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Several theorems are proved which exhibit the impossibility of constructing nontrivial products of the
Lorentz group with internal symmetry groups for some physically interesting examples. It is also shown
that if the Lorentz group is replaced by the Galilei group, qualitatively different results are obtained; a

“linear"” breakdown of internal symmetry is possible.

I. INTRODUCTION

HE existence of approximate internal symmetries
within the framework of a relativistic quantum
theory and, in particular, the possibility of a broken
symmetry being the manifestation of a larger exact
symmetry group (which subsumes the Lorentz group)
has been discussed recently by several authors.!—3 (See
also papers quoted in Ref. 6.)
We might, as a first step, consider a Lie group which is
a product* of the internal symmetry group and the
Lorentz group. In this connection, McGlinn® has shown
that if the homogeneous Lorentz transformations com-
mute with all the generators of the internal sym-
metry group, then it has to reduce to a direct product
for a large class of symmetry groups, larger than, but

* Supported in part by the National Science Foundation and
by U. S. Air Force Office of Scientific Research Grant No. AF-
OSR-385-63.

1 Such attempts have been discussed by A. O. Barut and B.
Kursunoglu, Proceedings of the Conference on Symmetry Prin-
ciples at High Energy, Coral Gables, Florida, January 1964
(to be published); also Phys. Rev. (to be published).

2 H. Frohlich, Nucl. Phys. 45, 609 (1963).

3W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964).

¢ Throughout this paper, the term “product” of two Lie groups
(or sum of the Lie algebras) will denote a product of the groups
(sum of the algebras) for which the generators of each of the two
components maintain their original commutation relations, but
do not commute with each other, the commutator being linear in
the generators of both groups. If the commutator is linear only in
the generators of one of the components, that group is an invariant
subgroup and the product becomes a semidirect product. For a
definition of semidirect products see, e.g., E. Hewitt and K. A.
Ross, Abstract Harmonic Analysis (Academic Press Inc., New
York, 1963), Vol. I, p. 6. The following notations will be used:
Py My, (1, v=0, 1, 2, 3) are the generators of the inhomogeneous
Lorentz group (Poincaré Group), X, are the generators of the
internal symmetry group, [X,X.,]=2,¢,"X, For simple
algebras we use the Cartan-Weyl basis: the commuting generators
will be denoted by Hj, the “ladder” generators by E,:

[HyH]=0 1, k=1,2, ---, 7 (r=rank),
[Ea,E-a]= Zri(a)H,,
1

[Hl;Eoe] =" (a)Ea;
[FeyEg]l=NogBass (a5 —B),

[cf. e.g., R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee,
Rev. Mod. Phys. 34, 1 (1962)].

including, the class of semisimple groups. We will re-
derive McGlinn’s result in this note in a more trans-
parent manner which will enable us to make a precise
characterization of these groups: they are groups with
Abelian factor groups (and these include all solvable
groups). McGlinn’s result has the implication that for
most internal symmetry groups of interest the Hamil-
tonian must commute with the internal symmetry
generators so that mass splitting within the multiplets
cannot be obtained within this framework.

In the following section we will derive McGlinn’s re-
sult, and state and prove several related results. We
shall work exclusively with the Lie algebras rather than
with Lie groups.

II. LORENTZ GROUP AND SYMMETRIES

Theorem 1. [McGlinn (Ref. 3).] Let X, be the set of
generators of the internal symmetry group S and P,
M,, the generators of the (proper orthochronous in-
homogeneous) Lorentz group £. If the set of these
generators is closed under commutation and if

[Xp»M#v:I:O; (1)

[[X,,,X,],P,,]=O. (2)

If S has no Abelian factor groups we can further show
that

then

[XP,P,,]?JO. (3)
Proof: Let

[XmPu] =2 GppeX ot bpuvpv_!“(z)\) CoutrnyMon. 4)

Taking the commutator of both sides with M, we may
deduce

Couo=0; bpu=0(p)0w; Coueny=0. ()
We thus have
(X0 Pul=b(p)Py. (6)
Hence
[[meall)u]:o- (7)
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Since [[X,,X,],P. |=0, it is clear that if every element
X, can be expressed as a linear combination of commuta-
tors [ X,,X,], then [X,,P,]=0. If, on the other hand,
there exist elements which cannot be spanned by the
commutators, we cannot then deduce this result; but
in such a case the group generated by the commutators
of the generators of S is an invariant subgroup of .S and
the factor group S/S; is Abelian. Conversely, by a
theorem stated in Pontrjagin,® we can deduce that if
there exist (nontrivial) Abelian factor groups .S/S.,
then Sy is a subgroup of .Sy and consequently the com-
mutators do not span the generators of S. We note also
that given such a situation we could always choose to
redefine the elements not spanned by the commutators
such that at most one generator fails to commute with
the Hamiltonian.

These results suggest that in any scheme of incor-
porating internal symmetries of a conventional kind
(simple groups!) into a large group subsuming the
Lorentz group we may have to give up the postulate of
commutation of the homogeneous Lorentz generators
with the generators of S. As a matter of fact we may
drop the requirement that all generators X, commute
with the M ,, but restrict it to only the complete com-
muting set of generators (the additive quantum num-
bers) and require them to commute with all the
generators of the Lorentz group: we would like the strong
interactions, even with mass splitting, to conserve both
the electric charge and the hypercharge. The following
theorem states that no mass splittings can be obtained
within this framework either.

Theorem 2.8 Let S be a simple symmetry group with
the generators H;, E, in the Weyl basis and let us
consider the product of the symmetry group S and the
Lorentz group satisfying the Lorentz invariance of H;

[HI:P#]ZO: EIJZ:MW]:O- (8)
Then
[EQ,P,,]:O;

Proof: Let us write
[PmEﬂ:IZZ auaﬂEﬂ+Z bualHl
8 1

[EaM,]=0. )

+Z Cpaypv+ Z dua(w)Mw- (10)
v ¢

veo)
Since [ Hon,[PuyEo] |=7m(@)[Py,Ee], it follows that
Z anaﬂ{rm(a)_fm(ﬂ)}EB_i_Zl 7m(a)bmlel
B

+z 7’m(a)cuavpv+ Z rm(a)dya(yv)Mmr:0~ (11)

(vo)

5L. S. Pontrjagin, Topological Groups (Moscow, 1954), 2nd
(Russian) ed., Chap. X; [English transl.: (Princeton University
Press, Princeton, New Jersey, 1939), Chap. IX].

6 This theorem has also been proved independently by F.
Coester, M. Hamermesh and W. D. McGlinn, Phys. Rev. 135,
B451 (1964). Other work along similar lines has been done by
0. W. Greenberg, Phys. Rev. 135, B1447 (1964). We thank these
authors for prepublication copies of their work.
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Comparing coefficients we get
bnal=0; Cpnv::O; d“a(,,)=0, (12)
Cuep=0 for az%p.
Hence we may write
[PM:EOI:] = a(ﬂa)Ea . (13)
Similarly,
[M,0,Eo]=a((vo)a)E,. (14)
Hence
[[A[VV,PMJ:E&:I:O’ (15)
[[M,0,M>,],E. ]=0. (16)
Hence it follows that
[P,,,E,,]=0, [MW:Ea]:O; (17)

which was the assertion.

We remark here that in view of the commutation re-
lations of the generators of the Lorentz group, we can
replace the commutability of H; with P,, M, by the
(trivially weaker) requirement of commutability of H;
with Po, Mo, only. A related comment applies to the
previous theorem.

Theorem 3. If in the product of the Lorentz group and
the (simple) internal symmetry group S we have the
relations

[:MOVJE-I:I:OJ (18)

then the product simplifies to a direct product.
Proof: From the remark above we deduce immediately

[MW;Eﬂjz(); (19)
so that
[MM:EEmE—a]]: 0. (20)
But
[EaBo]=2 ri(a)H, (21)
so that
}; ri(a)[M ,,H,]=0. (22)

But since the vectors 7;(e) span the /-dimensional root
vector space this implies

(M, H]=0. (23)
We have now shown that
[M;mErx]= 0; [M;mHl:l= 0; (24)

and hence, by McGlinn’s theorem, we deduce that

[PwE.]=0; [P,H:]=0. (25)

Let us now consider the case where .S is an invariant
subalgebra of the Lie algebra associated with the pro-
duct of the groups S and £. We may then consider £
as a set of outer automorphisms of the algebra .S and
the product of £ and S becomes a semidirect product?:

Theorem 4: 1f in the semidirect product of the in-
homogeneous Lorentz group £ and the (simple) internal
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symmetry group .S, we have the relations

[HlyMMV]=07 (26)
then

[HZ’P#]: [EdaMﬂvj“_‘ [EmP#]: 0, (27)

and the semidirect product reduces to a direct product.
Proof: We may write

[Mpu;Ea:l:Z a(##)alHl+Z b(w)aﬂEﬁ- (28)
Then ! p
[H (M ] ]
= 2;4 b(#v)aﬁ’m(ﬁ)Eﬂ
=m(a) [Mqua]
zrm(a){z d(uv)allll—i‘z b(nv)aﬁEﬁ} . (29)
Hence ! #

rm(a)d(,‘y)az=0 and {ﬂn(a)‘—rm(ﬂ)}b(uv)aﬁzox

so that
- a(,_w)al=0 and b(uv)aﬂ:b(w)aaaﬁ'

Thus
[A[#V)Ea]= b(;tv)aEn . (30)
But then
[[Mro,Mw],Ea]=0, (31)
and this implies
[M,,E.]=0, (32)
so that, by McGlinn’s theorem, the full group is a direct

product.

We may also consider the rather “unphysical” case
where the roles of £ and S in the preceding theorem are
interchanged. Indeed, whereas under the assumptions of
Theorem 4 (to be denoted briefly by [£,S]CS, i.e.,
that commutators of elements in £ and .S are linear in
S) one could conceivably accept the fact that £ is an
outer automorphism of S—i.e., “motions” of particles
affect their ‘““internal” properties (e.g., isospin pro-
jections)—the reversed situation ([£,5]C £) where S
is an automorphism of £ (“internal” transformations
affect energy-momentum) is apparently devoid of any
physical meaning.

Nevertheless, we were able to prove that the pre-
ceding results can be established under these circum-
stances also. In view of the limited physical interest of
these assumptions, we state the appropriate theorem
without giving the details of the proof:

Theorem 5. Theorem 4 remains true if we replace the
requirement [ £,5]CS by the requirement [ £,57C &,
i.e., assuming

[H,M,]1=0

[HlaP#jzz eluUPv+ Z) flu(ﬂ‘r)Muf)
o (o7

(33)

and
(34)

one can prove that
[FaMw]=0, ' (35)
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and hence by McGlinn’s theorem, also
[H;,P,JZO,
[EsP,]=0.

(36)
37

III. GALILEI GROUP AND SYMMETRIES

In the above demonstrations we have made explicit
use of the commutation relations of the Lorentz group.
It would be interesting to see if we could get qualita-
tively different results if we replace the Lorentz group
by the Galilei group. We find that this is indeed the
case. :

Our notation is as follows: H is the generator of time
translations, P; are the generators of space translations,
G; are the generators of velocity along the 7 axis, and
M ;i are the generators of rotation in the j,k plane.

Theorem 6. Consider the product of the Galilei group
and an arbitrary simple (internal symmetry) group
with generators H;, E,. If

[HBPJ']: [HUGJ']: [Hl:Mjk:I:O) (38)
then

[Ee,Pi]=[EaGil=[Ea,M]=0 (39)

and there exists a set of numbers p() and ¢(a) such that

[H—; P(Z)Hl—z 9<0¢)an Hm:lzoy

(40)
[H—Zl p(l)Hl_E Q(Q)an Eﬂ]: 0.
Proof: Let
[H,H]=aHA+3 biiPit2. aGit 2 dignM i
j j )
+> enHntD fralla. (41)
Since
(M i, Hil=[Mx,H]=0 (42)
by evaluating [ M ;:,[H,H]] it follows that
sz=Czj= du_jk)=0. (43)
Hence
(HLH]=aH+Y enHu+Y fiaka. — (44)
Let us write
[PjEc]=%jaH+2 YiaHi+2_ 2iapls
l B
+3 UjarPrt2 viatGrt 2 WiagyMu.  (45)
% % k)
Using the result
[Hny Pj)Ea]]:7"<a)[Pj;Ea]) (46)
we can deduce
Wik = Vjak = Wja k) =0 (47)
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as well as the relations

Tia{l@r—7a(a@)} =0,

Viam¥n (a) —Xjabnm= 0 y (48)
Ara(@)—74(8)}2jas=0.
But since
0= [Gj,[Hl,H]:lz ale—}—Z fla[Gj,Ea] (49)
and “
[Hm,[Gija]:lz7m(a)[GJ"Ea] y (50)
it follows that
= 0. (5 1)

Using this in the above equations and making use of the
properties of the root vectors, we obtain

xfa:O: yjam:oy ZjaB™ E(ja)aaﬂ' (52)
Thus
[Hlyﬂ:l: Z elmHm+Z flaEa )
m a (53)
. [PjEe]=E(ja) Ea.
Using
EH7L1[:Gf7E!1]]:77l(a)[Gf)Ea:] ) (54)
[Hn,l:Mjk,Ea]:]=fn(a)[M:;k,Ea], )
we may deduce in a similar fashion
iEo]=1(je)Ee, .
(G ] 77(.7‘0‘) (55)
[Mik:Ea]: f(]ka)Ea .
But this implies that
[EPinjk]’Eaj: 0 )
[[GiaMik:I’Ea:lzoa (56)
[[M;,M1],Ea ]=0.
Consequently,
[Py Ee]=[Gj,Eo]=[Mjr,E.]=0. (57)
We now evaluate
[HL[HnH]]=[H;, 2 ennH 0t fralla]
(58)

=3 fmari(@)Eq.

Since the left-hand side is symmetric in / and m it
follows that

rl(a)fma: rm(a>fla ) (59)
which requires that
fra=gle)ri(e). (60)
Now consider the quantity
a=H-Y ¢(@)E.. (61)
Then “
[Hlyfl:} = Z elmHm )
[Pye]=[Mral=0, (62)

(Gjal=[G;,H ]=P;.
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Since

[pjy[elylga]]: [GJ',EGI:EaJ]: [Mfk;[GI)Ea]]’ (()3)

we may write (without any loss of generality)

LevBoal=2 gallit2 haplis. (64)
1 8
Then
7'n(a){212 gﬂllHl—*—Zﬂ haﬂ'Eﬁ} = [Hm[elaEa]:l
=§ hagra(8)Eg.  (65)
Hence
gal:o, haﬂzh(a)aaﬁ: (66)
so that
Let,Eal=h(a)Ea. (67)
But since
[Ea;Eﬁ]:NaﬂEtﬂ—ﬂ; a® —67 (68)
we have the relation
h(a)+h(8) = h(a+B) (69)

[which is valid for a= —g also if we define 2(0)=0].
But any such quantity A(a) may be expressed as a

linear sum
W) =2 p(Dria). (70)
l
Now if we define

€= qw}l: p(l)llz=II—~Zl‘, P(OH =3 qla)lee, (71)

we may deduce

[eo,H[] = [E(),Ea] = 0 . (72)

The results obtained so far are the best possible: we
cannot deduce anything better. To see this we consider
a direct product of the Galilei group and the internal
symmetry group. Then we may make the transcription

H— H+Y p(OH+Y. () Ea (73)

without affecting the Galilei group commutation rela-
tion or the hypothesis.

Itisinteresting to see that the “broken symmetry” so
obtained has the property that the Hamiltonian trans-
forms as the sum of an invariant and a linear combina-
tion of the generators of the internal symmetry group;
by a redefinition of the basic elements of the internal
symmetry algebra we can make the term noninvariant
with respect to the internal symmetry group to be pro-
portional to a single H;. We have thus a situation
familiar from the phenomenological theories of Gell-
Mann and Okubo.

The above theorem is the Galilei analog of Theorem
2. We may now state the analog of McGlinn’s
theorem.
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Theorem 7. Consider a product of the Galilei group

and a simple internal symmetry group. If

[CHuM 3 ]=[H1,G;]=0, [M,E.]=0, (74)
then
[Hl)Pf]=07 [Pi:Ea]z [GJ',EaJZO; (75)
and there exist numbers p(/), ¢(«) such that
[H_E P(Z)HI—Z Q(Q)Ea; Hm]: 0 )
1 P (76)

[H—Zl: pOVH,—Y ¢(a)Eq, Eg]=0.

Proof: As in the proof of the previous theorem, we
can write

[HZ,H]=01H+Z elmHm+Z flaEa- (77)

Taking the commutator of both sides with respect to
G; we get

LH,Pi]=aiPi+2 fia GjE]. (78)

Since [Mj1,E.]=0, we may write without loss of
generality,

[PiEal=balitcaGit3da 20 il 1, (79)
(kL)
where ¢;z; is the Levi-Civita symbol. Hence
[Py[PrEs]]=4%de X etim[ PiMin]. (80)
(Im)

But the left-hand side is symmetric in 7 and k. Hence

%da Z [fklmpj— t:-jlml)k; Mlm]:O; (81)
(Im)
so that d,=0 and hence,
[Pj,Ea:]=ban+Can. (82)
In exactly similar fashion we may write
(G Eal=gaPi+HhaG;. (83)
But then, since
LH[GyEe]]=r(@)[G;E]=0, (84)
it follows that
[Gj7Ea:I= 0. (85)
Using this we can deduce that X
[Hy,Pi]=aiP;. (86)
Now i
[HZ;EPJ';EG]]: ba[Hl,Pj]':balej ;
= [EHhPJ'])Ea]—— [[Hl)Ea])Pj:l
={artr(a@)}{baPi+caGj} (87)
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Hence ‘
7i(a)ba=0, (88)

so that
0.=0, [P;Es]=c.Gj. (89)
On the other hand, using the commutation properties

of M}; we can write
(HE]=uH+Y v H i+ washis, (90)
1 8

so that

[[GJ)II:LED(]:”“[GJ}II]' (91)

Comparing this with [P;,E. |=c.G;, we deduce that

¢a=0, [P;E.]=0. (92)
We now have
[Ph[Ea:E~a]]:Z r‘l(“)[PJ':HIJZO) (93)
A
so that
[P;,H ]=0. (94)

We may now use Theorem 6 to complete the proof of
Theorem 7.

IV. DISCUSSION

It is not very surprising that we could get “broken”
symmetry with the Galilei group, but it is surprising
that the only kind of breakdown in the symmetry is by
the addition of a term linear in the génerators of the
internal symmetry group to an otherwise invariant
Hamiltonian. In addition, the coefficients of these
generators and the corresponding coefficients of the
“mass formula” are independent of the representation.
It is equally surprising that no such possibility obtains
for the case of the Lorentz group.

If we want a breakdown manifested by an effective
Hamiltonian containing nonlinéar terms in the genera-
tors (like the Gell-Mann—Okubo formula) within the
present framework, we must work with an internal-
symmetry algebra containing these elements; we must
adjoint elements like V2, I(I4-1), etc., to the algebra.
With these modifications we are essentially working
with a higher symmetry group for each multiplet and
could obtain in principle the higher order mass formulas
of Okubo as well. It is interesting to note that the linear
mass formulas are fair approximations to the empirical
situation.

We might also remark on the possibility of relativistic
theories with mass splittings within multiplets. Such
theories can certainly be constructed (at least as far as
any relativistic theory may be constructed!) but
Theorem 2 then demands that the commutators of the
elements of the simple internal symmetry algebra and
the Lorentz group generators cannot be expanded as
linear combinations of the two sets of generators.



