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1. INTRODUCTION

IN previous papers' we have suggested a simple

representation for the vertex function and forward
scattering amplitude, consistent with the usual require-
ments. This representation was of interest due to the
particularly transparent form of the parametrization,
and to the ease with which the mass restrictions could
be incorporated. A natural question arises therefore,
as to the possibility of reaching with the same method
similar forms in the cases of the off-forward amplitude
and the most general two-point function with arbitrary
momenta labelling the initial and final eigenstates.
Indeed, it is easily shown that a similar representation
can be written for the off-forward case, which becomes
especially simple in terms of the total momentum vector
and a quantity related to the momentum transfer, and
involves one more parametric dependence. Similarly,
it will be shown that the general case involves only one
further space-like vector and corresponding parameter.
Thus the kinetical preliminaries and the incorporation
of causality requirements involve no particular diffi-
culties, and the introduction of information combined
in the mass spectrum can then be carried through.
While the existence of three parameters greatly compli-
cates the algebra involved, there is no difficulty of
principle in incorporating these restrictions by methods
similar to those of I and II. Just as in I and II, the
representations so obtained satisfy all the usual require-
ments but are not dictated by them.

While these representations yield information con-
cerning the analytic behavior of the corresponding
generalized Green’s functions, their specializations to
the energy shell in the case of off-forward scattering for
situations of physical interest do not yield analytic
information needed to derive dispersion relations. In
view of their simple parametric structure and of the
information displayed by the representations, they
may prove, however, to be useful in studying virtual
processes.
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! Deser, Gilbert, and Sudarshan, Phys. Rev. 115, 731 (1959),
and preceding paper [Phys. Rev. 117, 266 (1960)]. These will
be referred to as I and IT, respectively.

2. INTEGRAL REPRESENTATIONS FOR THE MATRIX
ELEMENTS OF THE COMMUTATOR

We wish to derive a representation for the momentum
state matrix elements of the commutator of two local
field operators:

h(:0:0")=p|Lj1(2/2), jo(—1/ IZ)JIQP’), 1

under the restrictions

@  [71(®/2), jo(=2/2)]=0 for 22<0,
(b) @l]llﬂ'l):(), n2<n12
(@ 72|m)=0, n2<ny?
and (c) Lorentz invariance.
By the methods of paper I, one can obtain a repre-
sentation for the Fourier transform, f(k), of k(x).
Before this is done, it is convenient to define the time-

like state momentum vector P and a spacelike unit
vector Q orthogonal to P as follows:

1(+p)=P, (p—p)V—(p—p")-PP\/P= (),
Q=@ (@)
In terms of these, f(k,P,0Q) has the representation

@

S4,P.0)= [ dudsiy Bup)e(5P+P-1)
Xo(K*4-2P-k3+2Q-ky—p), (3)

where the causality condition is embodied in the lower
limit of the u integration: B2 po=—[2P2—20%=1?
—p?P%. The integrations over v and B run out to
infinity, and ¥ is, of course, the new parameter corre-
sponding to the new momentum Q. The weight function
H (,8,y) depends implicitly on P and Q.

In order to proceed with the imposition of the mass-
spectrum conditions in Sec. II, the assumption must
be made that the weight function H vanishes sufficiently
rapidly for large u and g. Alternatively, we could have
proceeded as in I, and derived this form from a Jost-
Lehmann representation by using a modified Dyson
identity to rotate one of the parameters from a spacelike
to a timelike direction; this would have yielded a
weight function nonvanishing only in the region

BPHv < Py u> . 4)
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This procedure would also have necessitated the addi-
tional assumption that the weight function was a
Schwartzian distribution.

3. SPECTRAL CONDITIONS

By a decomposition with respect to a complete set
of intermediate states, one can write (apart from
numerical factors)

JE&) =2 6(k+P—n1){p| j1|ni)(m| 52| p")

=2 8(k—P—mno)(p| jo| maY(ma| j1lp7), (5)
which implies that
J(&)=f(k*2P-£,2Q0-k)=0
for (P+E)?*<ne, (P—kR)?<n?, (6)

provided one is really in the physical region of the
invariants defined by
AR { (2P k)*/ P2y — (2Q-F)*. Q]

The integral representation contains a § function which
restricts the integration of the weight function H (u,8,y)

to the plane
B+2P k3120 ky=p. ®)

The mass conditions assert that in the physical domain
of the invariants, i.e., on one side of the saddle

4k*={ (2P-k)*/P*}— (20-k)*, )
in the wedge @ included by the planes
2P -k+-k=nl—P, —2P-k+E=n2—P2, (10)

(the proper wedge being chosen by including the points
for £* large and negative), the function vanishes.

To make explicit use of this property, one has to
overcome the complication of the ¢(P-k+BP?) factor.
We already know that H(u,3,y) vanishes on one side

of the saddle.
b po=72—pP?, (11)

in the (u,8,7) space. By an explicit calculation one can
show that for all points in the physical region, the
expression e(P-k-+BP?) changes sign in the finite seg-
ment intercepted by the saddle; and thus may be
replaced by e(P-k) for physical values of k. We thus
have the result that f'dudBdy H(u,B)s (R*+2P-28
*+2Q- ky—p) vanishes for points lying in the physical
part of the wedge ®(10).

Two possible physical situations can arise according
as this wedge does not or does have a common domain
with the unphysical region of the saddle (9). We shall
call these case 4 and case B, respectively. In case 4
the physical region where the function is known to
vanish is a wedge with no straight line boundaries,
truncated by a curved surface, but in case B part of
the wedge is not bounded by the saddle and the region
does have a straight edge of finite length.
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A point (k%,2P-k,2Q-F) determines a plane in the
(u,8,y) space and the vanishing of f(k) in the (trun-
cated) wedge corresponds to the integrals along a dense
set of planes in the (u,8,) space vanishing identically.
Provided the function H is of sufficiently fast decrease,
these conditions are adequate to impose support
conditions on H. To this we now turn.

4. SUPPORT CONDITIONS
Case A. n;+n,>2P

In this and the following sections we assume that the
weight function H (u,8,v) is a distribution of sufficiently
fast decrease so that the condition for the vanishing of
the integrals along a set of planes dense in a certain
region §', in general unbounded, is that the weight
function itself should vanish in §'.

We now observe that the mass-spectrum limits
discussed in the previous section do indeed provide such
a dense set of planes, corresponding to the (dense) set
of points of the wedge ®. The domain §’ in the (u,8,y)
plane is bounded by the envelope of the planes gener-
ated by the boundaries of the domain ®. The boundary
of ® consists of the intersections

. [k2+2P-k=nl2—P2,
|4k (20- k)2 — (2P- k)2/ P2=0,
and (12)
{kZ—zp-k=n22—P.2,
gz:

4R (20- k)2 — (2P- )2/ P*=0.

Notice that the planes generated by points on the plane
E+4-2P-k=n>—P? all pass through the point p=7
—P?, B=1, y=0 and similarly all the planes generated
by points on k*—2P-k=mn,’—P? pass through p=n?
—P?, B=—1, v=0. Further any point on the saddle
¥+(Q-k)*— (P-k)?/P*=0 generates a plane tangent to
the saddle u+g2°P2—+?=0. Thus 9; generates a set of
tangent planes to the (u,8,y) saddle passing through
(n?—P% 1,0) and 9, generates a set through (ns2— P?,
—1,0). The problem is thus reduced to finding the
region 8’ swept out by these planes and bounded in
part by the envelopes of these two sets of planes.

To find these envelopes, let us first parametrise the
set of planes generated by 9;. Let any definite plane
of this set touch the saddle p=v2—pg2P? at the point
(',8',7") ; then these quantities satisfy

W=y"2=B2P?; u'=Pl—nl2—28 P2

The latter condition follows since the tangent at the
point to the saddle is

3(utu)=vy'—BB' P,

and any plane of the set generated by d; passes through
the point (n2— P 1, 0). Consequently, the set may be
parametrised by their points of tangency u'=P?—n,?
2P\, g'=\, ¥'=£[(1-\)2P2—n?}, so that the
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planes form the family:
p=nt—P+2P (1+BNE X[ (1-NPP—n . (13)
The envelope of this family is

p=nl+(1428)P*—2m[ (1-+8)*P*—v*JH; |B] <1. (14)
Similarly, the envelope of the family generated by 9; is

p=ng+(1=20)P*—2n (1—B)P—+*T; |B] <1. (15)

These envelopes are segments of hyperboloids with
their centers of symmetry at the points (#2—P?, 1,0)
and (n2—P? —1,0) and are ruled surfaces with the
one-parameter family of tangent planes touching them
along a line. For y=0 either hyperboloid degenerates
into a pair of lines; for one of these it is

2(mP—P)B+u— (m—P)*=0,
—2(mP+P)p+p— (ne+P)*=0,

which incidentally constitute the asymptotes for the
envelope for all values of v.

We may now define the domain §8’. For this purpose
notice that the limiting planes which are tangent to
the saddle at infinity are tangents to the envelopes for
the largest permissible value of p and these are parallel
to the u axis. Thus the region 8, the support of H (u,8,v)
and the complement of §', is bounded by the envelopes
and their horizontal tangents:

{u=max{n12+(1+23)P2—2m[(1+6)2P2—v2]*
8

(16)

+n+ (1—28) PP~ 2no[ (1—B)°P*—~* 1},
—1+|y|/PLBSI=v|/P. (17)
This region is illustrated in Fig. 1 where § is shaded.

One observes that the cross sections in the (8,y)
plane are bounded for all u; the maximum allowable

e

«_ 2n2-P21)
> e Iyl
p S<(nf-P?+2lylp1-45)
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value for [y| is P at which point the two tangent lines
coincide. The region in the (u,8) plane is widest for
v=0in which case the hyperbolic boundaries degenerate
into their asymptotes, the parallel strip is bounded by
the lines B=+1; and we have a configuration familiar
from the representation of the forward scattering
amplitude of IT; we notice also that the mass parameter
« occurring there is here replaced by the quantity P.

Case B. n;+n,<2P

In this case the associated geometric problem is very
similar, except for the fact that for very small values
of the variable 2Q-% the wedge ® does not extend up
to the bounding curves 9; and J; but is terminated by
the line

F4-2P-k=ni— P,
'Ikz—zP.k=n22—P2, (18)

up to a definite value of the variable 2Q-%. There are
two such values (for either sign of 2Q-k) and at the
corresponding points the curves 91, 92 and the line /
intersect. These points are

k=% (nl+nd)— P,
2P k=3 (nd—nd),
[(mtn2)— 4P ][ (ni—n)*— 4P\ (19)
4p? ) B

204

=42T.

The line / generates a set of planes passing through the
two points (n:*—P?% 1,0) and (n2—P?% —1,0). The
domain 8§ is bounded by the subsets of planes generated
by the segménts of the curves g;, 95 and of the line
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Fi1G. 2. The support of H for case B.

which form boundaries of ®. The family of planes
generated by 7 is

p=%nl+nd)— PP+ (nl—n?)B—2vy'.  (20)
This family has two planes common to the families
generated by 9; and 9,5, namely

p=3(nl+nd)— P43 (nl—n?)B£2ly.  (21)
The domain § is, then, bounded in part by these
envelopes and these two planes. In order to see precisely
how the domain is bounded it is necessary to examine
the segment of the envelope actually generated by the
allowed tangent planes. For this purpose notice that if
the one-parameter family of tangent planes is labeled
by the value of 4 for the point of contact of this plane
with the saddle, the representative points (lines) along
the envelope curve (surface) in the (u,8) plane [ (u,8,7)
space] form a monotonic sequence. For v/=0 these are
points at infinity S=oc while for v/ — « these
approach the points 8==F(1—|v|/P). Hence in the
present case (case B) where |y'| cannot be less than a
certain value, it follows that only a finite segment of
the asymptote is a true boundary. The exact points
can be obtained analytically.

But a more elegant method is to notice that in this
case the planes (21) are also tangent to these envelope
surfaces and furthermore, they are common tangents to
these envelopes. It can also be seen that the points
(lines) of contact of these tangents are the required
limiting points (lines) on the envelopes. Consequently,
the domain 8 is bounded by this plane, the saddle, the
segments of the asymptotes concave towards the u axis
and the tangents to the envelopes at their limiting
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points parallel to the u axis. The typical configuration
is illustrated in Fig. 2, where § is shaded.

For both very small and very large values of vy the
line (21) intersects the parabola u=+2—p2P? but for
suitable parameters there may exist a range of values
of v for which the line does not intersect the parabola,
in which case the parabola is not a boundary of the
configuration § in the (u,8) plane for these values of 7.

Again, for v=0, the hyperbolas degenerate into their
asymptotes  and the pattern is similar to the one
obtained in the study of the forward-scattering ampli-
tude, with P replacing «. To obtain the forward-
scattering limit, it is necessary to reinstate the unit of
length for Q, which has been implicit in the dimensional
parameter . In this limit, the v dependence drops out
of the 6 function in Eq. (3), and the new weight function,
H(u,8), is the integral S .*dy H(u,8,y"), where the
limits on the dimensionless 4" have become (—, »),
independent of 8. The range of u and g is just that
obtaining in the y=0 plane. '

5. GENERALIZED TWO-POINT GREEN’S FUNCTION

From the considerations of the previous section we
have obtained a structure for the matrix element of a
local commutator between two states labeled only by
their four-momenta. This enables us to write down the
retarded Green’s function for the corresponding cases
by the familiar replacement of

§(R+-2P-kB+2Q- ky—p)
by the expression
(B-H2P- k820 by—pti(P-k+BP) e,

with the same weight functions H (u,8,v). In case 4 we
can separate the contributions coming from the two
orders of the commutator in the physical region; and
write the corresponding time-ordered Green’s function
by dropping the sign factor in the imaginary infini-
tesimal part:

H
Go(k)= [ dudgay adal (22)

s E+2P - k8+2Q-ky—ptie

In case B we cannot define the time-ordered Green’s
function for all physical momenta since there is no
way of separating out the contributions from the two
orderings of the commutator for those values of the
invariants in the physical region of overlap. In this case
the 7e trick generates a Green’s function which coincides
with the true time-ordered Green’s function over most
physical momenta, but is not necessarily identical to it
for a restricted range of the real momentum k.

It is to be stressed at this point that since the classifi-
cation into case 4 or case B is dependent on #;+#n,— 2P,
for sufficiently large momentum transfers, one invari-
ably obtains case B since P increases with momentum
transfer. In the next section we shall see that the
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occurrence of P in deciding the configuration prevents
us from exploiting the techniques employed for the
forward scattering case to deduce dispersion relations
for the off-forward scattering of strongly interacting
particles.

In the remainder of this section we shall be concerned
with the structure of generalized two-point Green’s
functions, i.e., the matrix elements of the time-ordered
products of two field operators between two arbitrary
states. Specifically, we wish to relax the restriction that
the states are together characterized by only two
momenta. In the general case, let p; (i= 1,2,---,N)
be N arbitrary momenta, which together 'specify the
space-time properties of the various states. (We neglect
the complications introduced by spin, which are
irrelevant to the main argument.) Then if we put

N
Pr=} 3 po, (23)

the mass-spectrum restrictions assume the same form
as before. If we now define any two space-like unit
vectors Qi, Q: which are mutually orthogonal and
orthogonal to the time-like vector P, we can write the
inequality

4R LQP-R)/PH]— (201 k)*— (204- kY,

which now represents a saddle-shaped three-dimen-
sional hypersurface. By the same methods as used
before, for the function '

(24)

1= [[endts - [Lites2), =/ -,
one can write the integral representation

fR)= f dudBdyidys H (u,8,v1,v2)e(P - k+BP2)

XO(K+-2P k84201 kv1+2Q0z - kys—p). (25)

A little reflection shows that this in fact is the general
case whenever we have three or more momenta, since
k has only four independent components and the
quantities k%, 2P-k, 20,-k, 20,-% define it completely
as soon as the directions of P, Qy, Q; are known. The
only exception to this general case is when there are
only one or two independent momenta defined, and
these cases have already been dealt with.
If we put

Y1=7 COsa, 7ys=1 sina,

we can rewrite f(k) in the form

58 = [ dudivia 1 up,v)e(P-k+57

XO(K+2P-k8+2[01-k cosa+Qs - sinaTy—u), (26)
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where H (u,8,v,@) is suitably defined. The support of
H(p,B,v,2) subject to the mass-spectrum conditions
can be found in a manner identical to that we have
used in the last section after showing that the « de-
pendence does not significantly enter into the support.
The support of H is given by

p2> max{k+2Pk3-+201 by cosa+20s-ky sina, (27)

for each value of 8, v, . The maximum is taken over
all B, P-k, Q1-k, and Q,-k lying in the region ®:
B—nt+P 2P kS nim PP f?,
B <[(P-B)*/P*]— (Qs- k>~ (Qu- k)%
The orientation of the component of % lying in the
(01,02) plane is completely arbitrary; thus if the

expression in (27) is maximized over this orientation,
it will yield

12 max{k+2P- kB 24[ (0 B)2-+ (Qz-k)zj*},

(28)

which reduces the problem to the simple 3-parameter
off-forward) case, and incidentally exhibits the sym-
metry in the sign of ¥.

We note that in these representations, as long as P#
is taken to be the average momentum of the initial and
final states, the choice of the other unit spacelike vectors
Q1, Q2 are completely at our discretion, and the formal
structure is not dependent on whether they label the
initial or final state. We have one explicit example in
the one-momentum case where the commutators associ-
ated with the vertex function and with the forward
scattering amplitude have, with appropriate choice of
variables, Fourier transforms which have integral
representations with the same structure. Similarly in
the two-momentum case the commutators associated
with the meson propagator in one-nucleon states and
with the two-particle wave function have the same
structure. The intermediate mass thresholds n1 and #g
do depend on the details of the problem as does the
explicit expression for the matrix element in terms of
the momenta p; and p,. These same properties are true
of the more general amplitude.

6. DISPERSION RELATIONS

The Green’s functions derived before describe the
propagation of the field whose current is denoted by
J(%). By suitable restriction of this Green’s function,
one may obtain the propagation characteristics for
physically interesting cases. Thus for example, the
physical off-forward scattering amplitude can be ob-
tained by restricting the components of % in the three-
parameter Green’s function such that the initial and
final projectile momenta are on the mass shell. This
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implies two restrictions.
k= P—5(p+p2") +3 (91> ¢,
Llg?—g)+(P-2/P)(p2—p2)]  (29)
[P*=3(p+p)+ (b2~ p)/16P2J

where p:%, ps* are the squares of the initial and final
target masses and ¢, ¢»* are the squares of the initial
and final projectile masses; no two of these masses need
be equal. With these restrictions the Green’s function
reduces to a scattering amplitude 7'(P-%) depending
only on the “energy” variable P-. :

This amplitude T is singular for such values of P-%
for which k*4-2P-k8+2Q-ky—pu vanishes, with u, 8, v
lying in the region §. By virtue of the infinitesimal
imaginary terms these singularities, which in general
form cut lines in the complex plane, are shifted infini-
tesimally away from the real axis. The displaced cut
lines are in the upper or lower half-planes according to
the sign of the imaginary terms in the denominator ;
and the analytic properties of T(P-k) can then be
determined once the region $ is known.

There is now, in principle, no reason why one should
not study the most general case. In practice, however,
the algebraic complications make this study quite
involved and most of these are kinematical details.
The essential points can be seen in the simplest possible
case, which is also the most symmetric, where

20-k=

pi=pr=r?; q12=q22;m2; nd=nl=nl,
The on-the-mass-shell values of %* and 2Q-% are
B=P—4m?; 20-k=0,

and the manifold of singularities are associated with
the plane
u=2P-kB3+P’—2+-m?.

Over this plane the quantity P*-(P-£/g) changes sign
along the lines of intersection of the plane with the
parabolic cylinder p=P*(1—28%)—x*+m? the function
being negative for the finite strip.

Accordingly, let us split 7'(P-£) into two parts:

T(P-B)=Ty(P-k)+T5(P-k),

which are analytic, respectively, in the upper and the
lower half-planes and defined by the integrals

TP 1) f dudBdy H (1,8,y)
' 2P BB+ Pr— b — ’

+i(P2— 2+m?—28P2—p)e
i=1,2 (30)

where 8; is that part of § in which the inequality
u>2P- kB+ P*—k24m? is satisfied and S, is the comple-
ment of 8; with respect to S. For suitable mass condi-
tions 82 may be null; in this case the scattering ampli-
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tude is analytic in the upper half-plane for the complex
variable P-% and dispersion relations can be written
down immediately.

In general the region $; is not null and we have
analyticity in neither half-plane. To obtain the precise
structure of the cut lines observe that the planes
p=2P-kB+P*—«*+m? form an axial pencil with the
line A: p=P’—2+m?, B=0 as axis. To every plane of
this pencil we can associate a value of the “energy”’
P-k. Two essentially distinct cases arise according as
A has not (or has) any common points with 8; these
correspond to the conditions

P—+m*<(>)(n—«)?: case 4,

31
PP—2dm? < (>)n?—«?:  case B. 31)

In either case 4 or B, if A does not have any points in
8, then the function T'(P-k) has cut lines in the upper
half-plane only for a finite range of values of P-% and
these are in the unphysical region since P-£ is propor-
tional to the average energy of the projectile in the
initial and final states in the Breit coordinate system.
This makes it possible for us to define a continuation of
the physical scattering amplitude by changing the sign
of e in To(P-k). By virtue of the reality of the weight
function H (u,8,y) consequent on the charge-conjugation
invariance of the theory, this is equivalent to the
redefinition

T(P-B)=T1(P-k)+T5*(P-F),

which leaves the physical scattering amplitude un-
altered:

T(P-B)=T(P-k) for (P-B)’>Pum.

The function so defined is analytic in the upper half-
plane and constitutes the analytic continuation of the
physical scattering amplitude to the unphysical region;
the dispersion relations for these (redefined) amplitudes
follow in the standard fashion.

If on the other hand, A has a finite segment lying
inside 8, there will be cut lines in both half-planes for
all energies in the amplitude T'(P-£); and these are no
simple analytic properties, at least for a general
H(u,B,y). In this case we can obtain no dispersion
relations for the physical scattering amplitude.

For the amplitude to have the required analyticity
properties it is thus advantageous to have the inter-
mediate mass threshold as high as possible ; and needless
to say this is true in the general nonsymmetric case.
If the state of least mass occurring in any order of the
commutator is a single-particle state separated by a
finite gap from the beginning of the continuum function,
then f(k) vanishes for physical values of the invariants
lying between an isolated plane and the continuum.
This additional information cannot be expressed as
support conditions on H (u,8,y) but it takes the form
of additional integrability conditions enabling us to
write a modified Green’s function with a smaller
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support. This bound state may be removed and re-
expressed as in II, and the analytic information of
interest may be deduced from the beginning of the
continuum of mass values.

When the external particle (the projectile) is strongly
interacting, the restriction to the mass shell makes A
have a finite segment lying inside § for all nonvanishing
momentum transfers, since #<«+m. Thus it is not
possible to derive dispersion relations for nonforward
scattering of physical particles from this representation.
When the momentum transfer tends to zero, A moves
over to the boundary of $ and in the limit of the
forward-scattering amplitude we obtain the dispersion
relations derived in II.

Here one needs to point out that it is not essential

to take both the projectile states to be on the mass
shell. One may consider those specializations of the
Green’s function which correspond to off-the-mass-shell
functions in a completely analogous manner and study
the analyticity properties of these amplitudes for virtual
processes. But since the consideration of these various
restrictions of the Green’s function adds nothing
essentially new in principle we shall not devote any
further attention to them. Similar considerations apply
to the three-momentum and multi-momentum ampli-
tudes considered in Sec. 5.
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