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Dynamics of initially entangled open quantum systems
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Linear maps of matrices describing the evolution of density matrices for a quantum system initially en-
tangled with another are identified and found to be not always completely positive. They can even map a
positive matrix to a matrix that is not positive, unless we restrict the domain on which the map acts. Never-
theless, their form is similar to that of completely positive maps. Only some minus signs are inserted in the
operator-sum representation. Each map is the difference of two completely positive maps. The maps are first
obtained as maps of mean values and then as maps of basis matrices. These forms also prove to be useful. An
example for two entangled qubits is worked out in detail. The relation to earlier work is discussed.
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I. INTRODUCTION the set of states of the single system described by varying

Linear maps of matrices can describe the evolution off€an values of quantities for that system that are compatible
density matrices for a quantum system that interacts and With fixed mean values of other quantities for the combined
entangled with another systefi—3]. The simplest case is system in describing an initial state of the combined system.
when the density matrix for the initial state of the combinedWe call that thecompatibility domainThe map is defined for
system is a product of density matrices for the individualall matrices for the single system. In a domain that is larger
systems. Then the evolution of the single system can be dehan the compatibility domain, but still limited, every posi-
scribed by a completely positive map. These maps have begjve matrix is mapped to a positive matrix. We call that the
extensively studied and usdgd—9]. Here we consider the positivity domain We describe both domains for our ex-
general case where the two systems may be entangled in t'&?nple.
initial state. We ask what kind of map, if any, can describe To extract the map that describes the evolution of one
the physics then. Completely positive maps can be used igystem from the dynamics of the two combined systems, we
quantum information processing because, with the ability tqa|culate changes of mean valuegpectation valugsn the
decohere a system from its surroundings and initialize paryejsenberg picture. This allows us to hold calculations to the
ticular states, the two systems can be made separate, so th@yhimum needed to find the changes in the quantities that
have not been interacting and are not entangled when theyescribe the single system. To make clear what we are doing,
are brought together in the initial state. What happensye keep our focus on those quantities and keep them sepa-
though, when they are already entangled at the start? rate from the other quantities in the description of the com-

We find that evolution can generally be described by lin-pined system, which may be parameters in the map.
ear maps of matrices. They are not completely positive maps. There has been recognition of the limitations of com-
They can even map a positive matrix to a matrix that is nofjetely positive maps in describing the evolution of open
positive. Nevertheless, basic forms of the maps are similar tuantum systemgl0], but little effort has been made to use
those of completely positive maps. Only some minus signgnore general maps there. Other considerations, including de-
are inserted in the operator-sum representation. Each map dgriptions of entanglement and separability, have motivated
the difference of two completely positive maps. These famil-sypstantial mathematical work on maps that are not com-
iar forms follow simply from the fact that the map takes pletely positive but do take every positive matrix to a posi-
every Hermitian matrix to a Hermitian matrix. The maps aretjye matrix [11-13. The maps we consider here do not need
first obtained as maps of mean values and then as maps &f have even that property.
basis matrices. These forms also prove to be useful. We begin with an example for two entangled qubits,

A new feature is that each map is made to be used for ghich we work out in detail. Then we outline the extension
particular set of states, to act in a particular domain. This igg any system described by finite matrices. This more ab-

stract general discussion relies heavily on the concrete ex-
ample, where many points—for instance, those about

*Electronic address: tjordan@d.umn.edu domains—are made more explicit and clear. In the conclud-
"Electronic address: shaji@physics.utexas.edu ing section we discuss how what is done here relates to ear-
*Electronic address: sudarshan@physics.utexas.edu lier work [14—16 and point out the errors in arguments that
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a map describing evolution of an open quantum system hasubstantial. We will exclude those values (&,=;) and

to be completely positive. (3,5 that do not at least allow three-dimensional variation
in the directions of the compatib(é}. For example, we will
Il. TWO-QUBIT EXAMPLES not let(3,=,) be 1, because that would imp(},) and(S3)
Consider two qubits described by two sets of Pauli matri-are zero. The set of compatiMé) will be described more
cesd, 2,, 23 andE,, E,, Za. Let the Hamiltonian be completely in Sec. Il C.
1 The change of densit_y matrices can t_)e exten_ded to a lin-
H= 5602351- (2.1 ear map of all 2 matrices to X 2 matrices defined by

; L - I'=1+a3;+a3, 21=0, %;=0, 33=3;

The evolution of the®, qubit is described by the mean values 5

<), (25, and(Z3) at time zero changing to (2.7
i i —_ This takes each density matrixdescribed by Eq(2.5), for
iHt iHty — t— = t, -

(€726 = Gycoswt - (F=psin each compatibléX) in each different direction, to the den-

(et e Mty = (S Vcos wt + (S, E,)sin ot, Sity matrix
! 1 ! = _)/
(EFisee ) = (5, 22) AR 29
at timet. These three mean values describe the state df the which is the same as that described by Ex6). This map
qubit at timet. takes every Hermitian matrix to a Hermitian matrix. It does
not map every positive matrix to a positive matrix.
A. Basics for one time The map takes

Look at this whenwt is 7/2. Then the mean values are 1
changed to P=21 +23), (2.9

Ep'=a, S =ay, (2 =23, 2.3 which is positive, to
where

1
P'=-(1+a3;+a3,+3y), (2.10
a1 =—(2E1), a=(21Ey. (2.4) 2 15T R T s

We consider thea;, a, to be parameters that describe theWhich is not positive. To see th&' is not positive, let
effect of the dynamics of the two qubits that drives the evo-
lution of the X, qubit, not quantities that are part of the de-
scription of the initial state of th& qubit. What we do will choose a vecto# such that
apply to different initial states of th& qubit for the same I
fi)?gdyal a,. B (1) =1, ($,31)=-r cosO\N1+r?,
The change of mean values calculated in the Heisenberg : ) — : —
picture determines the change of the density matrix in the (#:22) = =T SINON1+1% (h2gh) = - N1 +1%,
Schrédinger picture. The density matrix (2.12

a;=r cosf, a,=rsiné, (2.1)

1 > o and calculate
p=5(1 +(2)-3), (2.9

1 —
P == (1 -1 +r?). 2.13
which describes the state of th® qubit at time zero, is (W:P') 2( ! ) 2.13

changed to the density matrix This is negative even whenis very small so thatX,=,)

and(X,=,) are very small and there is room for a large set of
compatible(i).
(2.6) Of course, ifp is a density matrix that gives a compatible

. . . . ) mean valugs), the map takep described by Eq2.5) to the
which describes the state of tRequbit whenwt is 7/2. This density matrixp’ described by Eq(2.6), which is positive.

is the same for all the differe®) that are compatible with 1 see explicitly thap’ is positive, consider that, for any
the same fixed2,E,) and(X,E;) in describing a possible vector y,
initial state for the two qubits. We will refer to these as the
. = q |(l/fvzllr/,)|2+|(w!22¢)|2+|(¢123w)|2$ |(l//11/f)|2!

compatible(X).

To be meaningful, a map has to act osubstantial sebf (2.19
states. To ensure that we have something substantial to cognd if (3.,) is compatible with(S,;=,) and(3,=,) in describ-
sider here, we will assume that the set of compat{Bleis  ing a possible state for the two qubits, then

1 - =1
p=SAH(E) 3= S (1 +aT+ e, + (393,
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(a)?+ (a)? + (232 = (SoE )2 + (3 E )P+ (3P < 1,

Tr{I1'W] = %(1 + 2y @353))

(2.19 V2o N2
1 E =
so that altogether :_(1+<21—rl>+<23—r3>>_ (2.21)
4 V2 V2

lag (4,2 10) + ax(4h, 2o0) + () (4, Z30)| < (¢, 19)).
(2.16 This holds ifIl is the density matrix for an initial state of the
two qubits that gives the mean value€»=,) and(S,=,)
used fora; anda,. We see that TEI’W] can be negative.
Both (2,E,) and(2;E3) are —1 for the state where the sum

) : ) ’ ~of the spins of the two qubits is zero. That state gives zero
the inequality(2.15 can fail. The map can fail to take posi- or <§> but nearby states will give an accentable set of com-
tive matrices to positive matrices when it extends beyoncI e y g P
density matrices for compatibl&). patible(X) with Tr{II"W] negative.

The map can fail to be completely positive even within The map is made to be used for the set of states, the set of

the limits of compatible(i) where it maps every positive density matrices, described by compatitlis. We call that

matrix to a positive matrix. To see that, we extend the map tdts compatibility domainlt includes all the initial states the

the two qubits by taking its product with the identity map of qubit can h_ayg with th.e give(E,=,) gnd(El_:ﬁ. Outside

the matrices 12,, E,, andZs. We have used Eq€2.7) to the compatibility domain, some density matrices are mapped
describe a map of 2 matrices. Now we use it to describe {0 Positive matrices, but others, including, for examgte,

a map of 4X4 matrices; each matrix in Eq€2.7) is the from Eq.(2.9), are not. Even inside its compatibility domain,
product of the 2 2 matrix for theS, qubit with the identity e map is not completely positive.

The important difference between the density magriand
the positive matrixP described by Eq2.9) is the factorX.3)
multiplying 25 in the density matrix. I{23) is changed to 1,

matrix for the = qubit. In addition we get We can see that the compatibility domain is enough to
give the linearity of the map physical meaning. Applied to
(1B =21E(=0, density matrices, the linearity of the map says that if density
matricesp ando are mapped tp’ andg”’, then each density
(3,50 = EéEIL =0, matrix
T=qp+(1-Q)o (2.22

335 =238, =335, - ;
(235K’ =235 =235k with 0<q<1 is mapped to

Ex=1-E =VE=1+a3; + a5, (2.17) 7=qgp"+(1-q)o’. (2.23

for k=1,2,3.This and the reinterpreted equatiof®s7) de-  Supposep and o are density matrices for thE qubit that

fine a linear map of X4 matrices to &4 4 matrices. If the ive mean value$§) and <§> If both <§> and <2*> are
map of 2x 2 matrices defined by Eq$2.7) is completel J : - h = =0 7

P : ' Y Eqge. PIELElY  compatible with the sam&.,=,) and(3,=,) in describing
positive, this map of & 4 matrices should take every posi- an initial state of the two qubits, then so is

tive matrix to a positive matrix. We will see that it can fail to

do that even when thexXd4 matrix being mapped is a density S\ =l Y=
matrix for a possible initial state of the two qubits. (2):= (), + (1= a)2), (229
If IT is a density matrix for the two qubits, then The compatibility domain is convex. Explicitly, i, andII,,
3 3 3 are density matrices for the two qubits written in the form of
= }<1 +> (S5 + SENE+ D <2jEk>2jEk) Eqg. (2.13) with (%), and(),, for (%) and the saméX,=)
4 =1 k=1 jk=1 and(X151), then

(2.18 IL,=qll, + (1 -oIl, (2.29

is a density matrix for the two qubits written in the same
) form with (3). for (3) and the samé,=,) and(3,=,). If p

is mapped to

and o are in the compatibility domain, then so are all the
defined by Eq(2.22. For these, the linearity described by
(2.19 Egs.(2.22 and(2.23 has a meaningful physical interpreta-
tion. The compatibility domain will be described more com-
pletely in Sec. Il C.
1 1 1 A different map is an option if the initial state of the two
W= 4_1(1 +—=3,+ —2353), (2.20  qubits is a product state or if, at least,

V2 \JE
2,50 =CNED, CqEp=C(Ep. (2.26
check thaNVZ:%Wto see thaWV is positive and is a density (2oE)=EHED, GaEp=CGoE). )
matrix, and calculate Then the density matrix’ described by Eq(2.6) is

3 3 3
1
T’ = Z(l’ + 2 <2j>2j’ + 2 <EK>E|; + 2 <EiEk>(2jEk),
j=1 k=1

jk=1

To test whethell’ is positive, let
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l 1 * .
p'= 5= (EHEDT + (SNEDS2 + (3933). 1 0 Zasinet  coset
2.2 1.
(2.27) 0 0 0 Sasin ot
B= 1 '
This is obtained from Eq(2.8) with the linear map of Ea sin wt 0 0 0

2 X 2 matrices defined either by Eq&.7) or by

1
CcoS wt Easin wt 0 1
1,211 E:/L:<El>221 Eé=_<El>21, 25223.

(2.28 (2.31)

wherea=a,; +ia, and the rows and columns & are in the

order 11, 12, 21, 22.
With the latter, every positive matrix maps to a positive ma- A vector

trix. In fact the map is completely positive.
This completely positive map is defined by E¢&28) for N

a given fixed value of=;). That puts no restrictions o), 1,

no limits on the initial state of th& qubit. Every<§> is Ea sin ot

compatible with anyZ,) in describing an initial state of the Pro3= 1 (2.32
two qubits for which Eqs(2.26) hold; every state of th& 58 sin wt

qubit can be combined with any state of tEequbit in a

product state for the two qubits. However, we will see that A

the(X) compatible with given nonzer®,=,) and(Z,Z,) in
product states for the two qubits fill only a two-dimensional
set embedded in the three-dimensional compatibility domain. 1

The completely positive map defined by E¢®.28) is an N+ Zlalzsinzwt +\ COSwt =\2, (2.33
option only when Eqs(2.26) hold. Then both maps, from
Egs.(2.7) and(2.28), reproduce the evolution of th® qubit.
There is a map defined by Eg2.7) for almost every initial
state of the two qubits, with>,=,) and (X,Z,) changing 1
continuously from state to state. Switching to the completely A= =[1+ coswt + (1 + coswt)? + |al’sirfwt],
positive map when Eqg2.26) hold would be a discontinu- 2
ous change.

is an eigenvector oB with eigenvaluex if

This yields two eigenvalues

1 [
A3 ==[1+ coswt — V(1 + coswt)? + |a|?sirfwt]
) 2
B. Time dependence

(2.39
From the mean valueR.2) for anyt, the same steps as _
before with Eqs(2.5), (2.6), and(2.8) yield and eigenvectors
ror3=yr forn=n
1'=1+ (a121 + azzz)Sin wt,
:17/13 for )\:)\3. (235)
S/ =3.cost, 3,=3,c050t, 3,=3s. (2.29 Note thaty, and iy are orthogonal because
1
)\1)\3:_Z|a|25inz(1)t. (236)

This defines a linear ma@— Q’ of all 2X 2 matrices to

2X 2 matrices described b
y The squares of the lengths of the eigenvectors are

1
Qls= 2 Bij:siQiks (2.30 AR 2(xﬁ + Z|a|zsin2wt> = 2\n(1 + coswt) + |al%sirfwt
ik

(2.37

with for n=1,3. Avector
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The spectral decomposition

4
B =2 N\ nXn|, (2.44
n=1
with
FIG. 1. (Color onling The eigenvalues dB as a function ofwt |n ||,’/,n|||"b"> (2.49
when|al? is % The dot-daslired) line is \ 4, the solid(green line is _
\,, the dashedblue) line is A5, and dottedblack) line is A, yields
4 4
A Brj:sk= 2 At [n)(sK)” = 2 sgrix,)C(n); C(n)j,
1 n=1 n=1
) - Ea Sin wt 5 (2.46)
17[,2 or4— 1 . ( . ) W|th
Ea sin wt
N | |
n
is an eigenvector oB with eigenvaluex if s0 Eq.(2.30 is
1
\ + =|alsirfwt — N coswt = \?. (2.39 R )
4 Q=2 sgr\) X C) Qs (248
This yields two eigenvalues mt e
or
1
A= 5(1 - coswt + V(1 - coswt)? + |a|%sirfwt), 4
Q' = 2 sgrix,)C(NQC(n)". (2.49
n=1
—_ 1 [ 2 2a;
Ng= 5(1 ~ coswt = \(1 - coswt)* + [a’sirwt) Since TR’ =TrQ for all Q for our map,
(2.40 4
T =
and eigenvectors Esgm“)q”) Cm=1. (2.50
Y2 or 4= 2 TOrA=N; Except for the minus signs, these equations are the same as
for completely positive maps. Explicitly we have
=iy, for A=A, (2.4 "
N 1
Note thaty, and i, are orthogonal because C(n) = \/ - ; A+ z(a
Y2 andya g . ) 2\n(1 + coswt) +|af? sir? wt|: n 2( 21
— 1 2ai
NoNg = 4|a.| Sirfwt. (242) + azzz)Sin wt] (251)
The ares of the lengths of the eigenvectors are
squares gths igenv rs for n=1.3 and
1
Il all? = Z(Aﬁ + —|a|zsin2wt> = 2\ (1 - coswt) + |a|?sirfwt N i
4 C(n)= 26i P A 23 (a221
(2.43 2\,(1 - coswt) + |a|sin* wt
for n=2,4. -a;3,)sin wt} (2.52
We see that, in all but a few exceptional cagg$as two

positive eigenvalues; and\, and two negative eigenvalues
N3 and \,. That means the map is not completely positive;
for a completely positive maf is a positive matrix and its 1 1
eigenvalues are all non-negative. A plot of the eigenvalues of A=2- E(wt)z + §|a|2(wt)2,
B as a function ofot when|a|? is 1/2 is shown in Fig. 1. The

two negative eigenvalues; and A\, go to zero whenwt is

nr; the map is the identity map for everand rotation byr = }|a|wt + }(wt)z
around thez axis for oddn.

or n=2,4. Forsmall wt and nonzerda|,

+
16al
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(%5) (=) &)
AyEa=0, | ®): (Z3)=0y ©rE=0, 1 . FIG. 2. Sections of the compatibility domain

- when (3,2;)=1/y2. The area enclosed by the
thick solid line is the compatibilty domain. The

dotted line shows the unit circle. The shaded area
in (C) shows the(X) for product states compat-

s

N R S ible with the given(2,E;) and zero(X_E).
Ng= - —|a|2(wt)2, <2151>2151 + <2231>2251 = <%+El>2+51. (2.57
The compatibility domain is the set ¢E) or (2.,), (2_), S3)
1 that are compatible with the giveix,=,) and zero(3_E;)
A= - =|aot + = (wt)? - ——(wt)® (2.53 in describing a possible initial state for the two qubits.
4 16/l Basic outlines of the compatibility domain are easy to see.
and When (X,) is zero, the compatibility domain includes the
(Z.), (33 such that
(0t)? ot 2 2 = \2
C(l) = 1 - T + Z(alzl + a222), <E—> + <23> + <E+‘:’l> = 1 (258)
because, for these,
_ /& w2, L e 1 e —
C@2)= 3 (wt)™ <+ 2|a| (wt) 23 In= Z(l ()2 _+ <23>23 + <E+:¢1>2+ﬂ1) (2.59
1 . . is a density matrix for the two qubits. Larg€_) and(Z.3)
N 1/ _ 3
* 8|a|(wt) (iaz%; ~ias2,), are not included. If
P . )%+ () + (2, Ep?=1 (2.60
a w
C(3)=- l—6(wt)2 + Z(alzl +a,3,), andr>1, then
1 3
1 M= 1+rXx_3S_+rXz33+ (3, E P2, Eq. + E y,-EJ-
C(4) = H[_ (wt) 2+ —(wt)3’2]23 4 j=1
8 2|al 3 3
1 + 23,555 +EEZ-2-E) (2.61)
%(wt)”z(iazEl “iag3,). (254 B e
is not a density matrix for any; andz because
- o . 1 _ _
C. Compatibility and positivity domains W= 4_1(1 XS~ XaSa— (3, E 3. E) (2.62)
Now we describe the compatibility and positivity domains
completely and precisely. To write equations for the compatis a density matrix and
ibility domain, we make a convenient choice of components 1
for (3). Supposea; and a, are given. ThenX;=E,) and THIIW]==[1 - r(x.)2 = r(x9)% - (3,5 ,)?] < 0.
(2,2, are fixed. Let 4
(2.63

s = (2HED2+(2ED2,

VEE +(SED?

When(Z,) is zero, the compatibility domain is just the cir-
cular area described by E.58); it cannot be extended in
any direction described by any ratio &f_) and(X.3). This
projection of the compatibility domain on the&_), (23
plane is shown in Fig. @) for the case wherg3, E,) is
V2.

When(23) is zero, the compatibility domain is the ellip-

(SRS - (DS,
V(E1E )2+ (3,E1)?

1/
Then, andX_ anticommute, their squares are both 1, and

3 (2.59

(3_E,) is zero,

(3B = VEED? + (3,202 =V(ay)? + (ay)?
(2.56

and

tical area of(X_), (3,) such that

(3.)?
1-(3,E)?

To see this, we find when all the eigenvalues of

+(3)2=<1. (2.64
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1 e Whena, anda, are not both zero, all the product states
1= Z(l +HEOZ_+ (X2 + (22, + (R EPELEy for the two qubits that are compatible with the giv@h =)

and zera(S_E,) are for(S) in the projection of the compat-

HEVELF (2eE1) 245 (269 ipility domain in the(Sa), (S.) plane. If
are non-negative so thai is a density matrix for the two NSy H =
qubits. Let (X NEp=(_Ep=0,
1 o <E+><El> = <2+El> i 0, (2-72)
I1= 4_1(1 +(EDE1+M). (2.66 then(S._)=0 and
Then (2= (3E2 (2.73

There is a compatible product state for each s(h and
each(X3) such that

(Sa2<1-(3,)32 (2.74
The eigenvalues dfl are the square roots of the eigenvalues . = . .
of M2. ?NhenEl has eigenvaluqe +1, the eigenvaluegslbare with (2_)=0. The(X) for compatible product states fill the

two areas in théX,), (23) plane bounded by sections of the
1 _ — unit circle from Eq.(2.74) and straight lines from Eq2.73).
Z[1+<ﬂ1>i\"mz(+)]v (2.68  These areas_are shown in Fig(C2 for the case where
(3,Eq) is 1/\2.

wherenm?(+) is M? with Z, replaced by its eigenvalue +1.  Since(S) cannot be outside the unit circle for any state,

M?=(3)%+(39)% + (3.7 + (3. E)? + (335)?
+ 22 (2B EL + 22 N2 EDE. (2.67)

When E; has eigenvalue -1, the eigenvaluedbhre these sections of the unit circle are on the boundary of the
compatibility domain. We can conclude that the boundary of

}[1 —(B)+ v"m] (2.69 the projection of the compatibility domain in tH&.,), (23)
4 v ' plane is completed by straight lines with constant values of

T ) ) (23) between the sections of the unit circle, because we
where_m (=) is M? with =, replaced bY |t§ eigenvalue -1. proved the compatibility domain is convex and from Eqgs.
The eigenvalues dfl are all non-negative if (2.58), (2.74), and(2.73 we see thatSs)? cannot be larger
when(.,) is zero than it is at the termini of the sections of

= \)2
M) < L+ (ED) (2.79 the unit circle. The complete boundary is shown in Fig)2
for the case wher&.,=,) is 1/12.

(=) < (1-(Ep)?, (2.71 We will show that the compatibility domain is the set of
and (2,)°<1. When(Z3) is zero, the areas o_), (X,) (2) where
allowed by the inequalitie®.70 and(2.71) are largest when V/(<E_>2 + ()24 (SLEDD2 - A3 DX, E L)
(332,) is zero. Then ag=,) varies from -1 to 1 the in- ) ) ) Y
equalities(2.70) and (2.71) describe the area of an ellipse S2-2A3)° -2 -C)-CLEYS. (279

with foci at ®X,Z;) on the(X,) axis; they say that the First let us see what this says. Squaring both sides of Eq.
distance from a point with coordinat¢s_), (X,) to the fo-  (2.75) gives
cus at <X, =) is bounded by 14=;) and the distance to the

2 = \2
focus at(X,=,) is bounded by 1¢Z;), so the sum of the S+ (302 + (302 + (3,5)%- M <1.
distances is bounded by 2. That gives the elliptical area de- 1-3y
scribed by Eq(2.64). We conclude that it is the compatibility (2.79

domain when(23) is zero. This conclusion is not changed if When (S.) is zero, Eq(2.76) is the inequality(2.58) that

I1 is given additional terms involvings,, =3, %;=,, and _ ) 7 I~ .
3, =, Each eigenvalue that we considered is a diagonal maQescnbes the circular projection of the compatibility domain

trix element(y,I1y) with  an eigenvector oE; as well as n the@_), (23 plane. Wher(23> IS z€ro, Eq.(2_.76)_ s the
an eigenvector of thell we considered, so(¢, =), |nequaI|_ty_(_2.64) tha_t d_escrlbes the elliptical prolec'g(_)n of the
(g, (4,30, and (4,5, Z41) are zero. Additional compatibility domain in t?dl}, (X.) plane. If(33)? is be-
terms will change the eigenvalues and eigenvectoid btit ~ Ween zero and 1¢2.=,) then Eq.(2.76) is

will not change the diagonal matrix elements we considered. (3.)? (3,)?
They have to be non-negativelif is a density matrix. That 1522 (507 + 1-(50° =<1. (2.77
is all we need to show that the inequali.64) describes the =1 8 8

compatibility domain wher(X;) is zero. The projection of A contour of the compatibility domain at constaft,) is an
the compatibility domain on the,), (X_) plane is shown in  ellipse. As(3.3)? approaches 1&,51)? the semiminor axis
Fig. 2B) for the case wher&.,=,) is 1/12. shrinks to zero and the semimajor axis goe&td=,), so the
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FIG. 3. (Color onling The compatibility domain generated us-
ing Mathematica for the case whei®,=4) and(X.E,) are both%.
The dotted sphere is the unit sphetiee Bloch spherethat repre-
sents all possible states of the qubit.

ellipse reduces to a line from(Z,=,) to (,.E,) along the
(2,) axis. When(2._) is zero, Eq.(2.75 is

<2+>2 + <2+El>2 _ |<E+>2 - <E+El>2|

21—
Eg2=1 ; ,

(2.78
which is Eq.(2.74) when(3,)?=(3,E,)? and is

(S9?<1-(3,Ep° (2.79

PHYSICAL REVIEW A70, 052110(2004)

(Z3E1) = (2B (2.81)

Then the inequalitie$2.70) and (2.71) are both Eq(2.76).
From Eq.(2.79, which Eq.(2.75 implies,

(2.82

for (3,)°<(3,E,)? and from Eq.(2.74), which holds for
any (3),

(.Ep _

S0

for (2,)°=(2,E,)% This implies that the eigenvalues bf
are all non-negative, which meahkis a density matrix for
the two qubits.

The inequality(2.76) by itself does not imply tha¢§> is
in the compatibility domain. The equality limit of E¢R.76)
is a quadratic equation fg3)2. The equality limit of Eq.
(2.79 is one solution. In the other solution, the sign of the
square root in Eq2.75 is changed. That changes the sign of
the term with the absolute value in EQ.78), which extends
the boundary to include the entire area of the unit circle in
the (2.,), (23 plane. The bound&.79 on (33)? and(2.82
on [(E,)| do not hold for the other solution. They are not
implied by Eq.(2.75.

We have shown that the set ()‘f) described by the in-
equality (2.79 is in the compatibility domain. The compat-
ibility domain is the same for atl In a larger domain, which

1 (2.83

KED| =

when (3,)2< (3., 5,)2 That describes the area bounded bywe call the positivity domain every positive matrix is

sections of the unit circle and straight lines that is the pro
jection of the compatibility domain in th&.,), (33 plane.

When(X,E,) is zero, Eq(2.75) just says thati) is on or

inside the unit sphere; then there is no restrictiodf))ﬁfrom
compatibility. A three-dimensional view of the compatibility
dorrlain is shown in Fig. 3 for the case whei®, =) is
1/y2.

The inequality(2.75 puts a bound oKS.5)? for each(._)
and(Z.). In particular, it says thatS5)? can never be larger
than the values it has whex._) is zero; the bound2.79
holds for the entire compatibility domain. FGE3)? within
this bound, the left side of Eq2.76) is an increasing func-
tion of (2,)2. The inequality(2.76) puts a bound oK._)? for
each(X,) and(23) and a bound oKX,)? for each(Z_) and
(23

To show that the set o(fi) described by Eq2.75 is in

the compatibility domain, we show that for ea(:15) that
satisfies Eq(2.75) there is all described by Eq(2.65 that
is a density matrix for the two qubits. We let

<2+><2+El>
1-(39)?

(Ep=

(2.80

and

mapped to a positive matrix. The positivity domain depends
on the timet. We will show that the set of2) described by
the inequality(2.75 is also the intersection of all the posi-
tivity domains for differentt. That implies it is the compat-
ibility domain; the compatibility domain cannot be larger,
because it must be in every positivity domain for every

The positivity domain for eachis easily found from the
map of mean values

(29’ =(Z1)coswt + a;Sin wt,
)" =(2,)c0s wt + a,sin wt,

(23)' =(2y). (2.849

Regardless of Whethéi> is compatible, the density matrix
for (i), described by Eq(2.5), is mapped to a positive ma-

trix, which is the density matrix forS)’ described by the
first half of Eq.(2.6), if
(T2 + (2?2 + ((Za))? =1, (2.89

which means(f}’ is on or inside the unit sphere described
by
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05 o0 _o5
5, 1

FIG. 4. (Color onling The positivity domains fo¢left to right) wt=7/10,27/10,37/10,4s/10, andw/2 whena is —% anda, is % The
surface of the unit sphere is shown with dotted lines where it is not the surface of the positivity domainoté$énthe positivity domain
is just the whole unit sphere.

(X' =sindcose, (3 =sindsing, (33’ =cosé, of (3) described by the inequalit2.75). We know these sets
(2.8  are nested; the intersection of the positivity domains contains
. the compatibility domain because every positivity domain
with 6, ¢ varying over all directions. Thef®) is on or inside  contains the compatibility domain, and we showed that the

the surface described by compatibility domain contains the set 6£) described by

Eqg. (2.75. Now we will show that these three sets are the

sin 6 cos
Sl same; we will show that every point on the boundary of the

(S =-atan ot +

cos wt =
@ set of(2) described by Eq2.75) is also on the boundary of
sin 6 sin a positivity domain for somé
(2, =—attan wt + i LLACLLE 4 In terms of the(Z,), (3_) used to describe the compat-
cos wt ibility domain, Eqgs.(2.87) for () on the boundary of the
(3) = cosb, (2.87 positivity domain for timet are
which is obtained from the unit sphere by moving the center ) =- sin 6 sin(g - a),
distances ajtan wt and -a,tan wt in the x andy directions cos wt
and stretching thex and they dimensions by a factor of
1/coswt. The positivity domain is the intersection of this _ sin 6
surface and its interior with the unit sphere and its interior, (Zo)=EEptanot - COSwtCOE(GD‘ a),
since () must also be on or inside the unit sphere. The
positivity domain for different values abt is shown in Fig. (33)=cosé, (2.92)
4. Whenot is /2, the restriction2.85) is just that
5 5 5 with
G =1-(a)" - ()" (2.89

=2, Epcosa, a,=(,Ep)sina. 2.9
Then the positivity domain is the part of the unit sphere 1= (. Eycosa, =(E.Epsine. (292

where (25)? is within this bound. Ifa; anda, are not both  If
zero and is not zero, the positivity domain does not include — —
the north pole point that corresponds to the maRirf EQ. sin wt = <2+“1>(_:05((P_ @) = <E+H,1>COS(¢2_ @)
(2.9. sin 6 V1-(23)
If a; and a, are both zero, the positivity domain is the (2.93
entire interior and surface of the unit sphere. Then the map
takes every density matrix to a density matrix and eventhen
positive matrix to a positive matrix. In fact the map is com-

pletely positive for allt. The two eigenvalues df that are (34)=-sin g'sin B=-1-(33)’sin B,
generally negative\; and\,, are zero, s&(3) andC(4) are
zero. That leaves two positive eigenvalues (3_)==\sirfo-(3,E,)%cos B
N =1+coswt, A\,=1-coswt (2.89 =—\1-(35)%-(3,E,)%cos B, (2.99
and just where
1+ coswt 1-coswt inlo—
C=—%— C=—F 23 sinﬂzm,
2 2 cos wt
(2.90
|ai = \2 —
Consider three sets: the intersection of all the positivity cosB= Vsirfg - (3. Ey)’cod o - @)

domains for different, the compatibility domain, and the set sin # cos wt
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sin 6
Vsirto - (3,5,)?

tanB= tan(¢ — ). (2.95

PHYSICAL REVIEW A70, 052110(2004)

Suppose this first system is entangled with and interacting
with a second system described ldy<x M matrices. LetF,
for ©=0,1,... M>-1 be HermitianM X M matrices such

You can check that the sum of the squares of the formulas fdhat Fqg is 1 and

sin B and cosB is 1, so the designations sfhand cosg are
allowed. Each(X) described by these equations is on the
boundary of a positivity domain. Equatioii®.94) also de-
scribe the ellipses of E@2.77), which are the contours of the
boundary of the set g%) described by the inequalii2.75).
From Eqs(2.95 we see that all values ¢ from O to 2 are
included asp—« varies from 0 to 2r, so the whole of each
ellipse is included. The boun@.79 on (35)? ensures that
Eqg. (2.93 does not asksin wt| to be larger than 1 for any
(2) that satisfies Eq(2.75), so all the ellipses of Eq2.77)

are included. Every point on the boundary of the se{ft}f
described by Eq(2.75 is on the boundary of a positivity
domain. This completes our proof that the compatibility do-

main and the intersection of the positivity domains both arer,

the set of(3) described by the inequalit§2.75).

Ill. GENERAL FORMS

Consider a quantum system described\by N matrices.
The N x N Hermitian matrices form a real linear spaceNsf
dimensions with inner product

N

(A.B)=Ti{A'B]= > A,By.
jk=1

(3.1

Taking N? linearly independent Hermitian matrices that in-
clude the unit matrix 1, orthogonalizing them with a Gram-
Schmidt process using the inner prod(8tl), starting with
the unit matrix, and multiplying by positive numbers for nor-
malization, yields N> Hermitian matrices F w0 for u

=0,1,. N2 1 such thaFy, is 1 and
Tr[F'quVo] = Nb‘/“} (32)

Every NX N matrix is a linear combination of the matrices
F .o

Tr[Fo.Fo,]=Mé,, (3.6

The combined system is described By X NM matrices.
Every NM X NM matrix is a linear combination of the ma-
trices F,0® Fo, which are Hermitian and linearly indepen-
dent. We use notation that identifieg, with F ,,® 1 andF,
with 1® Fq, and let

FMVzFMO(X) FOV' (37)
For theseNM X NM matrices,
TrF . Fasl =NMG,,,5,5. (3.9

In the Heisenberg picture, the evolution produced by a
HamiltonianH for the combined system changes each matrix

, to a matrix
N°-1 M2-1
FLEM = D X P as, (3.9
=0 p=0
with realt,,, 4. Since
Trle™MF e M E e = TH{F,Foal,  (3.10

thet,, s form an orthogonal matrix, stgkw ist,,.qs and
N2-1 M2-1
e_thFa E E t/.w aBFp,V (311)
#=0 »=0
SinceFygis 1,
to0,08 = 60a%0p  tur:00= Ou0bio- (3.12

Forming an orthogonal matrix is not the only property the
t,...p Need to have. They must also yield

|Ht|: e—lHt e|Ht|: e|Hte|Ht|: e|Ht

(3.13

A state of this quantum system is described by a densitfnd the same with changed to &

matrix

1 N2-1
p=—|1+2 f,F,o]. (3.3
N v=1
Equations(3.2) imply that
<FMO> = Tr[F,u,Op] = f,u (34)
for u=1,2,... N>-1, so
1 N2-1
=\ 1+ 2 (FaoFuo |- (3.5
a=1

The mean valuesF o) for ©=1,2,... N?-1 that de-
scribe the state of the first system at t|me zero are changed to
the mean values

NZ-1
(o)’ =(@F 6™ =d, + X t,0..0(Fa0), (3.1
a=1
which describe the state of the first system at timwith

N2-1 M2-1

d,u,: 2 E t,uO;aﬁ<Fa,8>'

a=0 pB=1

(3.15

Mean valuegF o) that describe the state of the first system

Knowing p is equivalent to knowing th&l?-1 mean values are in Eq.(3.14) but not in Eq.(3.15). We consider thel,,

(F,o for ©=1,2,... N>~ 1. The state is described either by well as thet 0.0 to be parameters that describe the effect on

the density matrlx or by these mean values. We can see hothe first system of the dynamics of the combined system that
the state changes in time by learning how these mean valuekives the evolution of the first system, not part of the de-

change in time. scription of the initial state of the first system.
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The density matrixp of Eq. (3.5), which describes the N?-1 N2-1
state of the first system at time zero, is changed to the density 1'=1+ > d.F .o => tu00F wo-  (3.20
matrix pn=1 un=1
NZ—1 ][t takeshth?tﬁensity'matri(G.S) :% (’:;e >dei{1tsitﬁ/ matri>(3.&|7)
, or each of the varying compatibl& o). It takes every Her-
—| 1+ F.o'Fuol, 3.16 iy . " .
P El (Fuo"Fuo (3.18 mitian matrix to a Hermitian matrix.

The latter property alone is the foundation for basic forms
which describes the state at tiheEquations3.14) imply it~ Of the map. This statement is independent of our other con-

is siderations.
Lemma If a linear mapQ—Q’ of NXN matrices to
NZ—1 N?—1 N?—1 N X N matrices maps every Hermitian matrix to a Hermitian
N<1 + E d,F 0+ S (F.o 2 Lo, HOF#O) matrix, then in the description of the map by
a=1 N
(3.1 Q5= 2 Byl (3.2
j,k=1
Equation(3.17) for p’ can be obtained another way. In the :
Schrddinger picture the density matrix the N? X N? matrix 53 is uniquely determined by the map and
is Hermitian,
1 N?-1 N2-1M?-1 .
M=o 14 3 FoFuot 2 3 (FapFag ), Bijisic= B (3.22
ot 0 B and there arél X N matricesC(n) for n=1, ... N2 such that
(3.18
P N?
which represents the state of the combined system at time Q' => ccn)- > cmacm)’ (3.23
zero, is changed at timeto n=1 n=p+1
N1 N1 for all Q and
. : 1
e HtTeHt = m(l + > (Fa) > t,0:00F 40 Tr[C(m)'C(n)]=0 (3.29
a=1 u=1
N1 N1 21 for m#n, for m,n=1, ... N2
X
£ (F.o) D CorreoF Proof. Let Ej be theN N matrices defined by
o=t #=0 =l [Ejklim = 8ij Ok (3.29
NS s ClearlyE} =E;. If th tak Hermiti trix t
early Ej =Ey;. e map takes every Hermitian matrix to
* Eo 321 (Fag) E tu0iapF 0 a Hermitian matrix, thefRe E;])’ and (Im[E;])’ are Her-
o1 Pt N2_1 21 mitian and
+> > <Faﬁ>2 > t,uv;aBF/uz) {(Ejk),}T:{(Rd:Ejk]),+i(|m[Ejk]),}T
a=0 p=1 pn=0 »=1 ‘(
=(REy])’ —i(Im[E 3.26)
(.19 (R{ED’ ~i(Im[Ey)’ = (326

Equations(3.21) and(3.25 give

according to Eqs(3.11). Taking the partial trace of this over
the states of the second system eliminatesRhefor » not [Ej'k]rs= > Bii.sm8ij Omk= Bj:sko (3.2
zero and gives Eq.3.17) for the density matrix of the first Im
system at time with Egs.(3.19 for the d,. Since this in-
volves working with the larger system longer, it does not
appear to be the easier way to actually do a calculation. (El)t= (Efr = EL, (3.28

The map from density matrice8.5) at time zero to den- ) :
sity matrices(3.17) at timet holds for all the varying mean implies thatlS’SJ .= DBsj Which is the same as E(B.22.
values (F o that are compatible with fixed mean values SinceB is Hermitian, it has a spectral decomposition
(F,p in thed, in describing a possible initial state for the

which shows that the map determines a uniffuand, with

2
combined system. We will refer to them as compatilblgy). .
Almost all initial states of the combined system allow the B= Z‘l)‘”mxm’ (3.29
compatible(F o) to vary asN?- 1 independent variables. We
will consider only those initial states. where the|n) are orthonormal eigenvectors Bfand the\,
The map of density matrices extends to a linear map of alare eigenvalues. The, are real, but they are not necessarily
N N matrices toN X N matrices defined by all different, nonzero, or non-negative. We label them so that
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AM=0forn=1,...p, A, <Oforn=p+1,... N2 IV. DISCUSSION
(3.30 In the light of understanding gained here, it is easy to see
Then the errors in arguments that a map describing the evolution

of an open quantum systehas to be completely positive

P One argument uses the fact that a map for a systemm

Bijisk= 2 VINalriInXnisIag] completely positive if and only if it is the contraction £oof
n=1 the unitary evolution of a larger systeAB in which A is
N2 combined with another systeBiand the density matrix for
- E \;’MM |n><n|sk>\e‘"m. (3.31) the initial state ofAB is a product of density matrices féx
n=p+1 andB. That is clearly not necessary.
Let Another argument uses the fact that a map for a sygtem
is completely positive if and only if the product of that map
c(n),; = \"M(rj In). (3.32  With the identity map for another syste@yields a map for
the combined systerAC that takes every positive matrix for
Then Eq.(3.21) is AC to a positive matrix. The argument says this is the way to

0 satisfy the physically reasonable requirement that the de-
, - " scription of the evolution oA must allowA to be accompa-
Qs = E% Cn); QuCn)s nzzmlzj;‘ Cn) QuC(Msic nied by another systei@ that could be entangled with but
does not respond to the dynamics that drives the evolution of
(3.33 A. If the map forA is a contraction toA of either unitary

N2

so the map is described by E@.23 and evolution or a completely positive map for a larger system
AB in which A is combined with another systeB) then the

Tr[c(m'cn)]=> C(m):j C(n); evolution ofB is generally not described by the identity map,
rj so C is notB. The accompanying systef must be a third

system. The physically reasonable requirement can be satis-
fied very simply for the kind of maps we have considered. If
the map forAB is completely positive, its product with the
(3.39  identity map forC yields a map for the combined system

which is zero form+ n in accordance with Eq3.24). ABC that takes every positive matrix f&xBC to a positive

This completes the proof of the lemma. matrix. .
The maps we are considering, those described by Eqs, Mathematically, a map of states for a subsysiewan be
(3.20, have the additional property that constructed fron{l) a map that takes density matrices for

to density matrices for the entire systehB at time zero,
TrQ =TrQ (3.39 followed by (2) unitary Hamiltonian evolution from time
zero to timet for AB, and finally(3) the trace over the states
of B that yields the density matrix fok at timet. The broad

= 35 VInalmlr e Il = N min),
r

for every Q. This implies that

p N2 class of maps obtained this way is known to include maps
> cmicin - > cncin) =1 (3.3p that are not completely positive and in fact maps that do not
n=1 n=p+l take every positive matrix to a positive matrix. That all de-

pends on the first step, the map that assigns density matrices
because pap t0 density matricep, at time zero. Pechukgd4] has

0 N2 shown that ifA is a qubit, the only linear assignment of
- ' o 1 _ + density matricep,g that applies to all density matrices,
TrR=TrQ Tr[ <n§lC(n) Cln) nzzpﬂ cln C(n))Q} and gives back unchanged in the trace oveB at time zero
337 °
implies that in the linear space &f X N matrices with the Pa— PA® Pg, 4.1

inner product defined by the trace as in E81), the differ-
ence between the two sides of E§.36) has zero inner prod- it p,, fixed. We prove this for any quantum system in the
uct with every matrixQ and therefore must be zero. From apnendix. Pechukas concludes that in general, when product
Egs.(3.295 and.(3.27) we see a!so t.hat the trace—preservmgassignmem@rll) do not apply, maps have to act on limited
property described by E¢3.35 implies that domains. This does not depend on the unitary evolution of
: b _ AB from time zero to timet. When a product assignment
Er Bijinic= THEj] = TrEjd = Gy (3.39 (4.1 is the first step, the map made in three steps is com-
pletely positive; if a map made this way is not completely
Conversely, either Eq3.36) or (3.38 implies that TrQ’ positive, its domain must be limited. There has been debate
equals TrQ for every matrixQ. From Eq.(3.38 we see in  whether any except the completely positive maps can de-
particular that T3 is N. scribe physical evolutiofl5,1§.
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Which do describe physical evolution? What is needed fobasis of product vectodﬂ/j ¢ for AB. Sincepag(pa) is posi-
one of these maps to describe the evolution of state& of tive, each(y; ¢/ par(pa)l¥; P is non-negative and, from Eq.
caused by dynamics &B? If the map is meant to apply to a (A1), if j is not 1,
set ofp, that all evolve in time as a result of the same cause,
the pag assigned to thesp, should not differ in ways that  (i;éulpas(ea)l b0 < (4| Tral pas(pa) 1l4)) = (Yl Wl )
would change the cause of evolution of the If they did, -0 (A3)
we would say that differens, are being handled differently '
and that their evolution should be described by diﬁerentSince pAB(pA) is positive, it is the square of a Hermitian
maps. Pechkagl4] considers the case whefeandB are  gperator. Thus we see thats(pa)| ) is zero if] is not 1
qubits and a produgi,g is assigned, as in E@4.1), to each  5g
of four selectedp,, with a differentpg for each of the four
pa. This yields a map that takes every mixture of the fpyr (Wil pas(pa) | s = 6110l Yr x| paslpa) ¥ ds) .
to a density matrix. Pechukas observes that the large set of
maps obtained this way must include many that are not com-
pletely positive and many that take density matrices outside et
the set of mixtures to matrices that are not positive. How-
ever, thepg assigned to each different mixture generally pe(pa) = Tralpag(pa)]. (A5)
gives a different density matrix foB in the trace over the
states ofA. Each different state oA is coupled with a dif- Then
ferent state oB. Does this mean it is handled differently? If _

a map is meant to describe evolution that has a definite pe(pa) = (Ylpas(pa)l¥r) (AB)
physical cause, does Pechukas have a single map that acts gty
a set of states, or a set of maps, each acting on a single state?

In the compatibility domain that we describe, the evolu- paslpa) = )] @ pa(pp). (A7)
tion of all states is clearly the result of the same cause. It can
be described by a single map that has physical meaning.hat completes the first step of the proof.

Working with mean values helps make this clear. We do not The second step, which completes the proof of the theo-
need a complete description of the staté\Bfat time zero. It ~ rem, is to show thapg is the same for all pure-state density
does not need to stand alone, independent of the unitary evenatricesp,. Pechukag14] did this for the case whem is a
lution, and accommodate any unitary evolution. The compatqubit. We show that the proof can be easily extended to any
ibility domain depends on the unitary evolution. In our ex- quantum systerfil7]. Supposeds;) and|ys) are orthonormal
ample, the compatibility domain depends on the mean valuesfate vectors foA. Let
that are the parameteas anda,. That these mean values are i
the relevant parameters depends on our choice of Hamil- |w3>:i_|¢l>+l_reiﬁ|¢2>
tonian. The compatibility domain is unlimited when and V2 2 '
a, are zero. Then the map is completely positive, but that
does not require an initial state described by a density matrix 1 -
that is a product. [y = ,—§|¢1> - TEe'13| o),

N A

(A4)

APPENDIX: GENERALIZATION OF PECHUKAS’ RESULT

= i iB
Theoreml|f a linear map applies to all density matriges [1hs) = (cOs )| ) + (sin @) €745,

for a subsystemA and assigns each, a density matrix _ ,
pag(pa) for the combined systerB so that |the) = (sin @) ) = (cOs @) €Pify). (A8)

Tralpas(pa)] = pas (A1)  Then|ys) and|y,) are orthogonallys) and|y) are orthogo-
nal, and(yu| ) |2, [l v, [Col a2 Kol i) 2, [Kabial )| 2,
(il o), [(bal i) |2, and|( 4| )| are all 1/2. The length of
pas(Pa) = pa @ pg, (A2)  each vectofyy) is 1, so|¢ (i is a pure-state density matrix
for A. The map assigns it a product density matrix

then, for everypa,

with pg a density matrix for the subsysteBnthat is thesame

for all pa. - & pa(k A9
Proof. The first step, which Pechuk§$4] did, is to show pael(hoCd) = [l @ pell) (A9)

that every pure-state density matyix is assigned a product as in Eq.(A7) with pg(k) short notation fompg(|¢){(t)-

density matrix, as in EqA2), with pg possibly different for Since the map is linear, it follows from

differentp,. For completeness we include a slightly different

presentation of this step. fiy represents a pure state, there is 1 1

an orthonormal basis of state VGCtdEﬁ) for A' with J §(|¢1><¢l| + |¢2><¢2|) = §(|¢3><¢3| + |¢4><¢4|) (AlO)
=1,2,...,such thatp, is |1){¢4]. We combine these with

orthonormal state vectotg,) for B to make an orthonormal that
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1 Doing everything starting from EqA10) again with 1,2,3,4
§[|¢1><¢1|PB(1) + o)l pe(2)] changed to 3,4,5,6 shows thai(3), pg(4), pg(5), and pg(6)

all are the same. Any state vector fAris in a subspace
spanned byi;) and a vectoti,) orthogonal td i), so|s)
with fixed |¢,) and varyinga, B8, and|:»,) can represent any
pure state forA. If p, represents a pure states(p,) is the
Taking partial mean values(yu| -[¢1), (¥l"[¢),  same apg(1), so EqQ.(A2) holds, with the sameg, for all
(43| - -|pa) of this last equatioriAll) yields three equations pure states oA and, therefore, for all mixtures as well. This
that imply pg(1), pg(2), pg(3), and pg(4) all are the same. completes the proof of the theorem.

1
= E[|¢3><¢3|PB(3) + | )l pa(4)]. (A11)
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