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We show that for all SO(n), n > 10, family unification schemes there exist no gauge
currents relevant for baryon decay other than those already appearing in the SO(10)
model. The effect of Yukawa interactions for baryon-number-violating processes in

SO(n) models is also investigated.

I. INTRODUCTION

It is well known that when the SU(3) color and
SU(2) X U(1) electroweak interactions are unified in
an SU(5) grand unified model,' there exist new
gauge bosons (X and Y) which can mediate baryon
decay.!* The model predicts decay modes such
as

p—eta®, (1.1)
p——>y,+K0, (12)
pouta®, etK°. (1.3)

Reactions (1.1) and (1.2) occur directly via the
gauge currents, whereas this is not the case for
reactions (1.3). The latter reactions, however, can
occur from Yukawa interactions, or as a result of
mixing from the fermionic mass matrix. It is usu-
ally believed that the mixing from the fermionic
mass matrix is small and that the gauge interac-
tions dominate the Yukawa interactions. There-
fore, decay modes like (1.3) are expected to be
suppressed. (Such a suppression has been named
the “kinship hypothesis” by Wilczek and Zee* in
the context of the general analysis of baryon de-
cay.*3) However, this result is not valid in general,
since neither the theory nor the available data is
sufficient to determine the fermion mass matrix or
the strength of the Yukawa interactions.

Upon expanding the grand unified model from
SU(5) to SO(10),° the above situation remains ef-
fectively unaltered, despite the introduction of new
baryon-number-changing currents. This is essen-
tially due to the fact that both the SU(S) and
SO(10) models are single-family unification
schemes.

There have been many proposals’® recently for
SO(n), n > 10, models which contain more than a
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single family in one irreducible spinor representa-
tion of the group. [For the purposes of this paper,
a “family” shall be identified with a 16-
dimensional SO(10) spinor (of fixed chirality’) con-
tained in the SO(n) spinor representation.] For
these models, in addition to the SO(10) (vertical)
interactions, it is well known that there appear in-
teractions linking particles of different families in
a horizontal fashion, i.e., horizontal interactions.'°
In these models one may further expect to see in-
teractions connecting particles of different families
in a nonhorizontal fashion, i.e., “diagonal interac-
tions” (cf. Fig. 1). If some of the corresponding
“diagonal” gauge bosons (X, and Yp) carry baryon
number, then the relative rates of processes
(1.1)—(1.3) would be affected. In particular,
processes like (1.2) would be enhanced, and if mix-
ing between X,Y and X),Y, is present, processes
like (1.3) can no longer be expected to be
suppressed.

In this paper, we show that no gauge bosons Xp
and Y exist in SO(n), n > 10, models. In fact, for
all SO(n), n > 10, models, there exist no gauge
currents which are relevant for baryon decay other
than those already appearing in the SO(10) model.
This is essentially due to the presence of conjugate
families!! (families which have ¥ +4 weak interac-
tions) which must be removed from the low-lying
spectrum.”® We find that the only diagonal gauge
bosons which appear in SO(#n), n > 10, models are
those which link families to conjugate families.

The situation is different in the Yukawa sector
of these models. Here we find that there do exist
Higgs boson carrying baryon number which medi-
ate diagonal interactions between families. These
bosons therefore provide a mechanism for enhanc-
ing processes like (1.2). If mixing occurs with the
analogous bosons mediating vertical interactions,
processes like (1.3) could be enhanced as well. Al-
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FIG. 1. Vertical, horizontal, and diagonal interac-

tions are illustrated for particles belonging to two 5*
representations of SU(5).

though the relative Yukawa coupling constants
leading to processes (1.1)—(1.3) are determined in
an SO(n) model, the mass matrix for the associat-
ed Higgs fields is unknown. Hence the relative
rates of (1.1)—(1.3) are left arbitrary. In the Yu-
kawa sector, as well as in the gauge sector, we find
interactions which link families to conjugate fami-
lies.

In Sec. II, we review some properties of SO(n)
spinor representations'>!3 and their applications to
family unification in grand unified models.!* The
proof that there exist no gauge currents which are
relevant for proton decay other than those appear-
ing in SO(10) is given in Sec. IIl. The Yukawa
sector for SO(n), n > 10, is examined in Sec. IV.
In the above discussion the effect of mixing from
the fermion mass matrix has been ignored. In the
Appendix, we give several examples of mass ma-
trices where this is justified.

II. SPINOR REPRESENTATIONS OF SO(n)

We begin with the case n =2N (N = integer).

A. n=2N

The SO(2N) group contains two 2V ~!-di-
mensional irreducible spinor representations which
are constructed explicitly below.

For convenience we adopt a formalism common-
ly used in many-body physics.”>~* Let us intro-
duce a set of N fermionic creation and annihilation
operators a,-l’r and q;, i=1,2,..., N. They satisfy
the usual anticommutation relations

{ai’a;}=8ij ’
(2.1
{ana; }={a/,a]}=0.
The Hermitian combinations

Ty=a;+a] 2.2)

and
Ty 1=—ilaj—a)), i=12...,N (2.3
define a rank-2N Clifford algebra, since from (2.1),
{T4,Tp}=284p, A=1,2,...,2N. (24)
By forming commutators of the I'’s, we obtain the
generators for the SO(2N) group
=T ). 3

They consist of linear combinations of all possible

- t .
bilinear products a;aj, a;aj, and g; a;. In particu-

lar, the operators

it 1
Tj—a,-a~— 28,']'

1
:4_i(22j,2i+22j—1,2i—1

HiZgi 10+ 205 1,2i) (2.6)

generate the U(N) subgroup of SO(2N), since from
(2.1) (Ref. 15)

(7}, 7] =0k — 8y . 2.7
The N-dimensional Cartan subalgebra of the group
is spanned by

HiET:::_;'EZi-—l,Zi . (2.8)

A central element I'y [the “SO(2N)-chirality opera-
tor”] can be formed by taking the product of all
the elements of the Cartan subalgebra

Fog(—z)NHle ct e HN . (2.9)

It serves to label the two irreducible spinor
representations.

In constructing the spinor representations, let us
first define a U(N)-singlet state |0). The SO(2N)
spinor with SO(2N) chirality equal to + 1 is given
by

[Y1om)=1]0)+ —;—gbi"aiTa]T |0)
+5valafafal [0)+ -,
(2.10)

where the indices i,j,k - - - are completely an-

tisymmetric. The SO(2N) spinor with SO(2N)
chirality equal to —1'is given by

l"’—(2N)>=¢1iaiflO)—{—%]ﬁijkaiTa;ag |0) 4 -~ .
(2.11)

Each term in (2.10) and (2.11) corresponds to an
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N!/[I(N —1)!]-dimensional representation of U(N)
(I = the number of indices in ¥"2~ ). Both
series (2.10) and (2.11), of course, terminate when

I > N, yielding two 2" ~!-dimensional representa-
tions of SO(2N).

In applying (2.10) and (2.11) to grand unified
models, the coefficients ¥/ " * are identified with
two-component Weyl spinors. In particular, the
16-dimensional representation |, (19)) of SO(10)
is given the particle assignment

v=veL ,
1/’“3:6“87”27’ ¢4a:uLa’ 1bsat:chu ¢45=e2_ ’
¢45aB:6aBdey , ¢5123=e£— , ¢1234= oL >

(2.12)

where a, =1,2,3 is a color index and we adopt
the convention that all particles are left handed.
With this assignment the SU(3) color and U(1),,
subgroups are generated, respectively, by

S§=18— 8.5 3 H, (2.13)
14
and

Q=—+ S H,+H, . } (2.14)
a

In addition, the weak hypercharge and baryon
minus lepton (B — L) number operators can be
identified with

Y=—+ S Hy++H,+5Hs (2.15)
a
and
B—L=—+3H,, (2.16)
a
respectively.

We now consider the possibility of associating
| ¥_(10)) with another family of particles. From
(2.14) and (2.15), the particles in |¢¥_(19)) have op-
posite electroweak charge assignments from those
of | ¥, (10)?. In order that the particles in
| ¥_(10)) give the usual ¥ —A4 weak interactions,
they must therefore be made right-handed. A
left-handed multiplet |4 _(,o)) would produce
V +A4 weak interactions.” We shall refer to the
latter as conjugate families.®!!

If we wish to incorporate more than one genera-
tion of particles into a single irreducible spinor
representation of SO(2N), we must take N > 7.
The SO(12) group is ruled out for the following
reason (cf. Ref. 16): Let |},,) denote the 32-

dimensional spinor representation of SO(12). It
can be decomposed into SO(10) spinors according
to

|V = | ¥ra0) +ab [ ¥_q0) - 2.17)

We require that all the particles in | W () are
left-handed. This implies that |A_(j)) is associ-
ated with a conjugate family, which must be re-
moved from the low-lying spectrum. (This can be
done via a suitable mass matrix.) Consequently,
we are left with just one (low-lying) family of par-
ticles in | W, (12)). On the other hand, an irreduci-
ble spinor representation of SO(14) contains two
(low-lying) families. Here

| V0= l'ﬁ'+(10)>+a;§ lk_“o))—{-a; [7_(10))
+aga;r | X +10)) - (2.18)

Once again, |A_()) and | 1_(j0)) are associated
with conjugate families which must be removed
from the low-lying spectrum, leaving the two fami-
lies |94 0)) and |X (10)). Here |94 (10)) is
given by (2.12) and | X ,(10)) is given by
X:V;L )
Xaﬁzeaﬁyciy 5 X4a:CLa ’ XSGZSLa ’ X45:.u'l_j_ ,
XHB_eoBrse | xSBopr X By,

(2.19)

In general, an irreducible spinor representation of
SO(10+42M) contains a total of 2 ~! (low-lying)
families.

B. n=2N +1

To generalize the algebra associated with the
SO(2N) group to that associated with SO(2N +1),
we note from (2.9) that

Iy=1, {Tol,}=0. (2.20)

Thus with the inclusion of Ty, the rank-2N Clif-
ford algebra can be extended to a rank-(2N +1)
Clifford algebra. To generate the SO(2N +1)
group we simply let the indices of 2,5 [cf. Eq.
(2.5)] run from O to 2N. The new generators
which appear in the SO(2N + 1) group are

22,-,0=2f1,~ r0F2i_1 (2.21)
and
22,'__1‘0—_—‘ _2HiFOF2i . (2.22)

Since these generators mediate transitions between
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the two spinor representations | ¥, (oy)) and
|¥_am)) of SO(2N), |, an)) and |Y_iow),
separately, do not form representations of
SO(2N +1). Instead their sum

|¢(2N+1)>= |1/’+(2N)>+ Il/i_(zN)) (2.23)

gives an irreducible representation of the group.
Thus, the two 2V ~!-dimensional representations
of SO(2N) combine to form one 2"-dimensional
representation of SO(2N +1).

The smallest SO(2N + 1) group which is appli-
cable to grand unfied models is SO(11). The
SO(11) spinor representation contains the two spi-
nors |9, (10)) and |¥_(0)) of SO(10). As was the
case in SO(12), only one of the SO(10) spinors,
| ¥4(10)) (using the conventions of Sec. II A) can
be identified with a (low-lying) family. The num-
ber of such families in SO(13) is two. They corre-
spond to | ¥ (10)) and | X (1)) in the expansion

| Was) = | ¥ra0) + [ ¥—q0)
+al | X_go)+al | X 410)) -
(2.24)

In general, we can identify a total of 2™ (low-lying)

families within a spinor representation of
SO(2M +11).

III. GAUGE INTERACTIONS IN SO(n) MODELS

As in the previous section, we identify (low-
lying) families with SO(10) spinors of a fixed
chirality. In what follows, we shall assume, as a
first approximation, that there is no induced mix-
ing into the gauge sector via the fermion mass ma-
trix.

The general expression for the fermion —gauge-
field interaction in SO(n) grand unified theories is
given by

g<¢(n) I yOV#A;L | ¢(n)> ’ A[.L EAﬁBzAB , (3.0

where y#* (u=0-—3) spans the Clifford algebra as-
sociated with the Lorentz group, g is the gauge
coupling constant, and 4 ﬁB are the gauge-boson
fields. For the case n =10, the terms in A, known
to mediate proton decay are

Xpti, Yur$, Yhasas, Zja.a4, (3.2)

and their Hermitian conjugates. In particular,
their interactions with the components of | ¢ ;o))
are given by

gX 5 —€qp it gy ury+drayter —er yHdia)+8Y —€apyilt p¥ ALyt i gy er —Ver V¥ dLa)

+gY'Z(€aﬁyaLB'yudI€y+ﬁ£ayueL_ +VgL?"udLa)+gZz( _eaBﬂLBYPdIc,y_ELC.aYMVeL +T’§L‘y“uLa)+H~c- ’

where we have used (2.12).

We now show that after enlarging to an SO(n),
n > 10, grand unified model, no additional gauge
bosons appear which could mediate proton decay.
We begin with the case n =2N.

A. n=2N

From the discussion in Sec. II A, the smallest
relevant SO(2N) group is SO(14). The new genera-
tors obtained by enlarging the group from SO(10)
to SO(14) are linear combinations of

;
Hb’ H7’ ae¢dy, T6,

(3.4)
i
Tes T7, QA6di>, a74; ,

and Hermitian conjugates, where i runs from 1 to
5. From (2.18), the 64-dimensional spinor of

(3.3)

SO(14) contains two families | (1)) and

| X 4+(10)) and two conjugate families |A_(jo)) and
| 7_(10)). The first four generators in (3.4) are
SO(10) neutral, i.e., they commute with all the
SO(10) generators. The first two mediate interac-
tions within a given family or conjugate family,
whereas aga; (77), along with its Hermitian conju-
gate, is responsible for horizontal interactions be-
tween different families (conjugate families). The
remaining generators mediate diagonal interactions
between families and conjugate families. Clearly,
none of the new generators are relevant for proton
decay. Thus, with regards to proton decay, the
gauge sector of the SO(14) model is identical to
that of the SO(10) model.

Similar results hold for all SO(2N) theories. All
generators not belonging to the SO(10) subgroup
are associated with either “SO(10) neutral pro-
cesses” or interactions which connect families to
conjugate families.
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B. n=2N+1

From the discussion in Sec. II B, the smallest
relevant SO(2N + 1) group is SO(13). The genera-
tors in SO(13) which are not in the SO(10) sub-
group are linear combinations of

H()’ g, Té’ a()aiy (3.5)

and Hermitian conjugates. The first two genera-
tors in (3.5) are SO(10) neutral. The generator H
mediates interactions within families (and conju-
gate families), whereas a, and az produce horizon-
tal interactions between different families (and con-
jugate families) [cf. Eq. (2.24)]. Once again, 74 and
aga;, along with their Hermitian conjugates, medi-
ate diagonal transitions between families and con-
jugate families. Thus, again, we find that none of
the new generators are relevant for proton decay.

It is straightforward to reproduce these results for
any SO(2N +1) model.

In conclusion, the gauge sector for SO(n)
theories containing more than one family in a sin-
gle irreducible representation is identical to that of
SO(10) theories as far as baryon decay is con-
cerned.

Note that in carrying out a similar analysis for
SU(n) family unification schemes, one encounters
the following difficulty: Unlike in SO(10) models,
an SU(5) family is associated with a reducible
representation, namely 5* + 10, of the group. In an
SU(r) model containing many 5* and 10 represen-
tations of SU(5), there exist no criteria for deter-
mining which 5* and which 10 combine to form
an individual family. The question of whether
baryonic gauge currents are vertical or diagonal de-
pends crucially on the particular choice of com-
binations made.

IV. YUKAWA INTERACTIONS IN SO(n) MODELS

In most treatments of baryon decay in grand un-
ified models the Yukawa sector is not considered
to play a dominant role. This is due to the as-
sumptions that (a) the gauge couplings are larger
than the Yukawa couplings and (b) the masses of
the Higgs boson and gauge bosons are of the same
order of magnitude. (a) follows in an SU(5)

[SO(10)] theory when a single 5- (10-) dimensional
|
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Higgs multiplet is used to give mass to both the
fermions and W and Z bosons. Since neither as-
sumption (a) nor (b) is required in the most general
grand unified model, we feel that a study of Yu-
kawa interactions leading to baryon decay may be
relevant.

In what follows we shall repeat the analysis of
the previous section for the Yukawa sector of
SO(n), n > 10, models. Unlike in the gauge sector,
here we find that there exist diagonal interactions
between families which lead to baryon decay.
However, since it is possible to write down Yu-
kawa interactions linking different irreducible spi-
nor representations of the group, such interactions
may already be incorporated in an SO(10) model.
Essentially the only difference we find between the
Yukawa sector of SO(10) and SO(#n), n > 10,
models is that the arbitrariness of the relative cou-
pling strengths of the different families in the
former gets fixed in the latter. We again assume
no additional induced mixing from the fermionic
mass matrices.

The general expression for the Yukawa interac-
tion Lagrangian in SO(n) models is'®!’

Km('/j(kn) I C_IB(n)(Di I 1p(n)> +H.c.,
4.1)
=44, a4, Tay - Taps

where k' are the Yukawa couplings ¢A1A2 ... 4, are

scalar Higgs fields and C is the charge-conjugation
operator associated with the Lorentz group. B, is
the analogous charge-conjugation operator associat-
ed with the SO(n) group. It satisfies the relation!’

ﬂbﬁ(m:“ﬁ(mﬁw , h=2N or 2N +1, 4.2)

where a caret indicates a 2V x 2" matrix representa-
tion and T stands for transposition. Equation (4.2)
is satisfied with the choice!®

Boyy=Bont=TT3 - Toy_y . (4.3)

In theories where more than one irreducible spi-
nor is present, we may include Yukawa interac-
tions which link the different spinors. For in-
stance, in an SO(10) model with two families, cor-
responding to | ¥, (10)) and | X (j0)) [cf. Egs.
(2.12) and (2.19)], the following interactions are
possible'®:

KW 10| €7 'B1oy® | $4010)) +61 W 10) | €7 Biioy® | X 4109
+65 X% 10) | €' Bioy® | $410)) + 653X % 10) | € ~'Bi1oy®' | X 410)) +Hc. (4.4)
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Higgs fields which give nonzero contributions to (4.4) are P, i=1,3,5, corresponding to 10-, 120-, and 126-
dimensional representations, respectively. It is known that the corresponding matrices K",

W K(lil) K(lg
n_ | . 4.5
K &k | (4.5)
are symmetric for i =1,5 and antisymmetric for i =3.
For the case i =1 the Higgs components which mediate proton decay are

G102 - - -, e - (4.6)
Substituting into the first term in (4.4), we find the following interactions amongst the first family of parti-
cles:
2Adra—1—i¢ra)iare] —darVer) —2(bra_1+idra)Tarer +dgrver)

where a, 3, ¥ sum from 1 to 3. The second and
third terms in (4.4) can contribute to processes (1.2)
and (1.3). If ®' alone mediates all Yukawa in-
teractions in an SO(10) model, then, some re-
strictions on the constants Ki-;) can come from the
fermion mass matrix. In particular, if we insist
that the Cabibbo angle is calculable from the mass
matrix, then kb’ > ki, ki'=0 (cf. Appendix)
which leads to a suppression of (1.3). In general,
however, many Higgs multiplets may contribute to
Yukawa interactions and no specific form of the
mass matrix is required. Consequently, the K};()’S
are completely arbitrary in SO(10) theories. We
now show that this is not the case in SO(n),

n > 10, models.

A. n=2N

Let us concentrate on the SO(14) model where
two families and two conjugate families are con-
tained in the spinor |W_ (y4)) [cf. Eq. (2.18)]. The

Yukawa interaction is given by
KW (14)| CT'B1ay® | ¥ y1ey) +Hee. (4.8)

The Higgs fields which give nonzero contributions
to (4.8) are ®* and ®’ corresponding to 364- and
1716-dimensinal representations, respectively. [The
Yukawa couplings involving ®' and ®° are an-
tisymmetric under the exchange of different spi-
nors | W, (14)) and | X (14)), and hence do not
contribute to (4.8).] In @3, six 10-dimensional rep-
resentations and the 120-dimensional representation
of SO(10) can be identified. They are associated
with the components

disi1,4> Piainas D13,124> Pia12.4 >
4.9)

d11,12,4> D13,14,4> and dpc ,

+2€48)(bra— 1+ i NiTgrdy + i prd ) +Hoe. ,  (4.7)

f

where 4, B, C run from 1 through 10. The first
four sets of Higgs fields in (4.9) contribute only to
processes amongst individual families (i.e., they do
not mix families). For example, the first set leads
to the interactions

k313114 {510 | CT'Bio)Ta | ¥410)
+{X% 10| € 'Bio)T4 | X 4100 ]+ H.c.

(4.10)

On the other hand, the last three sets of Higgs
fields in (4.9) contribute solely to processes which
mix families. For example, the last set leads to the
interactions

k¥ 4pc[{¥%10)| C ' B10)T4TsTc [ X 4100
— X% (10|C ™ 'Bo)T4TsTc| ¥4 (10 I+H.c.
(4.11)

In addition to (4.10) and (4.11), we can have Yu-
kawa interactions which link families to conjugate
families. In ®° such interactions are mediated by

11,485 D12,4,8> D13,4,8> and P14 4.8 (4.12)

corresponding to four 45-dimensional representa-
tions of SO(10). The first set in (4.12) leads to the
interactions

iK1 48[4 10) | C ' B1o)T T8 | 1_(10))
+ (1" (10/C ~'B10)T 4 T3¢ 4(10) )]+ H.c.
(4.13)

Processes analogous to (4.11) —(4.13) can be
found with regards to the Higgs multiplet ®’.

In conclusion, we can recover all the interactions
(4.4) appearing in an SO(10) model [plus additional
unwanted interactions (4.13)]. We note that (a) dif-
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ferent SO(10) Higgs multiplets are associated with
different Yukawa processes; namely, those which
mix families, those which do not, and those which
link families to conjugate families, and (b) the arbi-
trariness of the relative coupling strengths k¥ in
the SO(10) model gets fixed for SO(14). We find
that all interactions occur with equal strengths.
Although the arbitrariness in relative coupling
strengths is removed, a new arbitrariness in the re-
lative masses of the different Higgs multiplets ap-
pear. Furthermore, mixing may occur between dif-
ferent Higgs components leading to processes like
(1.3). Owing to the ambiguity in the Higgs mass
matrix, no conclusions concerning the Yukawa
contributions to processes (1.1)—(1.3) in an SO(14)
theory can be drawn. '

We believe the above qualitative conclusions can
be drawn in all the SO(2N) models.

B. n=2N+1

We again specialize to the two-family unification
group SO(13), but we believe our results are quali-
tatively the same for all SO(2N + 1) models. The
Yukawa interaction is given by

k(W13 | C7'B13)® | ¥i3)) +Hee. ,  (4.14)

where B3, is given by (4.3) and | ¥(;3)) contains
the two families and two conjugate families of
SO(13) [cf. Eq. (2.24)]. The Higgs fields which
give nonzero contributions to (4.14) are ®?, ®°,
and O°. They correspond to 78-, 286-, and 1716-
dimensional representations, respectively. [The
Yukawa couplings involving all other Higgs mul-
tiplets are antisymmetric under the exchange of
differerent spinors | W;3)) and | X(;3)), and hence

do not contribute to (4.14).] Note that the same
total number of Higgs fields contribute for both
the SO(13) and SO(14) models. Furthermore, we
shall show below that there are no qualitative
differences between the Yukawa sectors of the two
models.

In examining the Higgs multiplet ®* we note
that there exist three 10-dimensional representa-
tions of SO(10) corresponding to

11,45 b12,4, and oy, A=1-10. (4.15)

The first two sets of Higgs fields in (4.15) contri-
bute solely to processes amongst individual families
(i.e., they do not mix families). For example, the
first set leads to the interactions

k2011 4{% 10| C By T | ¥4 10))
+ X% 10) | C™'B1oyT4 | X +(10)) 1+H.c.

(4.16)

The last set of Higgs fields in (4.15) contribute
solely to processes which mix families, i.e.,

iKPo4 [ 10| C7'B10)Ta [ X 4100

+ X% 10| C'B1yT4 | ¥4(10) 1+ H.c.
(4.17)

The interactions (4.16) and (4.17) are similar to
(4.10) and (4.11) of the SO(14) model. As in the
SO(14) model, there exist additional Yukawa in-
teractions linking families to conjugate families.
These are mediated, for example, by the 45-
dimensional multiplet ¢4z, A,B =1— 10, belonging
to ®2. Substituting into (4.14), we find these in-
teractions to be given by

— ik 45 [ (V% 10| C'BioyLaT s | X —10)) + X% (10) | C ' B10) T4 T | ¥4 (10))
+{¥(10)| C™'B10)TaTs | X 4(10)) + X’ 10y | €~ 'BioyTu T | ¥_(10)) 1+ H.c. , (4.18)

which is analogous to (4.13).
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APPENDIX

In this paper we have ignored the effect of in-
duced mixing from the fermion mass matrix.!”
Here we give two examples where this effect is
small.
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In an SO(n), n > 10, model where all families
are contained in a single irreducible representation
of the group, the fermion mass matrix is sym-
metric. For simplicity we shall only be considering
real mass matrices. Also we shall specialize to
two-family unification schemes [i.e., SO(13) and
SO(14)].

Example 1. Here we assume that the fermion
mass matrices have the following form:

0 b

Mi= b ¢

) i:e)u’d 5 (Al)

where M, denotes the electron-muon mass matrix,
M, denotes the u-c quark mass matrix, etc. [In
the SO(14) model, (A1) can be obtained from
nonzero vacuum ex%)ectation values for Higgs
components ¢75s, 7(P13,11,s —ib13,12,5), 11,125
b13,145> (D125 + 0345 +0s65), 5 =9,10, belonging
to the multiplet <I>j.éo] A realistic mass matrix for
the neutrinos must contain Majorana contribu-
tions?! and is consequently 4X 4. We shall assume

OMu]

M=y kM,

(A2)

where k =m, /m,, (m, and m, are the u-quark
and neutrino masses, respectively). (A1) and (A2)
are diagonalized by real orthogonal matrices with
mixing angles given by?*?

172
me
Ve =b,/c,= ,
my
m 172
Sy=by/cqg= { — l , (A3)
mS

172
mu
Y, =b,/c,= lm ] .

From the neutrino mass matrix (A2) it follows that
¥, =1",, where 9, denotes the mixing amongst the
two light neutrinos. Consequently, all mixing an-
gles are computed from the fermion masses and
the induced mixing into gauge and Yukawa sector
is small.

In an SO(10) model with only one set of Higgs
scalars @ contributing to the Yukawa interaction
[¢f. Eq. (4.4)], (A1) is obtained by setting «%;=0 in
Eq. (4.4). Owing to the fact that the same vacuum

expectation value gives mass to both e and u, one
obtains the relation
2

(A4)

K22

It follows that K;z > k', and hence as mentioned in
Sec. IV, processes (1.3) are suppressed in such a
model. We also note that this model gives the
mass relations

—=— == (A5)

Example 2. We now assume a more general
form for the mass matrix
a; b;

bi ¢ ’ i=€,u,d > (A6)

M,':

with the following additional restrictions
M;=M, . (A7)

[(A6) and (A7) are obtained in the SO(14) model
from nonzero expectation values of the Higgs com-
ponents @13 11,5 $13,12,5> Pi1,12,55 P13,14,5> § =9,10.]
Again M, is given by (A2). From (A7) and (A2) it
follows that the mixing angles 9;, i =u,e,d,v, ful-
fill the constraints

9,=9,, 94=9,. (A8)

Upon replacing the current eigenstates by the mass
eigenstates in the gauge sector [cf. Eq. (3.3)], the
only combination of mixing angles that appears is

94—, . (A9)

(A9) is just the Cabibbo angle for weak interac-
tions. Consequently, the effects of mixing in the
gauge sector is small. However, in the Yukawa
sector, in addition to (A9) the following combina-
tions also appear:

a+9, , 29,4, 29, . (A10)

This is due to the fact that for SO(n), n > 10, Yu-
kawa interactions between different families are
symmetric. Consequently, in this example there
may be mixing effects in the Yukawa sector in ad-

dition to the diagonal interactions discussed in Sec.
Iv.
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