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We show that contrary to recent claims, the Lagrange and Heisenberg equations of motion
are the same for the quantized charged spin-3 field in the presence of a minimal external
electromagnetic interaction. For dynamical systems with constraints depending upon external
fields, the explicit dependence of the dynamical variables upon these external fields must be

taken into account.

The quantization of fields in the presence of con-
straints involves serious problems which in some
cases can be overcome using the technique of
Schwinger® which is a special case of the general
theory of Dirac.? A common difficulty that arises
after the fields are quantized using such techniques
is that the Lagrangian equations of motion are not
necessarily consistent with the Heisenberg equa-
tions of motion. In the following we show that when
the charged spin-3 field in the presence of 2 mini-
mal external electromagnetic interaction is quan-
tized using these techniques,® the Lagrange and
Heisenberg equations of motion for the quantized
fields are consistent. This demonstration of con-
sistency refutes several recent claims.*®

Because the external electromagnetic field is an
explicit function of space-time, we must use a
slightly different notation for derivatives than is
customary in quantum field theory. We use d,,
=d/dx* to indicate a total derivative and 8, = 8/ ax*
to designate a partial derivative. Hamilton’s
equation, for example, is then written

v=dy=—ilv, H]+ 8y , 1)

where [A, B] is the commutator and H is the Ham-
iltonian, Often in quantum field theory, none of the
objects are explicit functions of space-time. In
that case all the terms of the form 9,v are zero so
the symbol 9, becomes free and so may be used

to indicate a total derivative rather than a partial
derivative with no resulting confusion.

With the exception of derivatives, our notation
is that of Bjorken and Drell.® The space-time co-
ordinates are denoted by x* = (¢, x*, x2, %) and we
use the metric tensor g"” where g®=-g!'=~g??
=—g®=1. The Dirac y matrices y* satisfy 7°7 =9°
and y!"=—y% Greek indices range from 0 through
3, Roman indices range from 1 through 3, and all
repeated indices are summed over the range of
the index.

The spin-3 field can be conviently represented
by the Rarita-Schwinger’ vector spinor §* which,

8

in the presence of a minimal external electromag-
netic interaction, obeys field equations that can be
obtained from the Lagrangian density*

L=+[3,(D,y° +m)y+ - b, (D7 +D*y"),
+-¢-“VN(DPYp—m)VV¢y] ’ (2)
where D! = —id" — eqA*, e is the charge on an elec-
tron (e<0), and ¢ is the charge operator acting on
the spin- field. The field equation obtained from
(2) is
Dy +m)t = (D"y* +D*y" ),
+7"(DPy, =myy"Y,=0. (3)
Taking 1 =0 in (3) yields the primary constraint
=D, +Dly ;= myty, =0 . (4)

At this point it is convenient to introduce the new
field variables

¢j =Pjh¢h y (5)
and

X =Yj¢j ’ (6)
where

Py=gin- %Yﬁ’h . )

From the definition of P;, we readily verify that it
satisfies the following relations:

VP =Pyt
=O 5
P, P" =P,

jr 2

®)

T -
P:‘h‘Plu‘-

In terms of ¢, and x, the primary constraint (4)
becomes

X=-3%3m-Diy,)'D* ¢, . (9)

Taking p =% in the field equation (3), rewriting
it in terms of ¢; and y, multiplying by P,;, and
summing over ¢ allows the equation of motion for
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¢, to be written as To verify that the Heisenberg equations are satis-
2 fied ill need the identi
Ao, ==iyo(Dyyi +m)¢, ied we will need the identity

+352iyo(=D, +v, D' —my,)x PYD.D =-%($m®-D'D, +3eqF'"0,)
, . i
e +ieqAyd, +iv,P,; DG . (10) +(3 m? +%eqF"c,,) , (12)
G =ieq(: m? + SeqFy, o™ where FY=d"A" - d"A" = 574" - 5A".
] Lk L, Using the Schwinger quantization procedure, we
X[y*Fy; ¢! = 5iF ;0% = $vey'Fox] , (11) are led to the quantization conditions®
and
oM =i 1] {:x, 1), ¢,(x", 1)} =0 (13)
=1 , .
J
and
{oix, 1), o1(x", )} == P, [g™ = D"(3 m* + 3¢qF0,,) ' D*] P, 5%(x - x") . (14)

In the presence of a minimal external electromagnetic interaction, the Heisenberg equations of motion
take the form

dy¢j="i[¢j’Pu]+au¢j~ (15)

The commutation relations (14) already show that the quantities ¢, depend explicitly on time, but the depen-
dence is too complicated for us to display in a direct fashion. At first sight it might seem strange that the
¢; are explicit functions of time, but this comes about because of our primary constraint. If we arbitrari-
ly decide that 3, and ¥, are not explicit functions of time, then we can use the primary constraint (4) to ex-
press ¥, as a function of ,, ¥,, and the electromagnetic field. By virtue of the fact that the electromagnet-
ic field is an explicit function of time, i, also contains explicit time dependence. So at least one of the
;s must contain explicit time dependence. Because we want to treat all of the ¥,’s and, consequently, all
of the ¢,’s on the same footing, all of the ¥,’s and all of the ¢,’s contain explicit time dependence.

From the action principle we find that P”, the generator of space-time translations, is given by

PV= —§ f daix[oitav e, +ExTdx] . (16)
Using the primary constraint (9) we calculate
d'x ==3(Fm =Dy ) [D'd" ¢; +eq(8 AN (=, +Fvx)] . am
With (17) and x ' as determined from (9), P" takes the form
PV=—i f d3x{ ¢i[ g% +3D* (3 m® - D'D, +3eqF *0,)'D']d" ¢,
+3eq@D*(§m® -D'D, + 5 eqF™0,) (8" A')(= ¢, +3vxX)} . (18)

We are now in a position to verify that ¢; and x obey the Heisenberg equations of motion. Using (18) and
the identity [4, BC]={A, B} C - B{C, A} we calculate

—i[¢;(x', ), P"]=~ f de{{¢,(x', 8), 7 Hg* + 3 DH(§m? = D'D, + § eqF"0,,) D} ]d" ¢,
— 9][g" +§ DNG m? = D'D, + } eqF"*0,) "D {d¥s,, 6,(x', B}
+{0,0c', ), 07} § caDH§ m® = D'D_+ } eqF"*0,) (8 A% (= b, + 3 v:x)
— 3 eqoIDHG m? D7D, + } eqFT*0,) (AN {6, + 3 7.x, 0,0, t)}} . )

From (13), ¢, anticommutes with ¢, and its space derivatives, so the fourth term in (19) is zero. Since
d” ¢, can be expressed in terms of ¢; and its space derivatives [Eq. (10)] d°¢, as well as d*¢; anticom-
mutes with ¢,. Consequently, the second term in (19) is also zero. Using the adjoint of (14) and the iden-
tity (12), we find

~i[p{x', 8), PV]= f d*x[63(x - x)d” ;- 63(x = x")eqP;, D" (3 m® + 5 eqF "°0,) (8" A') (¢, - T vix)] . (20)
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If we carry out the integration and then make the substitution x’—~ x we obtain

d”¢j=_i[¢j’Pv]+equ"D" ('23' mz""é'EqFrsUrs)-l(ayAi)(d)i_%V,'X) . ’ (21)
By comparing (21) and (15), we see that consistency demands that
0" ¢,=eqP ;D" (3 m®+ 5 eqF°0,) (3" A)d; = Fvix), (22)

yielding the dependence of ¢;lon the external field A% At this point we can calculate 3"y from the equation

vy, 3X VApi BX v
a'x =557 9°A e 8¢, .
Using (9) and (22) leads to the result
8'x =eq(3 m+D'y ) (3 m® + 5 eqF ™0,) " (8"AM) (¢, - T X) . (23)

We have deduced (22) and (23) by assuming that ¢, satisfies the Heisenberg equations. Equation (23) per-
mits us to verify that y obeys the Heisenberg equations of motion. Using the primary constraint (9)

—i[x(x, t), P"|=3i(3 m = D% ,)"'D,[¢*(x, 1), P"] .
Using (21), (12), and

($§m*-D'D,+%eqF"0,)=(3 m ~D"y,)(3 m +D%,) ,

we find
—i[x(x, ), P"]== % (3 m = DYy )7'D, d” ¢* + 3 eq(§ m = DIy )7 (8" A%)(¢; = T ¥ ;x)
—eq(3m+Diy)(3m® + 5 eqF°0,) (8" A%) (b, - F7x) . (24)
From the formula 8’R~'=-R~[8"R]R™', we readily verify that the second term of (24) becomes
7 eq(3 m =Dy )7 (8" AN)(¢, = §vix) ={d*[- 3 (3 m =Dy )7'D, ]} ¢* . (25)
So with (25), (24) can be rewritten
d’x ==i[x, P"]+eq(3 m +Diy)(3 m® + 5 eqF "0,) (8" A%) (¢, - 3 v X) . (26)

Equation (26) is in agreement with the Heisenberg equations of motion since by (23) the last term in (26)
is 9.

From the above we conclude that the quantized spin-§ field in the presence of a minimal external electro-
magnetic interaction does obey the Heisenberg equations of motion although the equations take the general
form of (1). The form of (1) might have been expected from the general result of the paper of Johnson and
Sudarshan that the kinematics of the spin-3 field necessarily involves the dynamics.®
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