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We describe the space-time development of the hardronic system formed immediately after the
high-energy hadron collision with the following picture. Initially the system is highly compressed along
the longitudinal direction. The sudden relaxation of this compression leads to a violent acceleration along
this direction and perhaps a weak acceleration along the transverse direction. When these accelerations
cease, we propose that the system acquires certain frame-independence symmetry with its further
expansion governed by the hydrodynamic equation of motion. Within our scheme, this symmetry
provides a natural mechanism which eventually leads to a flat inclusive longitudinal rapidity distribution
and it also admits a sharp cutoff in the inclusive transverse momentum distribution. These features

differ from those of Landau’s model.

[. INTRODUCTION

For a space-time description of hadron multi-
particle production at high energies, it is con-
venient to divide the process immediately after
collision into three stages: the formation of a
highly condensed matter system, its expansion,
and the eventual decay. The formation of a had-
ronic system with a global thermal equilibrium
was first suggested by Fermi.! Its subsequent
expansion process was treated as a fluid shock
by Heisenberg? and as a hydrodynamical problem
by Landau.® Bhabha also treated this problem in
a somewhat different context.* Recently there
has been renewed interest in hydrodynamical
models,®™!! especially Landau’s model. Within
his model the expansion process begins with a
one-dimensional longitudinal expansion and it is
followed by a three-dimensional expansion. The
one-dimensional part is solved analytically.'?2™!?
However, so far there is no completely satisfactory
solution for the three-dimensional expansion.

We have also investigated hadron multiparticle
production, making use of some ideas of hydro-
dynamics and mainly concerned with longitudinal
expansion. However, we take a somewhat different
point of view from that of Landau. We propose
that the local elements of the condensed matter
system first undergo a violent acceleration along
the longitudinal direction. The system reaches
a state of certain frame-independence symmetry.
Only from this point onward is the system gov-
erned by the hydrodynamical equation of motion.
This equation demands a specific rate of expansion.
This rate in turn ensures the symmetry to prevail
throughout the expansion. Our solution predicts a
central plateau for the inclusive longitudinal
rapidity distribution.’®* We show in the Appendix,
even after we have taken into account the trans-
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verse motion of the matter system, that our
solution remains compatible with having an energy-
independent average transverse momentum for

the inclusive pions. These features differ from
those of Landau’s model.

II. HADRONIC MATTER SYSTEM PRIOR TO ITS
BREAKUP

A. The initial matter system

For simplicity we consider collisions between
two identical hadrons such as nucleon-nucleon
collisions. But we shall neglect their spins. In-
itially in the center-of-mass system, each incident
nucleon is surrounded by a meson cloud with a
characteristic transverse dimension 7172, where
i is the pion mass. Along the longitudinal direc-
tion there is Lorentz contraction, so the dimen-
sion is A ~(uy)™! with y being the usual Lorentz
contraction factor W/(2m ) and W and my being
the c.m. energy and the nucleon mass.

Let the collision take place at {= 0. The two
“bare” nucleons pass by each other and emerge
as leading particles in the final state, which may
also be accompanied by some fragmentation pro-
duction. In the meantime, the meson clouds left
behind form a condensed hadronic system. The
matter system should be regarded as some ef-
fective system averaged over headon and nonhead-
on collisions.

We denote the initial c.m. energy and momentum
of the nucleons by E* and p* and those of the two
leading-particle systems by E¥ and p}* and E and
DX. Thus the energy and momentum of the re-
maining matter system are

Ey=2E*-(Ef+ E}),
By = —(Bf + B5),

-

M = (EMZ - pM2)1/2 s
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where M is the invariant mass of the matter
system. Typically we expect M ~e,W, where ¢,
is the inelasticity parameter which is presumably
constant at high energies. Our consideration be-
low will be given in the c.m. frame of the matter
system.

Due to the earlier longitudinal motion of the
meson clouds, the matter system left behind con-
tinues to be compressed until, say, ¢=¢,, when
the associated kinematic energy has transformed
into matter and also into some sort of potential
energy. Presumably, at this point the entire
system is approximately at rest. We suggest
t,~0(A), which corresponds to the characteristic
time taken for the complete overlap of the two
initial systems.

B. Violent expansion and the frame-independence symmetry

This stationary state is immediately followed by
a violent acceleration along the longitudinal direc-
tion. We divide the entire matter system into
cells with their coordinates specified by

x* = (x° &', X2, x*) = (p cosha, x!, %, psinha). (2)

In general, different local cells may experience
different accelerations. After a certain proper
time has elapsed, the acceleration ceases. Prob-
ably the proper time interval involved is again of
the order of the initial longitudinal dimension of
the system. For definiteness, say this is at the
local proper time p=p,~O(A). At this stage, we
assume that the system has local thermal equili-
brium. And it has also reached the state of a
certain frame-independence symmetry. In par-
ticular, it appears to have lost its memory about
the longitudinal direction except for the original
space-time point of collision. In other words, the
system appears to be identical in all frames re-
lated to the c.m. frame by a boost transformation
along the longitudinal direction.'®

We assume that the motion of the cells along
the transverse direction is negligible (see Appen-
dix A for justification on this assumption). With
the neglect of the edge effect, the proper quantities
of the cells in the interior of the system are ex-
pected to be independent of the transverse coor-
dinates x, and x,. It is convenient to describe this
frame-independence symmetry in the two-dimen-
sional subspace with the coordinates

* = (x°, x3) = (pcosha, psinha). (3)

At p=p,, the only scalar and unit vectors at one’s
disposal are
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p= (2}12#)1/2
and (4)
¥ = %*/p= (cosha, sinha).

Therefore, all proper quantities are functions of
p only, and tensorial quantities are to be formed
from 7,.

Returning to the four-dimensional space-time

at p=p,, for r= (x> + x,%)/2< "', we have

u* = (cosha, 0,0, sinha),
T (x) = [e(p) + p(p)]u*u’ - g*"p(p),

where € and p are the proper density and the
proper pressure of the cells. We will see that
these equations hold for p>p, also.

The quantity @ may be identified as the rapidity
of the cell. The parameter p is by definition the
proper time of the frame which is related to the
c.m. frame by a boost transformation along the
x, axis with velocity x*/x°. For p>p,, p is es-
sentially the proper time of those cells to be
located in the transverse plane which passes
through the origin of the transformed frame.

For p>p,, the hydrodynamical equations of
motion are given by!¢

(5)

8,T#"=0. (6)

In terms of the variables a and p, Eqs. (6) are re-
duced to one nontrivial equation,

de €+p

= =P 7

R (7
With the thermodynamical relations, € + p=Ts
and de = Tds, one obtains

ds s

—+—-=0, 8

) (8)
where s is the proper entropy density. This is
equivalent to the continuity equation for the en-
tropy,

3,(sut)=0. 9)

The solution of the differential equation of Eq.
(8) is

sp=const or s 1/p. (10)

We see that, once the status of the frame-inde-
pendence symmetry is assumed at p= p,, the
hydrodynamical equations of motion predict an
inverse law of expansion for the entropy density
and maintain this status until the breakup of the
matter system.

During this expansion interval, the cell velocity
is given by v = x3/t, so each cell appears to be
expanding with a constant velocity. However, this
does not imply that the pressure gradient at each
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cell is zero. We observe that for any given cell
with x;> 0 (x,<0), there is always a positive (neg-
ative) temperature gradient along the longitudinal
direction, and in turn a net inward force on the
cell toward the origin. This inward force is ex-
actly compensated by the force due to the inward
flow of the matter flux. This is reminiscent of the
mechanism for a rocket traveling in outer space
which maintains a constant velocity, despite the
constant bombardment of the meteorites.

III. BREAKUP OF THE MATTER SYSTEM AND
INCLUSIVE DISTRIBUTION

A. The breakup criterion and the decay temperature

While the expansion is going on, the proper
matter density of local elements decreases rapidly.
Similarly to the usual approach,'” we assume that
there is some critical matter density n, below
which the hadronic matter does not exist.!® This
density is presumably governed by the range of
strong interaction or n, = (4/37)u"%. Therefore,
when the local element has reached this critical
density, the matter inside it coalesces into hadrons,
such as pion and other species. We make the
usual assumption that the boson and fermion con-
stituents within local elements satisfy the Bose-
Einstein and the Fermi-Dirac distribution,
respectively.

For the determination of the decay temperature,
we shall neglect the contribution of other species.
Then the matter density

ne= g 0= a5 [ @i, w) (11)
with
(D, 1) = {expl(n?+p?)"2/T,] -1}, (12)

where g, = 3 is the statistical weight of the pion
isospin multiplet. From Eq. (11), the tempera-
ture at the breakup is found to be 7', ~ u.

We mention that at this temperature the ratio
of the nucleon density to the pion density can be
shown to be

T

m 3/2 .
ny/my~ g,,(#) exp(~my/T;) with gy =4,

(13)

which is much less than unity and is energy in-
dependent. This ratio of particle densities governs
the ratio of the heights of the central plateau of

the corresponding rapidity distributions at asymp-
totic energies.

B. The total entropy and the average multiplicity

The hydrodynamical equation provides the space-
time development of the entropy density. However,
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to calculate the particle distribution, we need the
matter density. We relate these two densities at
breakup through the statistical distribution as-
sumed. In particular,

= (§;)3 fd3p 71‘_" <E + %)f(l’, n)=n./b,

(14)

where E = (u? + p?)V2. With T, = p, one gets b

= 4.2. Note for massless case (i = 0), one has
b = 4. Summing over the contributions from the
appropriate volume elements at the fixed decay
temperature T,, one finds that the total entropy
S and the average multiplicity N are linearly re-
lated:

Sx

N=bS. (15)

Hence, the particle distribution can be deduced
from the entropy distribution.

For most discussions given in this work, further
detailed specification of the average multiplicity
N is not needed. However, for completeness, we
suggest a possible lower bound for the energy
dependence of N. We recall the total entropy is
conserved for p=p,. Denote the proper time at
breakup by p,. Then,

S(py) = S(p;) = S(t=t,). (16)

If one were to assume that the thermal equilibrium
had already been reached at ¢{={,, and the equation
of state is € = p/3, one gets the usual relation

S(tl) d:Mllz ,
or (17)
N(pg)z MVZ,

C. The cell longitudinal rapidity distribution

At the breakup, the velocity distribution of the
cells is given by

dN=bdS=bsu,dd", (18)

with
dot = (dx'dx*dx®, dx*dx3dx®, dx’dx°dx’, dx%dx'dx®) .
(19)

The quantity dN is the number of pions inside the
cell, which has a four-velocity »,. From Egs.
(5) and (18), one has at p=p,,

dN=bs,(u°dz - u®dt)dxdx, = bs,p,da dx, dx, .
(20)

We know that within »< u~!, s, does not depend
on x, and x,. With Egs. (5) and (20), it follows
that the cell velocity distribution is given by
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d
ag= Tbs ppt™2 for ul=1#=0

)

= 0 otherwise. (21)

D. The pion momentum inclusive distribution

The inclusive momentum distribution of decay
pions can be obtained by folding the assumed sta -
tistical distribution of pion thermal motion into
the cell velocity distribution. Denote the pion
momenta in the c.m. frame of the matter system
and in the rest frame of the cell, respectively,
by

Pu = [(Flz + -5T2)”2 COShd, 51‘1 (uz + 57'2)1’2 Sinha]
(22)

J

cosh(a -a’’)

and
by, = [(u? + B2)"2 coshar’, By, (42 + BF)2 sinha']
(23)
Then, the pion momentum distribution is given by
an=Lse [ o 5, wasp . (24)
810 s
With the kinematic relations,
pr=Pbr,
a'=a-a',
and (25)

da'dpf? = dadp,?,

one arrives at

dN _ P8y 2 2\1/2 famax
dadeZ - 4”“2 (/J' +pT )

where the limit of @'’ is to be determined below.
The pion momentum distribution of Eq. (26) is
defined in the c.m. frame of the matter system.
One may in a straightforward manner convert this
distribution to that given in the initial c.m. sys-
tem.' Furthermore, taking into account the
-leading-particle momentum distribution, one can
eventually arrive at the single-pion inclusive dis-
tribution.?®

We proceed now to determine «_, . We will
only look at its asymptotic behavior and thus
neglect the effect of the thermal motion. Making
use of the inclusive sum rules one has

N= de: 2mbu"2s ppa s (27)
and
M=fEdN
= fucoshadN

= 2mubu~2s,p,sinha (28)

max *

It turn the maximum rapidity and the decay proper
time are given by

M
U ~ 1IN
(29)
and
ps~N/27p"2s,1n(2M/N)].
If we take the lower limit of Eq. (17), we find
., ~3lnM. (30)

On the other hand, if we assume N~1nM, which

S do exp[ (12 + pr?)"?cosh(a —a’’)/T,]-1" (26)
|
is also compatible with the data,
Q. ~1nM . (31)

Our prediction on the inclusive transverse mo-
mentum distribution for @ = 0 (with T, = 140 and
150 MeV), taking into account the cell longitudinal
rapidity distribution, and the data®! are illustrated
in Fig. 1. Notice that the agreement with the
low- and high-energy data are reasonable. In the
small p, region (p,<0.2 GeV), only the 24-GeV/c
data are available. It will be interesting to see
whether the predicted transverse momentum dis-
tribution in this region is in agreement with future
data at higher energies.

IV. COMPARISON OF OUR WORK WITH LANDAU’S
MODEL AND THE MULTIPERIPHERAL MODEL

The main difference between Landau’s approach
and ours is in the degree to which one incorporates
hydrodynamics into the time development of the had-
ronic system. Within his work, Landau assumed
that the collision phenomena can be accounted for
solely by hydrodynamical considerations. Let us
recall briefly here Landau’s picture. At the col-
lision, shock waves are generated at the surface
of contact, which propagate longitudinally outward
along both directions. In each direction, after
the shock wave reaches the corresponding bound-
ary of the resulting system, running waves begin
to develop. At each side, there are two wave
fronts, with one flowing outward into the vacuum
and the other towards the center. The two in-
ward-moving wave fronts from the two sides
collide at the center and subsequently give rise to
the general waves. These waves are then propa-



906 CHIU, SUDARSHAN, AND WANG 12

1000

a=0
o 24 GeV/c
0~ 1500 GeV/c

1 111111

100

T T T T
Lol

1

(arbitrary units)
T

S

LEBLBRBLIRILER]

.
o

vl

1

1

T TT’IIII’]
7

| | 1 1
0.2 04 06 [oX] 1.0 1.2 14

Py (Gev)

FIG. 1. Pion inclusive transverse momentum distri-
bution at @ =0. The theoretical curves are predictions
of Eq. (26), with T, =140 and 150 MeV. For the data
see Ref. 21.

gating outward. Features of the multiparticle pro-
duction are completely governed by the properties
of the general waves.

This is to be contrasted with our picture, where
in a very short time after the collision there is
a violent acceleration for the entire system which
is followed by the achievement of the frame-inde-
pendence symmetry. Our use of hydrodynamics
is only confined to the application of its equation
of motion after p,.

Owing to this difference, the solutions to the
hydrodynamical equations for these two models
are quite different. For instance, in Landau’s
model for the running waves there are two vectors
specifying the matter system: the space-time
two-vector %,, and the initial velocity of the entire
system, which in the c.m. frame is given by b,
= (1, 0) for the two-dimensional case. With these
two independent scalars, p®= X,%" and w=%,b".
So in general, proper quantities can be functions
of both p and w. Here the proper matter density
is a function of the variable x*/x°, which is in
fact [1 - (p/w)?]¥2. Within our approach, due to
the violent acceleration prior to p~ p,, the matter
system becomes frame independent. Thus, for
the description of the development of the longi-

tudinal expansion, there is only one two-vector at
our disposal.

The rapidity distributions predicted by the two
models are also quite different. Consider the
one-dimensional case for which there are exact
solutions available. Landau’s model gives an
approximate Gaussian function for this distribu-
tion with its width given by ~(InM)¥2, while we
get a plateau distribution with the magnitude of its
limits extending to +3 InM, for N M'/? as in
Landau’s model.

We now turn to the multiperipheral model®?
which also predicts a flat longitudinal rapidity
distribution. Recall that in the multiperipheral
models, particles are emitted along the multi-
peripheral chain with sharp transverse momentum
cutoffs. They are ordered in the rapidity space.
Within this model, apart from the two particles
on both ends of the chain, the probabilities of the
production of all interior particles are comparable
in strength. In other words, their production pro-
babilities are insensitive to specific locations
along the chain. This may be regarded as an ex-
ample having the frame-independence symmetry.

In the multiperipheral model the transverse mo-
mentum cutoff is mainly due to the Reggeon-
Reggeon-particle form factor. This is to be con-
trasted with our model, where the cutoff is due to
the smallness of the transverse momentum of the
local elements and the thermal motion within
them. Furthermore, with a fixed breakup tempera-
ture our approach leads to a universal transverse
momentum distribution, which is also in good
agreement with the data.
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APPENDIX A: AN ESTIMATION ON THE TRANSVERSE
HYDRODYNAMICAL EXPANSION

In the main text, the transverse motion of cells
is assumed to be negligible. The dominance of the
longitudinal motion is plausible since the original
impact is along the longitudinal direction. In gen-
eral, when one takes into account the transverse
motion, the space-time development of the hydro-
dynamical system may be very complicated. To
give an estimate on the average transverse cell
velocity, we again make use of the notion of the
frame-independence symmetry and propose a



crude picture for the space-time development.

We suppose that the acceleration along the trans-
verse direction similar to the longitudinal case
also begins near {={,. Along with the longitudinal
motion there is a weak acceleration in the trans-
verse direction. Now we go to the longitudinal
rest frame of some transverse slice of the sys-
tem. The proper time taken for the propagation
of any signal from its center to its edge is of the
order of u~!. So it is plausible that the accelera-
tion along the transverse direction should proceed
at least for a proper time 7= (%2 - x,% = x,2 — x4%)'/2
= 7,7 u~', For definiteness we assume that the
transverse acceleration ceases at 7= 7;. Analo-
gous to the longitudinal case, at this point we as-
sume that the system may be described in an
identical manner in all frames related by four-
dimensional homogeneous Lorentz transformations
except at the boundary. We recall that due to the
earlier asymmetric accelerations along the longi-
tudinal and the transverse directions, the bound-
ary is very much elongated along the longitudinal
direction. We introduce the quantity u;** to
specify the maximum of the transverse component
of the four-velocity of the cells.

Now, the space-time four-vector may be param-
eterized as

x, = T(coshBcosha, sinhBcos¢,
sinhBsing, coshBsinha)
=T, . (A1)
The frame-independence symmetry at 7, leads to
uy=%,/7=1,
and
TH(x)= [e(7) + p())utu” = g*"p(7). (A2)

The observables for this case may be obtained in
a similar manner as those for the two-dimensional
symmetry case. We briefly state the results. The
equations of motion are now reduced to
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de 3 ds 3s

dT+:r-(€+p)_.O or d—T+T—O. (A3)
The solution is

sT=§,75, Or sx '7'1'3', (A4)

where s, and 7, are the entropy density and the
corresponding proper time at breakup. As ex-
pected, for this case the entropy density decreases
much more rapidly as compared to that for a

pure longitudinal expansion. The cell velocity
distribution is given by

dN _ 27bs, T3 for .. <umax
ququa - l-"z T T
= 0 otherwise. (A5)

If one assumes N~ MY2, from the inclusive sum
rules one finds that at breakup, the proper time
is given by

Tpoc MYS/(InM)V3, (A6)

Hence, if u}** is nonzero, one has for large
enough M, 7,<<7,. Therefore, for this M, there
is always the proper time interval where the three-
dimensional expansion is significant.

Now we need to fold the thermal motion into the
cell velocity distribution to obtain the pion in-
clusive momentum distribution. The resulting ex-
pression is rather complicated. However, we
need not go into the details here except to point
out the fact that because of the flat cell transverse
velocity distribution of Eq. (A5), there should be
a corresponding flat region in the pion transverse
momentum distribution near p,= 0. From the
data shown in Fig. 1, by allowing an additional
flat region near pr=0 in the pr distribution, we
estimated that uJ** <0.5. We see that for large
M, even though there is always a three-dimen-
sional expansion, this expansion essentially does
not affect the pion inclusive distributions con-
cerned in the text.
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