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theless, their form is similar to that of completely positive maps. Only some minus signs are inserted in the
operator-sum representation. Each map is the difference of two completely positive maps. The maps are first
obtained as maps of mean values and then as maps of basis matrices. These forms also prove to be useful. An
example for two entangled qubits is worked out in detail. The relation to earlier work is discussed.
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I. INTRODUCTION

Linear maps of matrices can describe the evolution of
density matrices for a quantum system that interacts and is
entangled with another system[1–3]. The simplest case is
when the density matrix for the initial state of the combined
system is a product of density matrices for the individual
systems. Then the evolution of the single system can be de-
scribed by a completely positive map. These maps have been
extensively studied and used[4–9]. Here we consider the
general case where the two systems may be entangled in the
initial state. We ask what kind of map, if any, can describe
the physics then. Completely positive maps can be used in
quantum information processing because, with the ability to
decohere a system from its surroundings and initialize par-
ticular states, the two systems can be made separate, so they
have not been interacting and are not entangled when they
are brought together in the initial state. What happens,
though, when they are already entangled at the start?

We find that evolution can generally be described by lin-
ear maps of matrices. They are not completely positive maps.
They can even map a positive matrix to a matrix that is not
positive. Nevertheless, basic forms of the maps are similar to
those of completely positive maps. Only some minus signs
are inserted in the operator-sum representation. Each map is
the difference of two completely positive maps. These famil-
iar forms follow simply from the fact that the map takes
every Hermitian matrix to a Hermitian matrix. The maps are
first obtained as maps of mean values and then as maps of
basis matrices. These forms also prove to be useful.

A new feature is that each map is made to be used for a
particular set of states, to act in a particular domain. This is

the set of states of the single system described by varying
mean values of quantities for that system that are compatible
with fixed mean values of other quantities for the combined
system in describing an initial state of the combined system.
We call that thecompatibility domain. The map is defined for
all matrices for the single system. In a domain that is larger
than the compatibility domain, but still limited, every posi-
tive matrix is mapped to a positive matrix. We call that the
positivity domain. We describe both domains for our ex-
ample.

To extract the map that describes the evolution of one
system from the dynamics of the two combined systems, we
calculate changes of mean values(expectation values) in the
Heisenberg picture. This allows us to hold calculations to the
minimum needed to find the changes in the quantities that
describe the single system. To make clear what we are doing,
we keep our focus on those quantities and keep them sepa-
rate from the other quantities in the description of the com-
bined system, which may be parameters in the map.

There has been recognition of the limitations of com-
pletely positive maps in describing the evolution of open
quantum systems[10], but little effort has been made to use
more general maps there. Other considerations, including de-
scriptions of entanglement and separability, have motivated
substantial mathematical work on maps that are not com-
pletely positive but do take every positive matrix to a posi-
tive matrix [11–13]. The maps we consider here do not need
to have even that property.

We begin with an example for two entangled qubits,
which we work out in detail. Then we outline the extension
to any system described by finite matrices. This more ab-
stract general discussion relies heavily on the concrete ex-
ample, where many points—for instance, those about
domains—are made more explicit and clear. In the conclud-
ing section we discuss how what is done here relates to ear-
lier work [14–16] and point out the errors in arguments that
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a map describing evolution of an open quantum system has
to be completely positive.

II. TWO-QUBIT EXAMPLES

Consider two qubits described by two sets of Pauli matri-
cesS1, S2, S3 andJ1, J2, J3. Let the Hamiltonian be

H =
1

2
vS3J1. s2.1d

The evolution of theS qubit is described by the mean values
kS1l, kS2l, andkS3l at time zero changing to

keiHtS1e
−iHtl = kS1lcosvt − kS2J1lsin vt,

keiHtS2e
−iHtl = kS2lcosvt + kS1J1lsin vt,

keiHtS3e
−iHtl = kS3l, s2.2d

at timet. These three mean values describe the state of theS
qubit at timet.

A. Basics for one time

Look at this whenvt is p /2. Then the mean values are
changed to

kS1l8 = a1, kS2l8 = a2, kS3l8 = kS3l, s2.3d

where

a1 = − kS2J1l, a2 = kS1J1l. s2.4d

We consider thea1, a2 to be parameters that describe the
effect of the dynamics of the two qubits that drives the evo-
lution of the S qubit, not quantities that are part of the de-
scription of the initial state of theS qubit. What we do will
apply to different initial states of theS qubit for the same
fixed a1, a2.

The change of mean values calculated in the Heisenberg
picture determines the change of the density matrix in the
Schrödinger picture. The density matrix

r =
1

2
s1 + kSW l · SW d, s2.5d

which describes the state of theS qubit at time zero, is
changed to the density matrix

r8 =
1

2
s1 + kSW l8 · SW d =

1

2
s1 + a1S1 + a2S2 + kS3lS3d,

s2.6d

which describes the state of theS qubit whenvt is p /2. This

is the same for all the differentkSW l that are compatible with
the same fixedkS2J1l and kS1J1l in describing a possible
initial state for the two qubits. We will refer to these as the

compatiblekSW l.
To be meaningful, a map has to act on asubstantial setof

states. To ensure that we have something substantial to con-

sider here, we will assume that the set of compatiblekSW l is

substantial. We will exclude those values ofkS2J1l and
kS1J1l that do not at least allow three-dimensional variation

in the directions of the compatiblekSW l. For example, we will
not let kS1J1l be 1, because that would implykS2l andkS3l
are zero. The set of compatiblekSW l will be described more
completely in Sec. II C.

The change of density matrices can be extended to a lin-
ear map of all 232 matrices to 232 matrices defined by

18 = 1 +a1S1 + a2S2, S18 = 0, S28 = 0, S38 = S3.

s2.7d

This takes each density matrixr described by Eq.(2.5), for

each compatiblekSW l in each different direction, to the den-
sity matrix

r8 =
1

2
s18 + kSW l · SW 8d, s2.8d

which is the same as that described by Eq.(2.6). This map
takes every Hermitian matrix to a Hermitian matrix. It does
not map every positive matrix to a positive matrix.

The map takes

P =
1

2
s1 + S3d, s2.9d

which is positive, to

P8 =
1

2
s1 + a1S1 + a2S2 + S3d, s2.10d

which is not positive. To see thatP8 is not positive, let

a1 = r cosu, a2 = r sin u, s2.11d

choose a vectorc such that

sc,1cd = 1, sc,S1cd = − r cosu/Î1 + r2,

sc,S2cd = − r sin u/Î1 + r2, sc,S3cd = − 1/Î1 + r2,

s2.12d

and calculate

sc,P8cd =
1

2
s1 −Î1 + r2d. s2.13d

This is negative even whenr is very small so thatkS1J2l
andkS1J1l are very small and there is room for a large set of

compatiblekSW l.
Of course, ifr is a density matrix that gives a compatible

mean valuekSW l, the map takesr described by Eq.(2.5) to the
density matrixr8 described by Eq.(2.6), which is positive.
To see explicitly thatr8 is positive, consider that, for any
vectorc,

usc,S1cdu2 + usc,S2cdu2 + usc,S3cdu2 ø usc,cdu2,

s2.14d

and if kS3l is compatible withkS1J2l andkS1J1l in describ-
ing a possible state for the two qubits, then
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sa1d2 + sa2d2 + kS3l2 = kS2J1l2 + kS1J1l2 + kS3l2 ø 1,

s2.15d

so that altogether

ua1sc,S1cd + a2sc,S2cd + kS3lsc,S3cdu ø sc,1cd.

s2.16d

The important difference between the density matrixr and
the positive matrixP described by Eq.(2.9) is the factorkS3l
multiplying S3 in the density matrix. IfkS3l is changed to 1,
the inequality(2.15) can fail. The map can fail to take posi-
tive matrices to positive matrices when it extends beyond

density matrices for compatiblekSW l.
The map can fail to be completely positive even within

the limits of compatiblekSW l where it maps every positive
matrix to a positive matrix. To see that, we extend the map to
the two qubits by taking its product with the identity map of
the matrices 1,J1, J2, andJ3. We have used Eqs.(2.7) to
describe a map of 232 matrices. Now we use it to describe
a map of 434 matrices; each matrix in Eqs.(2.7) is the
product of the 232 matrix for theS qubit with the identity
matrix for theJ qubit. In addition we get

sS1Jkd8 = S18Jk8 = 0,

sS2Jkd8 = S28Jk8 = 0,

sS3Jkd8 = S38Jk8 = S3Jk,

Jk8 = s1 ·Jkd8 = 18Jk8 = s1 + a1S1 + a2S2dJk, s2.17d

for k=1,2,3.This and the reinterpreted equations(2.7) de-
fine a linear map of 434 matrices to 434 matrices. If the
map of 232 matrices defined by Eqs.(2.7) is completely
positive, this map of 434 matrices should take every posi-
tive matrix to a positive matrix. We will see that it can fail to
do that even when the 434 matrix being mapped is a density
matrix for a possible initial state of the two qubits.

If P is a density matrix for the two qubits, then

P =
1

4
S1 + o

j=1

3

kS jlS j + o
k=1

3

kJklJk + o
j ,k=1

3

kS jJklS jJkD
s2.18d

is mapped to

P8 =
1

4
S18 + o

j=1

3

kS jlS j8 + o
k=1

3

kJklJk8 + o
j ,k=1

3

kS jJklsS jJkd8D .

s2.19d

To test whetherP8 is positive, let

W=
1

4S1 +
1
Î2

S2 +
1
Î2

S3J3D , s2.20d

check thatW2= 1
2W to see thatW is positive and is a density

matrix, and calculate

TrfP8Wg =
1

4S1 +
a2

Î2
+

kS3J3l
Î2

D
=

1

4S1 +
kS1J1l

Î2
+

kS3J3l
Î2

D . s2.21d

This holds ifP is the density matrix for an initial state of the
two qubits that gives the mean values −kS2J1l and kS1J1l
used fora1 and a2. We see that TrfP8Wg can be negative.
Both kS1J1l andkS3J3l are −1 for the state where the sum
of the spins of the two qubits is zero. That state gives zero

for kSW l, but nearby states will give an acceptable set of com-

patible kSW l with TrfP8Wg negative.
The map is made to be used for the set of states, the set of

density matrices, described by compatiblekSW l. We call that
its compatibility domain. It includes all the initial states theS
qubit can have with the givenkS2J1l and kS1J1l. Outside
the compatibility domain, some density matrices are mapped
to positive matrices, but others, including, for example,P
from Eq.(2.9), are not. Even inside its compatibility domain,
the map is not completely positive.

We can see that the compatibility domain is enough to
give the linearity of the map physical meaning. Applied to
density matrices, the linearity of the map says that if density
matricesr ands are mapped tor8 ands8, then each density
matrix

t = qr + s1 − qds s2.22d

with 0,q,1 is mapped to

t8 = qr8 + s1 − qds8. s2.23d

Supposer and s are density matrices for theS qubit that

give mean valueskSW lr and kSW ls. If both kSW lr and kSW ls are
compatible with the samekS2J1l and kS1J1l in describing
an initial state of the two qubits, then so is

kSW lt = qkSW lr + s1 − qdkSW ls. s2.24d

The compatibility domain is convex. Explicitly, ifPr andPs

are density matrices for the two qubits written in the form of

Eq. (2.18) with kSW lr and kSW ls for kSW l and the samekS2J1l
and kS1J1l, then

Pt = qPr + s1 − qdPs s2.25d

is a density matrix for the two qubits written in the same

form with kSW lt for kSW l and the samekS2J1l andkS1J1l. If r
ands are in the compatibility domain, then so are all thet
defined by Eq.(2.22). For these, the linearity described by
Eqs.(2.22) and (2.23) has a meaningful physical interpreta-
tion. The compatibility domain will be described more com-
pletely in Sec. II C.

A different map is an option if the initial state of the two
qubits is a product state or if, at least,

kS2J1l = kS2lkJ1l, kS1J1l = kS1lkJ1l. s2.26d

Then the density matrixr8 described by Eq.(2.6) is
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r8 =
1

2
s1 − kS2lkJ1lS1 + kS1lkJ1lS2 + kS3lS3d.

s2.27d

This is obtained from Eq.(2.8) with the linear map of
232 matrices defined either by Eqs.(2.7) or by

18 = 1, S18 = kJ1lS2, S28 = − kJ1lS1, S38 = S3.

s2.28d

With the latter, every positive matrix maps to a positive ma-
trix. In fact the map is completely positive.

This completely positive map is defined by Eqs.(2.28) for

a given fixed value ofkJ1l. That puts no restrictions onkSW l,
no limits on the initial state of theS qubit. Every kSW l is
compatible with anykJ1l in describing an initial state of the
two qubits for which Eqs.(2.26) hold; every state of theS
qubit can be combined with any state of theJ qubit in a
product state for the two qubits. However, we will see that

thekSW l compatible with given nonzerokS2J1l andkS1J1l in
product states for the two qubits fill only a two-dimensional
set embedded in the three-dimensional compatibility domain.

The completely positive map defined by Eqs.(2.28) is an
option only when Eqs.(2.26) hold. Then both maps, from
Eqs.(2.7) and(2.28), reproduce the evolution of theS qubit.
There is a map defined by Eqs.(2.7) for almost every initial
state of the two qubits, withkS2J1l and kS1J1l changing
continuously from state to state. Switching to the completely
positive map when Eqs.(2.26) hold would be a discontinu-
ous change.

B. Time dependence

From the mean values(2.2) for any t, the same steps as
before with Eqs.(2.5), (2.6), and(2.8) yield

18 = 1 + sa1S1 + a2S2dsin vt,

S18 = S1cosvt, S28 = S2cosvt, S38 = S3. s2.29d

This defines a linear mapQ→Q8 of all 232 matrices to
232 matrices described by

Qrs8 = o
jk

Brj ;skQjk, s2.30d

with

B =1
1 0

1

2
a*sin vt cosvt

0 0 0
1

2
a*sin vt

1

2
a sin vt 0 0 0

cosvt
1

2
a sin vt 0 1

2 ,

s2.31d

wherea=a1+ ia2 and the rows and columns ofB are in the
order 11, 12, 21, 22.

A vector

c1or3=1
l

1

2
a*sin vt

1

2
a sin vt

l

2 s2.32d

is an eigenvector ofB with eigenvaluel if

l +
1

4
uau2sin2vt + l cosvt = l2. s2.33d

This yields two eigenvalues

l1 =
1

2
f1 + cosvt + Îs1 + cosvtd2 + uau2sin2vtg,

l3 =
1

2
f1 + cosvt − Îs1 + cosvtd2 + uau2sin2vtg

s2.34d

and eigenvectors

c1 or 3= c1 for l = l1

=c3 for l = l3. s2.35d

Note thatc1 andc3 are orthogonal because

l1l3 = −
1

4
uau2sin2vt. s2.36d

The squares of the lengths of the eigenvectors are

icni2 = 2Sln
2 +

1

4
uau2sin2vtD = 2lns1 + cosvtd + uau2sin2vt

s2.37d

for n=1,3. A vector
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c2 or 4=1
l

−
1

2
a*sin vt

1

2
a sin vt

− l

2 s2.38d

is an eigenvector ofB with eigenvaluel if

l +
1

4
uau2sin2vt − l cosvt = l2. s2.39d

This yields two eigenvalues

l2 =
1

2
s1 − cosvt + Îs1 − cosvtd2 + uau2sin2vtd,

l4 =
1

2
s1 − cosvt − Îs1 − cosvtd2 + uau2sin2vtd

s2.40d

and eigenvectors

c2 or 4= c2 for l = l2

=c4 for l = l4. s2.41d

Note thatc2 andc4 are orthogonal because

l2l4 = −
1

4
uau2sin2vt. s2.42d

The squares of the lengths of the eigenvectors are

icni2 = 2Sln
2 +

1

4
uau2sin2vtD = 2lns1 − cosvtd + uau2sin2vt

s2.43d

for n=2,4.
We see that, in all but a few exceptional cases,B has two

positive eigenvaluesl1 andl2 and two negative eigenvalues
l3 and l4. That means the map is not completely positive;
for a completely positive map,B is a positive matrix and its
eigenvalues are all non-negative. A plot of the eigenvalues of
B as a function ofvt whenuau2 is 1/2 is shown in Fig. 1. The
two negative eigenvaluesl3 and l4 go to zero whenvt is
np; the map is the identity map for evenn and rotation byp
around thez axis for oddn.

The spectral decomposition

B = o
n=1

4

lnunlknu, s2.44d

with

unl =
1

icni
ucnl, s2.45d

yields

Brj ;sk= o
n=1

4

lnkrj unlkskunl* = o
n=1

4

sgnslndCsndrjCsndks
† ,

s2.46d

with

Csndrj = Îulnukrj unl =
Îulnu
icni

krj ucnl, s2.47d

so Eq.(2.30) is

Qrs8 = o
n=1

4

sgnslndo
jk

CsndrjQjkCsndks
† s2.48d

or

Q8 = o
n=1

4

sgnslndCsndQCsnd†. s2.49d

Since TrQ8=TrQ for all Q for our map,

o
n=1

4

sgnslndCsnd†Csnd = 1. s2.50d

Except for the minus signs, these equations are the same as
for completely positive maps. Explicitly we have

Csnd =Î ulnu
2lns1 + cosvtd + uau2 sin2 vt

Fln +
1

2
sa1S1

+ a2S2dsin vtG s2.51d

for n=1,3 and

Csnd =Î ulnu
2lns1 − cosvtd + uau2sin2 vt

FlnS3 +
i

2
sa2S1

− a1S2dsin vtG s2.52d

for n=2,4. Forsmall vt and nonzerouau,

l1 = 2 −
1

2
svtd2 +

1

8
uau2svtd2,

l2 =
1

2
uauvt +

1

4
svtd2 +

1

16uau
svtd3,

FIG. 1. (Color online) The eigenvalues ofB as a function ofvt
whenuau2 is 1

2. The dot-dash(red) line is l1, the solid(green) line is
l2, the dashed(blue) line is l3, and dotted(black) line is l4.
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l3 = −
1

8
uau2svtd2,

l4 = −
1

2
uauvt +

1

4
svtd2 −

1

16uau
svtd3 s2.53d

and

Cs1d = 1 −
svtd2

8
+

vt

4
sa1S1 + a2S2d ,

Cs2d =Îuau
8
Fsvtd1/2 +

1

2uau
svtd3/2GS3

+Î 1

8uau
svtd1/2sia2S1 − ia1S2d ,

Cs3d = −
uau2

16
svtd2 +

vt

4
sa1S1 + a2S2d ,

Cs4d =Îuau
8
F− svtd1/2 +

1

2uau
svtd3/2GS3

+Î 1

8uau
svtd1/2sia2S1 − ia1S2d . s2.54d

C. Compatibility and positivity domains

Now we describe the compatibility and positivity domains
completely and precisely. To write equations for the compat-
ibility domain, we make a convenient choice of components

for kSW l. Supposea1 and a2 are given. ThenkS1J1l and
kS2J1l are fixed. Let

S+ =
kS1J1lS1 + kS2J1lS2

ÎkS1J1l2 + kS2J1l2
,

S− =
kS2J1lS1 − kS1J1lS2

ÎkS1J1l2 + kS2J1l2
. s2.55d

ThenS+ andS− anticommute, their squares are both 1, and
kS−J1l is zero,

kS+J1l = ÎkS1J1l2 + kS2J1l2 = Îsa1d2 + sa2d2

s2.56d

and

kS1J1lS1J1 + kS2J1lS2J1 = kS+J1lS+J1. s2.57d

The compatibility domain is the set ofkSW l or kS+l, kS−l, kS3l
that are compatible with the givenkS+J1l and zerokS−J1l
in describing a possible initial state for the two qubits.

Basic outlines of the compatibility domain are easy to see.
When kS+l is zero, the compatibility domain includes the
kS−l, kS3l such that

kS−l2 + kS3l2 + kS+J1l2 ø 1 s2.58d

because, for these,

P =
1

4
s1 + kS−lS− + kS3lS3 + kS+J1lS+J1d s2.59d

is a density matrix for the two qubits. LargerkS−l and kS3l
are not included. If

sx−d2 + sx3d2 + kS+J1l2 = 1 s2.60d

and r .1, then

P =
1

4
S1 + rx−S− + rx3S3 + kS+J1lS+J1 + o

j=1

3

yjJ j

+ z31S3J1 + o
j=1

3

o
k=2

3

zjkS jJkD s2.61d

is not a density matrix for anyyj andzjk because

W=
1

4
s1 − x−S− − x3S3 − kS+J1lS+J1d s2.62d

is a density matrix and

TrfPWg=
1

4
f1 − rsx−d2 − rsx3d2 − kS+J1l2g , 0.

s2.63d

When kS+l is zero, the compatibility domain is just the cir-
cular area described by Eq.(2.58); it cannot be extended in
any direction described by any ratio ofkS−l and kS3l. This
projection of the compatibility domain on thekS−l, kS3l
plane is shown in Fig. 2(A) for the case wherekS+J1l is
1/Î2.

When kS3l is zero, the compatibility domain is the ellip-
tical area ofkS−l, kS+l such that

kS−l2

1 − kS+J1l2 + kS+l2 ø 1. s2.64d

To see this, we find when all the eigenvalues of

FIG. 2. Sections of the compatibility domain
when kS+J1l=1/Î2. The area enclosed by the
thick solid line is the compatibilty domain. The
dotted line shows the unit circle. The shaded area

in (C) shows thekSW l for product states compat-
ible with the givenkS+J1l and zerokS−J1l.
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P =
1

4
s1 + kS−lS− + kS3lS3 + kS+lS+ + kS+J1lS+J1

+ kJ1lJ1 + kS3J1lS3J1d s2.65d

are non-negative so thatP is a density matrix for the two
qubits. Let

P =
1

4
s1 + kJ1lJ1 + Md. s2.66d

Then

M2 = kS−l2 + kS3l2 + kS+l2 + kS+J1l2 + kS3J1l2

+ 2kS3lkS3J1lJ1 + 2kS+lkS+J1lJ1. s2.67d

The eigenvalues ofM are the square roots of the eigenvalues
of M2. WhenJ1 has eigenvalue +1, the eigenvalues ofP are

1

4
f1 + kJ1l ± Îm2s+ dg, s2.68d

wherem2s+d is M2 with J1 replaced by its eigenvalue +1.
WhenJ1 has eigenvalue −1, the eigenvalues ofP are

1

4
f1 − kJ1l ± Îm2s− dg, s2.69d

wherem2s−d is M2 with J1 replaced by its eigenvalue −1.
The eigenvalues ofP are all non-negative if

m2s+ d ø s1 + kJ1ld2, s2.70d

m2s− d ø s1 − kJ1ld2, s2.71d

and kJ1l2ø1. When kS3l is zero, the areas ofkS−l, kS+l
allowed by the inequalities(2.70) and(2.71) are largest when
kS3J1l is zero. Then askJ1l varies from −1 to 1 the in-
equalities(2.70) and (2.71) describe the area of an ellipse
with foci at ±kS+J1l on the kS+l axis; they say that the
distance from a point with coordinateskS−l, kS+l to the fo-
cus at −kS+J1l is bounded by 1+kJ1l and the distance to the
focus atkS+J1l is bounded by 1−kJ1l, so the sum of the
distances is bounded by 2. That gives the elliptical area de-
scribed by Eq.(2.64). We conclude that it is the compatibility
domain whenkS3l is zero. This conclusion is not changed if
P is given additional terms involvingJ2, J3, S jJ2, and
S jJ3. Each eigenvalue that we considered is a diagonal ma-
trix elementsc ,Pcd with c an eigenvector ofJ1 as well as
an eigenvector of theP we considered, sosc ,J2cd,
sc ,J3cd, sc ,S jJ2cd, and sc ,S jJ3cd are zero. Additional
terms will change the eigenvalues and eigenvectors ofP but
will not change the diagonal matrix elements we considered.
They have to be non-negative ifP is a density matrix. That
is all we need to show that the inequality(2.64) describes the
compatibility domain whenkS3l is zero. The projection of
the compatibility domain on thekS+l, kS−l plane is shown in
Fig. 2(B) for the case wherekS+J1l is 1/Î2.

When a1 and a2 are not both zero, all the product states
for the two qubits that are compatible with the givenkS+J1l
and zerokS−J1l are forkSW l in the projection of the compat-
ibility domain in thekS3l, kS+l plane. If

kS−lkJ1l = kS−J1l = 0,

kS+lkJ1l = kS+J1l Þ 0, s2.72d

then kS−l=0 and

kS+l2 ù kS+J1l2. s2.73d

There is a compatible product state for each suchkS+l and
eachkS3l such that

kS3l2 ø 1 − kS+l2, s2.74d

with kS−l=0. ThekSW l for compatible product states fill the
two areas in thekS+l, kS3l plane bounded by sections of the
unit circle from Eq.(2.74) and straight lines from Eq.(2.73).
These areas are shown in Fig. 2(C) for the case where
kS+J1l is 1/Î2.

SincekSW l cannot be outside the unit circle for any state,
these sections of the unit circle are on the boundary of the
compatibility domain. We can conclude that the boundary of
the projection of the compatibility domain in thekS+l, kS3l
plane is completed by straight lines with constant values of
kS3l between the sections of the unit circle, because we
proved the compatibility domain is convex and from Eqs.
(2.58), (2.74), and(2.73) we see thatkS3l2 cannot be larger
when kS+l is zero than it is at the termini of the sections of
the unit circle. The complete boundary is shown in Fig. 2(C)
for the case wherekS+J1l is 1/Î2.

We will show that the compatibility domain is the set of

kSW l where

ÎskS−l2 + kS+l2 + kS+J1l2d2 − 4kS+l2kS+J1l2

ø 2 – 2kS3l2 − kS−l2 − kS+l2 − kS+J1l2. s2.75d

First let us see what this says. Squaring both sides of Eq.
(2.75) gives

kS−l2 + kS+l2 + kS3l2 + kS+J1l2 −
kS+l2kS+J1l2

1 − kS3l2 ø 1.

s2.76d

When kS+l is zero, Eq.(2.76) is the inequality(2.58) that
describes the circular projection of the compatibility domain
in the kS−l, kS3l plane. Whenko3l is zero, Eq.(2.76) is the
inequality(2.64) that describes the elliptical projection of the
compatibility domain in thekS−l, kS+l plane. If kS3l2 is be-
tween zero and 1−kS+J1l2, then Eq.(2.76) is

kS−l2

1 − kS+J1l2 − kS3l2 +
kS+l2

1 − kS3l2 ø 1. s2.77d

A contour of the compatibility domain at constantkS3l is an
ellipse. AskS3l2 approaches 1−kS+J1l2 the semiminor axis
shrinks to zero and the semimajor axis goes tokS+J1l, so the
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ellipse reduces to a line from −kS+J1l to kS+J1l along the
kS+l axis. WhenkS−l is zero, Eq.(2.75) is

kS3l2 ø 1 −
kS+l2 + kS+J1l2

2
−

ukS+l2 − kS+J1l2u
2

,

s2.78d

which is Eq.(2.74) when kS+l2ù kS+J1l2 and is

kS3l2 ø 1 − kS+J1l2 s2.79d

when kS+l2ø kS+J1l2. That describes the area bounded by
sections of the unit circle and straight lines that is the pro-
jection of the compatibility domain in thekS+l, kS3l plane.

WhenkS+J1l is zero, Eq.(2.75) just says thatkSW l is on or

inside the unit sphere; then there is no restriction onkSW l from
compatibility. A three-dimensional view of the compatibility
domain is shown in Fig. 3 for the case wherekS+J1l is
1/Î2.

The inequality(2.75) puts a bound onkS3l2 for eachkS−l
andkS+l. In particular, it says thatkS3l2 can never be larger
than the values it has whenkS−l is zero; the bound(2.79)
holds for the entire compatibility domain. ForkS3l2 within
this bound, the left side of Eq.(2.76) is an increasing func-
tion of kS+l2. The inequality(2.76) puts a bound onkS−l2 for
eachkS+l and kS3l and a bound onkS+l2 for eachkS−l and
kS3l.

To show that the set ofkSW l described by Eq.(2.75) is in

the compatibility domain, we show that for eachkSW l that
satisfies Eq.(2.75) there is aP described by Eq.(2.65) that
is a density matrix for the two qubits. We let

kJ1l =
kS+lkS+J1l

1 − kS3l2 s2.80d

and

kS3J1l = kS3lkJ1l. s2.81d

Then the inequalities(2.70) and (2.71) are both Eq.(2.76).
From Eq.(2.79), which Eq.(2.75) implies,

ukJ1lu ø
ukS+lu

kS+J1l
ø 1 s2.82d

for kS+l2ø kS+J1l2, and from Eq.(2.74), which holds for

any kSW l,

ukJ1lu ø
kS+J1l
ukS+lu

ø 1 s2.83d

for kS+l2ù kS+J1l2. This implies that the eigenvalues ofP

are all non-negative, which meansP is a density matrix for
the two qubits.

The inequality(2.76) by itself does not imply thatkSW l is
in the compatibility domain. The equality limit of Eq.(2.76)
is a quadratic equation forkS3l2. The equality limit of Eq.
(2.75) is one solution. In the other solution, the sign of the
square root in Eq.(2.75) is changed. That changes the sign of
the term with the absolute value in Eq.(2.78), which extends
the boundary to include the entire area of the unit circle in
the kS+l, kS3l plane. The bounds(2.79) on kS3l2 and (2.82)
on ukJ1lu do not hold for the other solution. They are not
implied by Eq.(2.75).

We have shown that the set ofkSW l described by the in-
equality (2.75) is in the compatibility domain. The compat-
ibility domain is the same for allt. In a larger domain, which
we call the positivity domain, every positive matrix is
mapped to a positive matrix. The positivity domain depends

on the timet. We will show that the set ofkSW l described by
the inequality(2.75) is also the intersection of all the posi-
tivity domains for differentt. That implies it is the compat-
ibility domain; the compatibility domain cannot be larger,
because it must be in every positivity domain for everyt.

The positivity domain for eacht is easily found from the
map of mean values

kS1l8 = kS1lcosvt + a1sin vt,

kS2l8 = kS2lcosvt + a2sin vt,

kS3l8 = kS3l. s2.84d

Regardless of whetherkSW l is compatible, the density matrix

for kSW l, described by Eq.(2.5), is mapped to a positive ma-

trix, which is the density matrix forkSW l8 described by the
first half of Eq.(2.6), if

skS1l8d2 + skS2l8d2 + skS3l8d2 ø 1, s2.85d

which meanskSW l8 is on or inside the unit sphere described
by

FIG. 3. (Color online) The compatibility domain generated us-
ing Mathematica for the case wherekS2J1l andkS1J1l are both1

2.
The dotted sphere is the unit sphere(the Bloch sphere) that repre-
sents all possible states of the qubit.
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kS1l8 = sin u cosw, kS2l8 = sin u sin w, kS3l8 = cosu,

s2.86d

with u ,w varying over all directions. ThenkSW l is on or inside
the surface described by

kS1l = − a1tan vt +
sin u cosw

cosvt
,

kS2l = − a2tan vt +
sin u sin w

cosvt
,

kS3l = cosu, s2.87d

which is obtained from the unit sphere by moving the center
distances −a1tan vt and −a2tan vt in the x andy directions
and stretching thex and they dimensions by a factor of
1/cosvt. The positivity domain is the intersection of this
surface and its interior with the unit sphere and its interior,

since kSW l must also be on or inside the unit sphere. The
positivity domain for different values ofvt is shown in Fig.
4. Whenvt is p /2, the restriction(2.85) is just that

kS3l2 ø 1 − sa1d2 − sa2d2. s2.88d

Then the positivity domain is the part of the unit sphere
wherekS3l2 is within this bound. Ifa1 and a2 are not both
zero andt is not zero, the positivity domain does not include
the north pole point that corresponds to the matrixP of Eq.
(2.9).

If a1 and a2 are both zero, the positivity domain is the
entire interior and surface of the unit sphere. Then the map
takes every density matrix to a density matrix and every
positive matrix to a positive matrix. In fact the map is com-
pletely positive for allt. The two eigenvalues ofB that are
generally negative,l3 andl4, are zero, soCs3d andCs4d are
zero. That leaves two positive eigenvalues

l1 = 1 + cosvt, l2 = 1 − cosvt s2.89d

and just

Cs1d =Î1 + cosvt

2
, Cs2d =Î1 − cosvt

2
S3.

s2.90d

Consider three sets: the intersection of all the positivity
domains for differentt, the compatibility domain, and the set

of kSW l described by the inequality(2.75). We know these sets
are nested; the intersection of the positivity domains contains
the compatibility domain because every positivity domain
contains the compatibility domain, and we showed that the

compatibility domain contains the set ofkSW l described by
Eq. (2.75). Now we will show that these three sets are the
same; we will show that every point on the boundary of the

set ofkSW l described by Eq.(2.75) is also on the boundary of
a positivity domain for somet.

In terms of thekS+l, kS−l used to describe the compat-

ibility domain, Eqs.(2.87) for kSW l on the boundary of the
positivity domain for timet are

kS+l = −
sin u

cosvt
sinsw − ad,

kS−l = kS+J1ltan vt −
sin u

cosvt
cossw − ad,

kS3l = cosu, s2.91d

with

a1 = kS+J1lcosa, a2 = kS+J1lsin a. s2.92d

If

sin vt =
kS+J1lcossw − ad

sin u
=

kS+J1lcossw − ad
Î1 − kS3l2

,

s2.93d

then

kS+l = − sin u sin b = − Î1 − kS3l2sin b,

kS−l = − Îsin2u − kS+J1l2cosb

= − Î1 − kS3l2 − kS+J1l2cosb, s2.94d

where

sin b =
sinsw − ad

cosvt
,

cosb =
Îsin2u − kS+J1l2cossw − ad

sin u cosvt
,

FIG. 4. (Color online) The positivity domains for(left to right) vt=p /10,2p /10,3p /10,4p /10, andp /2 whena1 is −1
2 anda2 is 1

2. The
surface of the unit sphere is shown with dotted lines where it is not the surface of the positivity domain. Whenvt is 0, the positivity domain
is just the whole unit sphere.
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tan b =
sin u

Îsin2u − kS+J1l2
tansw − ad. s2.95d

You can check that the sum of the squares of the formulas for
sin b and cosb is 1, so the designations sinb and cosb are

allowed. EachkSW l described by these equations is on the
boundary of a positivity domain. Equations(2.94) also de-
scribe the ellipses of Eq.(2.77), which are the contours of the

boundary of the set ofkSW l described by the inequality(2.75).
From Eqs.(2.95) we see that all values ofb from 0 to 2p are
included asw−a varies from 0 to 2p, so the whole of each
ellipse is included. The bound(2.79) on kS3l2 ensures that
Eq. (2.93) does not askusin vtu to be larger than 1 for any

kSW l that satisfies Eq.(2.75), so all the ellipses of Eq.(2.77)

are included. Every point on the boundary of the set ofkSW l
described by Eq.(2.75) is on the boundary of a positivity
domain. This completes our proof that the compatibility do-
main and the intersection of the positivity domains both are

the set ofkSW l described by the inequality(2.75).

III. GENERAL FORMS

Consider a quantum system described byN3N matrices.
TheN3N Hermitian matrices form a real linear space ofN2

dimensions with inner product

sA,Bd = TrfA†Bg = o
j ,k=1

N

Akj
* Bkj. s3.1d

Taking N2 linearly independent Hermitian matrices that in-
clude the unit matrix 1, orthogonalizing them with a Gram-
Schmidt process using the inner product(3.1), starting with
the unit matrix, and multiplying by positive numbers for nor-
malization, yields N2 Hermitian matrices Fm0 for m
=0,1, . . . ,N2−1 such thatF00 is 1 and

TrfFm0Fn0g = Ndmn. s3.2d

Every N3N matrix is a linear combination of the matrices
Fm0.

A state of this quantum system is described by a density
matrix

r =
1

N
S1 + o

n=1

N2−1

fnFn0D . s3.3d

Equations(3.2) imply that

kFm0l = TrfFm0rg = fm s3.4d

for m=1,2, . . . ,N2−1, so

r =
1

N
S1 + o

a=1

N2−1

kFa0lFa0D . s3.5d

Knowing r is equivalent to knowing theN2−1 mean values
kFm0l for m=1,2, . . . ,N2−1. The state is described either by
the density matrix or by these mean values. We can see how
the state changes in time by learning how these mean values
change in time.

Suppose this first system is entangled with and interacting
with a second system described byM 3M matrices. LetF0m

for m=0,1, . . . ,M2−1 be HermitianM 3M matrices such
that F00 is 1 and

TrfF0mF0ng = Mdmn. s3.6d

The combined system is described byNM3NM matrices.
Every NM3NM matrix is a linear combination of the ma-
trices Fm0 ^ F0n which are Hermitian and linearly indepen-
dent. We use notation that identifiesFm0 with Fm0 ^ 1 andF0n

with 1^ F0n and let

Fmn = Fm0 ^ F0n. s3.7d

For theseNM3NM matrices,

TrfFmnFabg = NMdmadnb. s3.8d

In the Heisenberg picture, the evolution produced by a
HamiltonianH for the combined system changes each matrix
Fmn to a matrix

eiHtFmne
−iHt = o

a=0

N2−1

o
b=0

M2−1

tmn;abFab, s3.9d

with real tmn;ab. Since

TrfeiHtFmne
−iHteiHtFabe−iHtg = TrfFmnFabg, s3.10d

the tmn;ab form an orthogonal matrix, sotab;mn
−1 is tmn;ab and

e−iHtFabeiHt = o
m=0

N2−1

o
n=0

M2−1

tmn;abFmn. s3.11d

SinceF00 is 1,

t00;ab = d0ad0b, tmn;00 = dm0dn0. s3.12d

Forming an orthogonal matrix is not the only property the
tmn;ab need to have. They must also yield

eiHtFmne
−iHt = eiHtFm0e

−iHteiHtF0ne
−iHt s3.13d

and the same witht changed to −t.
The mean valueskFm0l for m=1,2, . . . ,N2−1 that de-

scribe the state of the first system at time zero are changed to
the mean values

kFm0l8 = keiHtFm0e
−iHtl = dm + o

a=1

N2−1

tm0;a0kFa0l, s3.14d

which describe the state of the first system at timet, with

dm = o
a=0

N2−1

o
b=1

M2−1

tm0;abkFabl. s3.15d

Mean valueskFa0l that describe the state of the first system
are in Eq.(3.14) but not in Eq.(3.15). We consider thedm, as
well as thetm0;a0 to be parameters that describe the effect on
the first system of the dynamics of the combined system that
drives the evolution of the first system, not part of the de-
scription of the initial state of the first system.
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The density matrixr of Eq. (3.5), which describes the
state of the first system at time zero, is changed to the density
matrix

r8 =
1

N
S1 + o

m=1

N2−1

kFm0l8Fm0D , s3.16d

which describes the state at timet. Equations(3.14) imply it
is

r8 =
1

N
S1 + o

m=1

N2−1

dmFm0 + o
a=1

N2−1

kFa0l o
m=1

N2−1

tm0;a0Fm0D .

s3.17d

Equation(3.17) for r8 can be obtained another way. In the
Schrödinger picture the density matrix

P =
1

NM
S1 + o

a=1

N2−1

kFa0lFa0 + o
a=0

N2−1

o
b=1

M2−1

kFablFabD ,

s3.18d

which represents the state of the combined system at time
zero, is changed at timet to

e−iHtPeiHt =
1

NM
S1 + o

a=1

N2−1

kFa0l o
m=1

N2−1

tm0;a0Fm0

+ o
a=1

N2−1

kFa0l o
m=0

N2−1

o
n=1

M2−1

tmn;a0Fmn

+ o
a=0

N2−1

o
b=1

M2−1

kFabl o
m=1

N2−1

tm0;abFm0

+ o
a=0

N2−1

o
b=1

M2−1

kFabl o
m=0

N2−1

o
n=1

M2−1

tmn;abFmnD
s3.19d

according to Eqs.(3.11). Taking the partial trace of this over
the states of the second system eliminates theFmn for n not
zero and gives Eq.(3.17) for the density matrix of the first
system at timet with Eqs. (3.15) for the dm. Since this in-
volves working with the larger system longer, it does not
appear to be the easier way to actually do a calculation.

The map from density matrices(3.5) at time zero to den-
sity matrices(3.17) at time t holds for all the varying mean
values kFa0l that are compatible with fixed mean values
kFabl in the dm in describing a possible initial state for the
combined system. We will refer to them as compatiblekFa0l.
Almost all initial states of the combined system allow the
compatiblekFa0l to vary asN2−1 independent variables. We
will consider only those initial states.

The map of density matrices extends to a linear map of all
N3N matrices toN3N matrices defined by

18 = 1 + o
m=1

N2−1

dmFm0, Fa08 = o
m=1

N2−1

tm0;a0Fm0. s3.20d

It takes the density matrix(3.5) to the density matrix(3.17)
for each of the varying compatiblekFa0l. It takes every Her-
mitian matrix to a Hermitian matrix.

The latter property alone is the foundation for basic forms
of the map. This statement is independent of our other con-
siderations.

Lemma. If a linear mapQ→Q8 of N3N matrices to
N3N matrices maps every Hermitian matrix to a Hermitian
matrix, then in the description of the map by

Qrs8 = o
j ,k=1

N

Brj ;skQjk, s3.21d

theN23N2 matrix B is uniquely determined by the map and
is Hermitian,

Brj ;sk
* = Bsk;rj , s3.22d

and there areN3N matricesCsnd for n=1, . . . ,N2 such that

Q8 = o
n=1

p

CsndQCsnd† − o
n=p+1

N2

CsndQCsnd† s3.23d

for all Q and

TrfCsmd†Csndg = 0 s3.24d

for mÞn, for m,n=1, . . . ,N2.
Proof. Let Ejk be theN3N matrices defined by

fEjkglm = dl jdmk. s3.25d

Clearly Ejk
† =Ekj. If the map takes every Hermitian matrix to

a Hermitian matrix, thensRefEjkgd8 and sImfEjkgd8 are Her-
mitian and

hsEjkd8j† = hsRefEjkgd8 + isImfEjkgd8j†

= sRefEjkgd8 − isImfEjkgd8 = sEjk
† d8. s3.26d

Equations(3.21) and (3.25) give

fEjk8 grs = o
l,m

Brl ;smdl jdmk= Brj ;sk, s3.27d

which shows that the map determines a uniqueB and, with

sEjk8 d† = sEjk
† d8 = Ekj8 , s3.28d

implies thatBsj;rk
* =Brk;sj, which is the same as Eq.(3.22).

SinceB is Hermitian, it has a spectral decomposition

B = o
n=1

N2

lnunlknu, s3.29d

where theunl are orthonormal eigenvectors ofB and theln
are eigenvalues. Theln are real, but they are not necessarily
all different, nonzero, or non-negative. We label them so that
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ln ù 0 for n = 1, . . . ,p, ln ø 0 for n = p + 1, . . . ,N2.

s3.30d

Then

Brj ;sk= o
n=1

p

Îulnukrj unlknusklÎulnu

− o
n=p+1

N2

Îulnukrj unlknusklÎulnu. s3.31d

Let

Csndrj = Îulnukrj unl. s3.32d

Then Eq.(3.21) is

Qrs8 = o
n=1

p

o
jk

CsndrjQjkCsndsk
* − o

n=p+1

N2

o
jk

CsndrjQjkCsndsk
* ,

s3.33d

so the map is described by Eq.(3.23) and

TrfCsmd†Csndg = o
rj

Csmdrj
* Csndrj

= o
rj

Îulmukmurj lkrj unlÎulnu = ulnukmunl,

s3.34d

which is zero formÞn in accordance with Eq.(3.24).
This completes the proof of the lemma.
The maps we are considering, those described by Eqs.

(3.20), have the additional property that

Tr Q8 = Tr Q s3.35d

for everyQ. This implies that

o
n=1

p

Csnd†Csnd − o
n=p+1

N2

Csnd†Csnd = 1 s3.36d

because

Tr Q = Tr Q8 = TrFSo
n=1

p

Csnd†Csnd − o
n=p+1

N2

Csnd†CsndDQG
s3.37d

implies that in the linear space ofN3N matrices with the
inner product defined by the trace as in Eq.(3.1), the differ-
ence between the two sides of Eq.(3.36) has zero inner prod-
uct with every matrixQ and therefore must be zero. From
Eqs. (3.25) and (3.27) we see also that the trace-preserving
property described by Eq.(3.35) implies that

o
r

Brj ;rk = TrfEjk8 g = TrfEjkg = d jk. s3.38d

Conversely, either Eq.(3.36) or (3.38) implies that TrQ8
equals TrQ for every matrixQ. From Eq.(3.38) we see in
particular that TrB is N.

IV. DISCUSSION

In the light of understanding gained here, it is easy to see
the errors in arguments that a map describing the evolution
of an open quantum systemhas to be completely positive.
One argument uses the fact that a map for a systemA is
completely positive if and only if it is the contraction toA of
the unitary evolution of a larger systemAB in which A is
combined with another systemB and the density matrix for
the initial state ofAB is a product of density matrices forA
andB. That is clearly not necessary.

Another argument uses the fact that a map for a systemA
is completely positive if and only if the product of that map
with the identity map for another systemC yields a map for
the combined systemAC that takes every positive matrix for
AC to a positive matrix. The argument says this is the way to
satisfy the physically reasonable requirement that the de-
scription of the evolution ofA must allowA to be accompa-
nied by another systemC that could be entangled withA but
does not respond to the dynamics that drives the evolution of
A. If the map forA is a contraction toA of either unitary
evolution or a completely positive map for a larger system
AB in which A is combined with another systemB, then the
evolution ofB is generally not described by the identity map,
so C is not B. The accompanying systemC must be a third
system. The physically reasonable requirement can be satis-
fied very simply for the kind of maps we have considered. If
the map forAB is completely positive, its product with the
identity map forC yields a map for the combined system
ABC that takes every positive matrix forABC to a positive
matrix.

Mathematically, a map of states for a subsystemA can be
constructed from(1) a map that takes density matrices forA
to density matrices for the entire systemAB at time zero,
followed by (2) unitary Hamiltonian evolution from time
zero to timet for AB, and finally(3) the trace over the states
of B that yields the density matrix forA at timet. The broad
class of maps obtained this way is known to include maps
that are not completely positive and in fact maps that do not
take every positive matrix to a positive matrix. That all de-
pends on the first step, the map that assigns density matrices
rAB to density matricesrA at time zero. Pechukas[14] has
shown that ifA is a qubit, the only linear assignment of
density matricesrAB that applies to all density matricesrA
and gives back unchangedrA in the trace overB at time zero
is

rA → rA ^ rB, s4.1d

with rB fixed. We prove this for any quantum system in the
Appendix. Pechukas concludes that in general, when product
assignments(4.1) do not apply, maps have to act on limited
domains. This does not depend on the unitary evolution of
AB from time zero to timet. When a product assignment
(4.1) is the first step, the map made in three steps is com-
pletely positive; if a map made this way is not completely
positive, its domain must be limited. There has been debate
whether any except the completely positive maps can de-
scribe physical evolution[15,16].
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Which do describe physical evolution? What is needed for
one of these maps to describe the evolution of states ofA
caused by dynamics ofAB? If the map is meant to apply to a
set ofrA that all evolve in time as a result of the same cause,
the rAB assigned to theserA should not differ in ways that
would change the cause of evolution of therA. If they did,
we would say that differentrA are being handled differently
and that their evolution should be described by different
maps. Pechkas[14] considers the case whereA and B are
qubits and a productrAB is assigned, as in Eq.(4.1), to each
of four selectedrA, with a differentrB for each of the four
rA. This yields a map that takes every mixture of the fourrA
to a density matrix. Pechukas observes that the large set of
maps obtained this way must include many that are not com-
pletely positive and many that take density matrices outside
the set of mixtures to matrices that are not positive. How-
ever, therAB assigned to each different mixture generally
gives a different density matrix forB in the trace over the
states ofA. Each different state ofA is coupled with a dif-
ferent state ofB. Does this mean it is handled differently? If
a map is meant to describe evolution that has a definite
physical cause, does Pechukas have a single map that acts on
a set of states, or a set of maps, each acting on a single state?

In the compatibility domain that we describe, the evolu-
tion of all states is clearly the result of the same cause. It can
be described by a single map that has physical meaning.
Working with mean values helps make this clear. We do not
need a complete description of the state ofAB at time zero. It
does not need to stand alone, independent of the unitary evo-
lution, and accommodate any unitary evolution. The compat-
ibility domain depends on the unitary evolution. In our ex-
ample, the compatibility domain depends on the mean values
that are the parametersa1 anda2. That these mean values are
the relevant parameters depends on our choice of Hamil-
tonian. The compatibility domain is unlimited whena1 and
a2 are zero. Then the map is completely positive, but that
does not require an initial state described by a density matrix
that is a product.

APPENDIX: GENERALIZATION OF PECHUKAS’ RESULT

Theorem. If a linear map applies to all density matricesrA
for a subsystemA and assigns eachrA a density matrix
rABsrAd for the combined systemAB so that

TrBfrABsrAdg = rA, sA1d

then, for everyrA,

rABsrAd = rA ^ rB, sA2d

with rB a density matrix for the subsystemB that is thesame
for all rA.

Proof. The first step, which Pechukas[14] did, is to show
that every pure-state density matrixrA is assigned a product
density matrix, as in Eq.(A2), with rB possibly different for
differentrA. For completeness we include a slightly different
presentation of this step. IfrA represents a pure state, there is
an orthonormal basis of state vectorsuc jl for A, with j
=1,2, . . . , such thatrA is uc1lkc1u. We combine these with
orthonormal state vectorsufkl for B to make an orthonormal

basis of product vectorsuc jfkl for AB. SincerABsrAd is posi-
tive, eachkc jfkurABsrAduc jfkl is non-negative and, from Eq.
(A1), if j is not 1,

kc jfkurABsrAduc jfkl ø kc juTrBfrABsrAdguc jl = kc juc1lkc1uc jl

= 0. sA3d

Since rABsrAd is positive, it is the square of a Hermitian
operator. Thus we see thatrABsrAduc jfkl is zero if j is not 1
and

kc jfrurABsrAduckfsl = d j1dk1kc1frurABsrAduc1fsl.

sA4d

Let

rBsrAd = TrAfrABsrAdg. sA5d

Then

rBsrAd = kc1urABsrAduc1l sA6d

and

rABsrAd = uc1lkc1u ^ rBsrAd. sA7d

That completes the first step of the proof.
The second step, which completes the proof of the theo-

rem, is to show thatrB is the same for all pure-state density
matricesrA. Pechukas[14] did this for the case whereA is a
qubit. We show that the proof can be easily extended to any
quantum system[17]. Supposeuc1l anduc2l are orthonormal
state vectors forA. Let

uc3l =
1
Î2

uc1l +
i

Î2
eibuc2l,

uc4l =
1
Î2

uc1l −
i

Î2
eibuc2l,

uc5l = scosaduc1l + ssin ad eibuc2l,

uc6l = ssin aduc1l − scosad eibuc2l. sA8d

Thenuc3l anduc4l are orthogonal,uc5l anduc6l are orthogo-
nal, andukc1uc3lu2, ukc1uc4lu2, ukc2uc3lu2, ukc2uc4lu2, ukc3uc5lu2,
ukc3uc6lu2, ukc4uc5lu2, andukc4uc6lu2 are all 1 /2. The length of
each vectoruckl is 1, soucklkcku is a pure-state density matrix
for A. The map assigns it a product density matrix

rABsucklkckud = ucklkcku ^ rBskd sA9d

as in Eq.(A7) with rBskd short notation forrBsucklkckud.
Since the map is linear, it follows from

1

2
suc1lkc1u + uc2lkc2ud =

1

2
suc3lkc3u + uc4lkc4ud sA10d

that
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1

2
fuc1lkc1urBs1d + uc2lkc2urBs2dg

=
1

2
fuc3lkc3urBs3d + uc4lkc4urBs4dg. sA11d

Taking partial mean valueskc1u¯ uc1l, kc2u¯ uc2l,
kc3u¯ uc3l of this last equation(A11) yields three equations
that imply rBs1d, rBs2d, rBs3d, and rBs4d all are the same.

Doing everything starting from Eq.(A10) again with 1,2,3,4
changed to 3,4,5,6 shows thatrBs3d, rBs4d, rBs5d, andrBs6d
all are the same. Any state vector forA is in a subspace
spanned byuc1l and a vectoruc2l orthogonal touc1l, so uc5l
with fixed uc1l and varyinga, b, anduc2l can represent any
pure state forA. If rA represents a pure state,rBsrAd is the
same asrBs1d, so Eq.(A2) holds, with the samerB, for all
pure states ofA and, therefore, for all mixtures as well. This
completes the proof of the theorem.
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