m+n)+2—k—1
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which we write as

[, Lo, w]]=%kll!(2n+1—k) 2m+1-1)!

( —_ 1) mAntlt-l

2n+1  2(m+n)+2 2m—+1 2n+1 2m+1 2(m~+n)+2
u v w u v w
+
m+1—Fk 2m+1+k—1 ! m+1—Fk 2m+1-—1 k41
k A=kl 2m1—1 k ! 2(mA-n) +2—k—1

Hence [, [, w]]+[v, [w, u]]+[w, [u, v]]=

( — 1) mtntk+1

(2 1—k) | (2mA-1—1) |

n+1  2(m+n)+2 2m—+1 2n+1 2m+1 2(m~+n)+2
u v w u ? w
+
n+1—k 2m+1+4+k—1 l 2n+1—k 2m+1—1 k41
k 2n+1—k+10 2m+1-—1 k l 2(m+n)+2—k—1
n+1  2(m+n)4+2  2m+1 2n+1 2m-+1 2(m~+n)+2
v w u ? w u
+
2n+1—k 2m—+-1+k—1 l 2n+1—k 2m+1-—1 k+1
k n+1—k+1 2m+1—1 k l 2(m+n)+2—k—1
n+1 2(m+n)+2  2m+1 2n+1 2m—+1 2(m~+n)+2
w u v w u v
+ +
2n+1—k 2m+1+4k—1 ! 2n+1—%k 2m+1—1 k+1
k n+1—k+1 2m+1—1 k l 2(m~+n)+2—k—1

We now note that with the change of summation variables
w'=m, k'=2m+1-1, m'=n, U'=k

the quantity in { } remains unchanged, the 2nd and 3rd, 4th and Sth, and last and first terms interchanging.
This is very easily seen by denoting the sets of indices by numbers

2n4+1 [ 2m+1 2(m—+n)+2
mt1—kt =(1), {2m4+-1—1}=(2), 12m+1+k—1}=(3).
k l 2n+1—k41

The quantity in { } can then be written in a simple form by writing the sets of indices that occur with the u, v,
w after each term has been arranged so that these appear in the order # » w. Thus the quantity becomes

DR @+1)(2)A)+2) (M) B)+B) (D) (2)+(3)(2) (1)+(2) (3) (1)



524 JORDAN AND SUDARSHAN

and the change of summation variables changes the sets of indices by (2)"=(1), (1)'=(2), (3)"=(3). Since the
above quantity is just the sum of all permutations of (1)(2)(3), it is obviously unchanged under this change of
indices. Now
U 2n+1—k) | 2m+1=0) 1=k 120" +1—Fk") 12m'+1-=1) |
but
n+m+k+l=m'+n' -+ 20 +1—F
= (n'4m'+k'+U)+2(n' - k") +1.

— 1\ ntmtktl — (10w
(=1) (=1 .

Hence

Thus we can write

Lo, Lo, wlI+[o, [w, w]]+-[w, [w, v]]= Z

(_1)n+m+k+l
k'l'(2n+1 k) 1(2m+1-10)!

{m7 n’ k, l}

(— 1)

= nlzmzlk/!l”(z’ﬂ +1 kl) '(Zm +1 l/) '!m % k' ll} —-[’I/L, I:‘U, M_]]""[‘U, [w) 1‘]]—[w7 [’l/t, 'I)]]=O,

which completes the proof of the Jacobi identity.
That the resulting Lie algebra is infinite dimensional can be seen by taking ¢™p" as a basis and expanding any
function in the algebra in a power series
J= 2 fmg" "

mn

It is clear that [u, v]=sin[#, v] is not the only possible definition which gives a Lie algebra. For example,
consider the same bracket changed by inserting an arbitrary function C(n) as a factor:

( 1)n ( 9 9 d 9 )2n+1 _ o 2n+1 (—1)”+kC(%) §2ntly J2ntly
[, 21= nz_.o(Z +1)! C(m) OGu 0ps 0Py 0Gs u(g, 2)o(g, ) _,;k:zgkiﬂn—}—l—k) L ggpnti—kg pt 6g’°6p?"+1"“'

Trom the second form it is obvious that condition (1) is satisfied and from the first form (2) is also. In the proof
of the Jacobi identity (3) a factor C(n)C(m)=C(m')C(n')=C(n')C(m') is the only change and clearly does
not alter the proof.

Of course C(n) should be chosen to allow convergence of the series. If we attempt to generalize this further

by an expression of the form

oy YwHEC () o2ty oty

Z; ;Z.; D(k) EQ2n+1—F) dgn+i=kdpt dgkaprmi—+

conditions (2) or (3) force us to assume that D(n) =LE(n).
Hence we prove that we still get a Lie algebra with

o 2nt1 ( 1) n+kC ( n) Q2ntly 92ty
[ 23= fgk.zz)(k)p(znﬂ k) agHiFapk agrapint

where C and D are restricted only by convergence requirements.

Condition (1) is still obvious and (2) is proved by writing the above expression for [#, #] and introducing
the new summation indices ¥’ =2n-+1—Fk, k=2n-+1-F".

Then, since n-+k=n+2n-+1—k =n-+k'+2(n—~F)+1, we get (—1)"*=—(—1)""+ so that

o 2n4+1 (_ 1)n+klc(n) a?n-{-—lu 62"+17]
(o, u]= Z ’ ’ ont1—k! 3 pk! k! 3 p2nA1—l!
D) D (2n+1—k) a@HHapt agtap
=—[u, u]=0

(3) is proved in the same manner as for sin[#, v] except the factor 1/k1!(2n+1—k) !(2m~+1—1) ! is replaced by
C(n)C(m)/D(E)D(1)D(2n+1—k) D(2m~+1—1) which under the change of indices

w=m, m=n, F=2m+1-—I, I'=k

becomes C(m’)C(n')/D(V)D(2n'+1—k")D(2m’+1—1)D(k’), so the proof remains valid.



